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We show that in the presence of random Kripke’s schema choice sequences can be recursively

encoded in intuitionistic real algebra.

1. Introduction

The consistency of the full version of RR-KS - Relativised Random Kripke’s Schema (introduced in the
paper 1]y with the usual axiom system of intuitionistic real analysis remains open, only the
consistency of a significantly weaker form when relativisation applies to decidable species is proved
(see the Appendix of this paper). In [11 it was shown that the interpretability of second-order Heyting
arithmetic in intuitionistic real algebra follows from this axiom system. In this paper we sidestep the
problem of consistency to get a related result - the interpretability of full second order arithmetic in
intuitionistic real algebra using the axiom system from [2L In fact, if the first order structure of
natural numbers is definable in an intuitionistic real algebra (as in the real algebraic structures of the
models described in [3] and in [4] - the definability there follows from R-KS and the usual axioms, for
the details see [21), then so is second order arithmetic. Since the treatment here is (mostly) axiomatic
(as was in the gappy [1]) the result parallels the results in [3] and [2l where we moved from proving the
interpretability of the natural number structure in a model of intuitionistic real algebra to proving
interpretability from an axiom system, moving away from the pecularities of a given structure.
In L6l we have shown an encoding of true second order arithmetic in models, here we give an encoding
using an axiom system. The point is that the coding will be direct, no Gédel numbering of syntax is

needed.

From [ let us recall the following. We shall use the language L; from I3l It contains two sorts of

variables — m, n, k, etc. ranging over the elements of w, and «, 3, etc. ranging over choice sequences.
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We also have the equality symbol =. It will be used in atomic formulas of the form ¢t =¢ or

&(t) = t' where t and ¢’ are terms of natural-number sort and ¢ is of choice sequence sort.

In L8 we defined randomized Kripke’s schema as the following axiom schema of second-order

arithmetic:

R-KS(p) = 3B (In(B(n) > 0) = ) A (—In(B(n) > 0) — —p) A
Vk > 0(—-3n(B(n) = k) — ¢ V —p) AVE > 0Vn((B(n) = k) = Vm > n(B(m) = k)) ]

where ¢ is a formula that does not contain the choice sequence variable 3 free.

Also in [l we have proved the following.

i. The models of intuitionistic second order arithmetic described in [3l and in 4] are models of R-
KS.

ii. From a standard axiom system augmented with R-KS the definability in the language LOR of
ordered rings of the set of natural numbers follows: there is a formula N(z) with one free
variable on the language of ordered rings such that from the axioms

Jk € Nt (z = k) = N(z) follows in two-sorted intuitionistic predicate calculus with equality.

The folowing is an immediate corollary.

Proposition 1. The ordered semiring structure of natural numbers has a uniform definition in the real
algebraic part of any model of the axiom system T' from [31 (also in [4]) with R-KS added. From this follows
that each recursive function has such a uniform definition. The restriction to {z|N(z)} of the formula

defining the recursive function/relation in the structure of natural numbers works. []

Also, the real algebraic structure is defined in intuitionistic second order arithmetic: In pages 134-
135 L7 Vesley considers a species R of real-number generators: ¢ € R (also denoted by R(¢)) if and only
if the sequence 27%¢(z) (z€w) of diadic fractions is a Cauchy-sequence with
VE3zVp|2—2¢(x) — 27" P€(z + p)| < 2%, i.e. if and only if VkIzVp2*|2P¢(z) — £(x + p)| < 27P. Note
that any choice sequence with range in the set {0,1} is a real number generator (with the

corresponding real in the closed unit interval).

Equality, ordering, addition and multiplication on R are also defined. (cf. also pages 20-21 [81) and the

definitions can be extended readily to polynomials of choice sequences.

¢ is a global real-number generator just in case R(£) holds. We shall use the letters f, g, u etc. to range

over global real-number generators and we shall use the defined quantifiers
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3240 := Ju(R(u) A 0); V7 ub := Vu(R(u) — 6)

also (definable) quantification 3%2 and V%2 over real number generators with range in the set {0, 1}

and when we have the definition N(z) of the natural numbers
N ub = Ju(N(u) A 6); VY ub = Vu(N(u) — 6)

For each natural number n there is a corresponding global real-number generator f,, (also denoted by

n in the context of real numbers only) defined as follows: f,(I) = m iff m = n2!. Then

faf=f+otf
—_——

n

2. Encoding choice sequences

We encode choice sequences as real numbers in the closed unit interval such a way that atomic
formulas of the form g(m) = k could be translated into a formula |8, m, k] in the language of ordered
rings. Also the set of codes will be definable, a code will be unique (with respect to equality of real
numbers) and each code will be a code of a unique choice sequence (see Lemma (7). and Lemma (?).

below).
Some notation: (.,.) will denote a recursive injective and surjective pairing function.
The code C; of a choice sequence £ will be a real number with generator a 0 — 1 sequence Cé such that
i. C’é(2(m, k)) = 1iff&(m) = k(m, k € w).
ii. C’é(2p+ 1)=0(p € w).
Note that each real in the interval [0, 1] has a 0 — 1 real number generator.

The second (technical) condition is needed to make sure that any real number is a code of at most one
sequence and to be able to deduce properties of a 0 — 1 reaql number generator from the properties of

the corresponding real (see Lemma 2).

Now some details. First of all we have to express Cé(p) = 0 with a formula on the languge LOR of
ordered rings involving the real numbers C; € [0,1] and p with N(p). The next lemma gives the

required translation.

For a 0 — 1 sequence generator z’ let = be the corresponding real. Then z'(p) = 0 means that in the

diadic expansion of « there isno 1/2°.
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Lemma 2. In this lemma we assume that the 0 — 1 sequence representation of a real number z is not

eventually 1, ie. Vm3n > m(z(n) = 0) (standardrepresentation).

i.z'(m) =0forallm > piff 3tq(z - 2° = q).
ii. Assume z'(p) = 0 and z' (i) = 0 for some i > p. Lety, = X" /(i) - 1/2! a (rational) real. Then
Itq(y, -2 =¢g)and 0 <z —y, < 1/2°.
iii. If for some y 3*q(y- 2! = q)and 0 < x — y < 1/2P and z' (i) = 0 for some i > p, then z'(p) = 0.

In this case for the standard representation of y we have y'(j) = z'(j) for all j < p.
Proof.

.z —y, = Sispa’ (1) - 1/28 > 0

Sincez'(p) = 0,z — yp = Tj=pz' (i) - 1/20 < ;2,1/20 = 1/2°. [

2. First note that ' being a 0 — 1 choice sequence implies that 2’ (k) = 0 or 2’ (k) = 1 for all k. By (4)

yis of the formy = Ef;ll y/(i) - 1/2¢ for an appropriate representation y'.

If j<p is the least index with ¢'(j)#2'(j) then if 3'(j) <2'(j) we have
z—y>1/2 20 1/2m 41/ > 1/20 If y'(5) > 2' () then
r—y=-1/2+3%, 2 (m)-1/2™ < —1/27 4 1/27 = 0, since 2’ (i) = 0 for some i > p.

Ifforalli < py'(i) = &'(i)and 2’ (p) = 1,thenz —y > 1/27.00

To apply the lemma we need to take care of the condition on the ”returning zeros”. For a

0 — 1 sequence z’ corresponding to the real number z let [z', p] denote the LOR-fromula equivalent to
JyITqy- 2P =g A0 <z —y<1/2F

Lemma 3. Vma'(2m + 1) = 0 and 2’ (p) = 0 iff Ym[z', 2m + 1] A [z, p].

Proof. First assume that Vma'(2m + 1) = 0 then by Lemma 2.(ii) and (iii) for all p 2'(p) = 0 iff
[z, p] taking care of the left to right direction. Next assume that Vm/[z',2m + 1] but there is a smallest
m such that z'(2m+ 1) =1. Again, by Lemma 2.(iii) for all ¢ >2m+1, z'(¢) =1. Thus
z>2-1/22mt1 = 1/22m  From [¢/,2m+1] there is y such that 3V g(y-22™ =¢) and
0<z-—y<1/22m*l g0 by Lemma 2.(iii) we have y'(j)=2'(j) for all j<2m. Then

T —y= Yp2,1/27 = 1/2?™ a contradiction. O

Definition 4. For a choice sequence & let £ be the 0 — 1 sequence (real number generator) with

&(k) = m (decidable) iff £’ ((k,m)) = 1 (decidable). The code of an atomic formula of the form £(k) = m is
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the LOR-formula C (¢, k, m) equivalent to Vp[¢',2p + 1] A [€,2(k, m)].

A 0 — 1 sequence (real number generator) x is a code (CODE(z)) iff Ym[z,2m + 1], so the set of codes is
definable in real algebra by a LOR formula.

For a choice sequence o and a 0 — 1 sequence (real number generator) u, u is the code of o, denoted as
C(a,u) if CODE(u) AVkYm(a(k) = m + C(u,k,m)).O

From the above definitions and lemmas follows that each choice sequence has a unique code and a

code corresponds to a unique choice sequence:
Corollary 5. Va3%2luC (a,u) A VE2u(CODE(u) — JlaC(a,u)) O

Definition 6. For each choice sequence variable ¢ let ¢ be a designated variable ranging over

0 — 1 sequences. For each L, -formula 6 we define its LOR translation 7(8) as follows.

 If @ is first order atomic, 7(6) := 6

o 7(&(t1) = to) is the LOR formula equivalent to C(&',ty,t2)

o (1 0) :=7(3h1) o T(ha) foro = A, V,—

o 7(1) := o7(h)

o 7(3x1y) is the LOR formula equivalent to 3N z(7(11))

o 7(Vaip,) is the LOR formula equivalent to VN z(7(11))

o 7(3¢&) is the LOR formula equivalent to 3%2¢/(CODE(E!) A (1) (€)))

o 7(V&1) is the LOR formula equivalent to V2¢! (CODE(E!) — 1(11)(€}))

Proposition 7. To ease the notation we use only one free sequence (natural number) variable. With the

notation of Definition 6.
vEviAE (O(6,€") — (8(8)  T(0)(€")))

Proof. By formula induction on the complexity of 6. The interesting cases are the second order

quantifier cases. The first order atomic case is immediate, the case for 7(&;(¢1) = t2) follows from

Corollary 5. and the definitions. The first order quantifier cases can be handled similarly as in [el

For the universal quantifier case first assume that V&y; and CODE(¢'). By Corollary 5. there is a
unique £ such that C(¢,¢’) holds and from V&, we also have ¢ (£). Then by the induction hypothesis
(¢1)(€'), s0 VA2 (CODE(E') — 7(41)), ie. 7(V€yr) holds.

Next assume 7(V&y, ), ie. VR2¢' (CODE(¢') — 7(3b1)), we have to prove V&, . By Corollary 5. for any

¢ there is a unique ¢’ such that C'(¢,¢') and since from this CODE(¢') follows, we have (¢4 )(¢') by
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our assumption. We can apply the induction hypothesis to get ¢ ().

For the existential quantifier case first assume that 3¢, . For such &, by Corollary 5. there is &' with

C(¢,¢), so CODE(¢') holds. By the induction hypothesis 7(i;)(¢’) and we have
372/ (CODE(E') A (1) (€")) e 7(Iyn).
Finally assume 7(3¢&1), ie. 3%2¢'(CODE(¢') A 1(31)(¢')). By Corollary 5. for a witness ¢’ there is (a

unique) £ such that C'(¢,¢') holds. By the induction hypothesis v, (£) and we are done. [J

The next theorem is immediate.

Theorem 8. For an L; -sentence 0, 7(6) is an equivalent (in the axiom system T from [31 with R-KS added)

LOR-sentence recursively obtained from 6. [J
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