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Abstract
Ebola Virus disease (EVD) is an emerging and re-emerging zoonotic disease which mostly
occur in Africa. Both prediction of the next EVD and controlling an ongoing outbreak

remain challenging to disease prone countries. Depending on previous experiences to curb
an outbreak is subjective and often inadequate as temporal socioeconomic advances are
dynamic and complex at each disease. We hypothesize that a scienti�c model would

predict EVD disease outbreak control. In this work, a mathematical model with a convex
incidence rate for an optimal control model of Ebola Virus Disease is formulated and
analyzed. An optimal control strategy which aims at reducing the number of infected

individuals in the population and increasing the number of recovered through treatment is
evaluated. Three control measures: tracing of contacts, lock-down and treatment have
been considered. A qualitative analysis and numerical experiments are performed on the

model and the �ndings reveal that the most expensive strategy involved imposing
lock-down and contact tracing of the infected while the cheapest alternative was lock-down
and treatment of the infected. Hence, policy makers should concentrate on treatment and

lock down to combat the disease.
Keywords: Ebola Virus disease; optimal control strategy; Convex incidence rate;

Zoonotic diseases, cost e�ectiveness
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1 Introduction

Ebola Virus disease (EVD) is severe and often fatal infectious disease that is epidemiologically
characterized as an emerging and re-emerging zoonosis a�ecting humans and non-human
primates [1]. Since it was �rst discovered in Africa was in 1976 [2]. EVD has increased in
frequency, geographical scope and health morbidity and mortality burden in the most prone
West and East African sub regions of Sub-Saharan Africa. The 2014-2016 EVD outbreak
epidemic in West Africa a�ected Guinea, Sierra Leone, Liberia and Nigeria was the largest
since the virus was �rst discovered [3]. It resulted in 28,616 cases, 11,310 deaths([4]), and
economic cost of $ 2.8 billion ($ 600 million for Guinea, $ 300 million for Liberia, and $
1.9 billion for Sierra Leone) [5]. On 25th June, 2020, World Health Organization (WHO)
announced the world's second largest Ebola outbreak in Northern Kivu/Ituri, DRC in which
over 3481 cases were recorded with 2299 fatalities. [6].

Chronology of previous EVD outbreaks include 18 countries since the �rst outbreak
with the 2021 (Guinea and DRC) ongoing, over 8 and 7 outbreaks in DRC and Uganda
respectively of Zaire and Sudan ebolavirus species [7]. Uganda has experienced EVD
outbreaks caused by Sudan ebolavirus (four outbreaks) and Zaire ebolavirus (three outbreaks).
On the 26th October 2022, the World Health Organization (WHO), declared an Ebola
outbreak caused by Sudan EbolaVirus (SUVD) in Uganda [8].

By 18th November 2022, 114 cases EBV has reportedly been The outbreak of EBV is
attributed to the transmission from humans, animals, on objects or surfaces contaminated
by body �uids of an infected person for example clothing of or bedding of a sick person that
have not been cleaned [10]. The EBV is a very contagious disease with signs and symptoms
including severe fever, headache, muscle pain, weakness, fatigue, vomiting, diarrhea, stomach
pain, and bleeding from all body openings. The incubation period for Ebola can be anywhere
from 2 to 21 days. An infected person becomes infectious and can infect others when he/she
develops the symptoms and the infection spreads mainly in hospitals between outpatients, in
patients, caretakers, medical personnel, schools, churches, interaction with family members
and friends at social gatherings like funerals, wedding and birthday parties, workplaces, and
people in the household with close contact with the infected person (see Figure 1 below
showing the pathways of Ebola Virus Disease transmission).
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Figure 1: Transmission Means of Ebola Virus Disease between Humans

It's believed that men who have recovered from Ebola transmit the virus (up to 90
days after recovery) to their partner through semen. Breastfeeding is also a risk factor
as babies may acquire the virus through breast milk of infected mothers [11, 12]. The
epidemiology of the disease is complicated with spill overs even when the area has been
declared ebola-free. This makes implementing control measures somewhat di�cult. Previous
EVD outbreak experiences have been relied on to build a country's response and resilience
capacity. However, an outbreak that comes back-to-back with COVID-19 pauses challenges
on its control. Lessons from COVID-19 lockdown in disease outbreak control have been
implemented for the control of the current EVD outbreak in Uganda, but their impact
have not been well described. The national temporal socioeconomic advances are dynamic
and complex with each disease outbreak. Hypothesise driven scienti�c modelling of control
measures for EVD are timely and may pave a way for ease of future disease outbreak control.
Applying a combination of intervention measures, speci�cally case management, infection
prevention and control practices, surveillance and contact tracing, a good laboratory service,
safe and digni�ed burials and social mobilization are important, but models that appraise
these interventions are even more critical.

Mathematical models have been used by scholars to help in directing policy makers to
set standard control measures to mitigate the spread of infectious diseases in communities.
Most existing mathematical models use the traditional bilinear and non-linear incidence
rates ([13]-[18]). However, such incidence rates are helpful during the initial stages of the
disease outbreak and not useful as the disease progresses in the population in the long
run. Therefore, adapting to a new incidence rate for example the convex incidence rate
gives a better understanding of the disease progression in communities especially where
individuals are doubly exposed to the infection which increases the risk of transmission.
Convex incidence rate has been used in describing the dynamics of Heapatitis B virus diseases
by [19] and [20] used a convex incidence rate in modelling infectious diseases like Hepatitis
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B Virus disease.
Optimal control theory has proved to be an e�ective tool in understanding ways to

curtail the spread of infectious diseases in susceptible populations by instituting optimal
intervention measures that help decision makers devise better policies to control infectious
diseases [21].Mathematical models of Ebola Virus disease with optimal control for reducing
the spread in populations have been studied for example ([22]- [26]). However, literature
on EBV models incorporating a convex incidence rate are limited. This study, aims at
using a convex incidence rate in a Susceptible-Exposed-Infected-Treated-Recovered-Death
(SEITRD) EBV model to determine the e�ect of the control strategies instituted to reduce
the spread of the deadly disease in the population.

1.1 Organization of the manuscript

Section 1 has discussed the introduction and Section 2, an (S-E-I-T-R-D) model with a
convex incidence is designed, variables and parameters de�ned, description of the model
is given and �nally ordinary di�erential equations are generated. Section 3, gives a]the
computation of reproduction number and its importance to disease spread in the community.
Section 4, gives the modi�cation of S-E-I-R-T-D model into an optimal control system, a
qualitative analysis and numerical experiments are carried out. In section 5, cost e�ectiveness
analysis is carried out and a general discussion of the �ndings, concluding remarks and future
research directions are outlined.

2 The Susceptible-Exposed-Infected-Treated-Recovered-
Dead (S-E-I-T-R-D) EBV Model Design

In this section, we design a mathematical model for the dynamics EBV incorporating a
convex incidence rate based on the propagation of the virus transmission in the human
population. The human population is represented by N(t) which is partitioned into six
sub-populations namely: susceptible persons S(t) showing persons that can contract the
virus if in direct contact with infected humans, exposed sub-population E(t) referring to
persons that have been exposed to the virus but have not developed signs; infected persons
I(t) representing individuals with signs of EBV and can spread the virus if there is a direct
contact with a susceptible person; treated persons T(t) representing screened persons that
are undergoing medication; recovered sub-population R(t) showing persons responding to
treatment and recovering from EBV infection and the dead sub population D(t), individuals
who die both a natural death and EVD induced death. In all sub populations we assume
individuals to die a natural death, µ. Further, we assume that the convex incidence rate
f(S, I, T,D) satis�es the following;

H1: f(S, I, T,D) is a continuous di�erentiable function ∀ S, I, T,D > 0.

H2: f(S, I, T,D) > ∀ S, I, T,D > 0 and f(0, I, T,D) = f(S, 0, T,D) = f(S, I, 0, D) =
f(S, I, T, 0) = 0 ∀ S, I, T,D > 0 and non negative ∀ S ≥ 0, I ≥ 0, T ≥ 0, D ≥ 0.

H3: The partial derivatives f ′
S = ∂f(S,I,T,D)

∂S , f ′
I = ∂f(S,I,T,D)

∂I ), f ′
T = ∂f(S,I,T,D)

∂T and

f ′
D = ∂f(S,I,T,D)

∂D are positive ∀ S ≥ 0, I ≥ 0, T ≥ 0, D ≥ 0
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All parameters considered in this model are positive. In the initial stages of the disease
spread the transmission rates are represented with βSI, β0ST and β1SD and in the long
run new infections due to double exposure are represented with βSI2, β0ST

2 and β1SD
2.

Other parameter values are described in Table 1 below.

Table 1: Description of EVD Model Parameters

Parameter Description Base Value Ref
β Disease transmission rate through the infected 0.2244 [27]
β0 Disease transmission rate through persons on treatment 0.1122 [27]
β1 Disease transmission rate through the dead body 0.1683 [27]
γ Rate of recovered humans to become Susceptible 0.5366/day [28]
λ Recruitment rate of susceptible persons variable Assumed
ζ0 Total deaths rate from the infected class 0.5500 [29]
δ0 Ebola induced death rate for the infected 0.5499 computed
δ1 Ebola induced death rate for the treated 0.1600 [30]
µ Natural death rate 0.00005/day [31]
ω Transfer rate from the infected class to the treatment class 28 days assumed
ϕ Progress rate from the exposed class to the infected class 0.0833 [32]
h Rate at which the treated persons respond to medication 0.0608 [33]

c1
Control e�ort based on lock down
of all the susceptible population

[0 1] Assumed

c2
Control e�ort through contact tracing

of the exposed persons
[0 1] Assumed

c3
Control e�ort based on treatment

of all the infected persons
[0 1] Assumed

τ
Contact tracing rate for persons with

a history of exposure with the infectious persons
0.06 [34]

s
Cremation/burial rate of
Ebola-deceased persons

0.5000/day [35]

α0
Weight factor for infection from
infected to susceptible population

0.0006 [36]

α2
Weight factor for infection from

the dead to susceptible population
0.0006 [36]

α1
Weight factor for contact rate

between susceptible and treatment population
[0 1] [25]
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Figure 2: A schematic diagram for SEITRD Model

withQ(t = S(t)+E(t)+I(t)+T (t)+R(t), d0 = f(S, I, T,D) = S (βI(1 + α0I) + β0T (1 + α1T ) + β1D(1 + α2D)) ,
d1 = (µ+ δ0)I, d2 = (µ+ δ1)T, d3 = hT, d4 = γR.

The system of equations governing the dynamics of EVD is:

Ṡ(t) = λ+ γR− f(S, I, T,D)− µS,

Ė(t) = f(S, I, T,D)− a0E,

İ(t) = ϕE − a1I,

Ṫ (t) = ωI − a2T, (2.1)

Ṙ(t) = hT − a3R,

Ḋ(t) = δ0I + δ1T + µQ− sD.

where a0 = (ϕ+ µ); a1 = (ω + d1); a2 = (d2 + h) and a3 = (γ + µ);
d0 = f(S, I, T,D) = S (βI(1 + α0I) + β0T (1 + α1T ) + β1D(1 + α2D)) .

Expanding Eq.(2.1)

Ṡ(t) = λ+ γR− S[βI(1 + α0I) + β0T (1 + α1T ) + β1D(1 + α2D)]− µS∗,

Ė(t) = S∗[βI(1 + α0I) + β0T (1 + α1T ) + β1D(1 + α2D)]− (ϕ+ µ)E,

İ(t) = ϕE − (ω + µ+ δ0)I,

Ṫ (t) = ωI − (µ+ δ1 + h)T, (2.2)

Ṙ(t) = hT − (γ + µ)R,

Ḋ(t) = δ0I + δ1T + µQ− sD.

where Q(t) = S(t) + E(t) + I(t) + T (t) + R(t) is a total number of live individuals in the
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human population. Summing up equations in system (2.2) we get

dN(t)

dt
= λ− sD(t), (2.3)

Subject to N(0) = N0.

In this work, an assumption that the overall death rate (µ+ δ0 + δ1) is greater than or
equal to the cremation/burial rate (s) is made. If this condition is not met, it implies that
the deceased individuals totally disappear from the community and the class of D in the
model is inappropriate.

2.1 The Equilibria and Reproduction Number

2.1.1 Disease Free Equilibrium (DFE)

This is a point attained when there is no disease propagation in the population. We assume
there are no infected I(t), no exposed E(t), no treated T(t), no recovered R(t) and therefore
no death related to disease D(t) that is E(t) = I(t) = T (t) = R(t) = D(t) = 0. Setting the
right hand side (RHS) of Eq.(2.2) to zero and substituting for E(t) = I(t) = T (t) = R(t) =
D(t) = 0, the DFE, E0 = (S0, E0, I0, T0, R0, D0) = {λ

µ , 0, 0, 0, 0, 0}.

2.1.2 Reproduction Number, R0 without control

The transmission of an infection in a human population can well be explained by the
reproductive number, R0 de�ned as a measure of the mean number of EBV cases caused by
a single Ebola-infected person (living or dead) introduced into a wholly-susceptible human
population. In assessing the e�ect of introducing an infectious individual in a population free
of the disease the reproductive number is computed using the next generation approach. Let
Y = (E, I, T,D) be a composition of compartments with infected individuals. dY

dt = F − V
where F and V represent new infection and transition matrices at disease free equilibrium
respectively. Therefore, we have the following

F =


0 S0β S0β0 S0β1

0 0 0 0
0 0 0 0
0 0 0 0

 ,

V =


(ϕ+ µ) 0 0 0
−ϕ (ω + µ+ δ0) 0 0
0 −ω (µ+ δ1 + h) 0
µ (µ− δ0) (µ− δ1) s

 ,

V −1 =


v0 0 0 0

ϕv0v1 v1 0 0
ϕv0v1v2ω v1v2ω v2 0

v3 v4 v5 v6

 . (2.4)
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with

v0 =
1

ϕ+ µ
,

v1 =
1

ω + µ+ δ0
,

v2 =
1

ω + µ+ δ1
,

v3 =
ϕω(δ1 − µ) + ϕ(δ0 − µ)(µ+ δ1 + h)

s(ϕ+ µ)(ω + µ+ δ0)(µ+ δ1 + h)
,

v4 =
ω(δ1 − µ) + (δ0 − µ)(µ+ δ1 + h)

s(ω + µ+ δ0)(µ+ δ1 + h)
,

v5 =
(δ1 − µ)

s(µ+ δ1 + h)
,

v6 =
1

s
.

The e�ective reproduction number of EVD is given by the dominant eigenvalues (ρ(F ×
V −1)). Therefore,

R0 =
sϕS0(β0ω + β(µ+ δ1 + h))− S0β1{ϕω(µ− δ1) + (µ+ δ1 + h)[µ(ω + µ+ δ0) + ϕ(µ− δ0)]}

s(ϕ+ µ)(ω + µ+ δ0)(µ+ δ1 + h)
.(2.5)

R0 = RI +RT +RD in which

RI =
ϕβ0ωS0

(ϕ+ µ)(ω + µ+ δ0)(µ+ δ1 + h)
,

RT =
ϕβS0

(ϕ+ µ)(ω + µ+ δ0)
,

RD =
β1S0{ϕω(δ1 − µ)− (µ+ δ1 + h)[µ(ω + µ+ δ0) + ϕ(µ− δ0)]}

s(ϕ+ µ)(ω + µ+ δ0)(µ+ δ1 + h)
,

where RI = contribution of new infections of EVD disease from infectious individuals
I(t); RT = contribution of new infections due to EVD disease resulting from contact with
individuals on EVD treatment T (t) and RD = contribution of new infections resulting from
contact with the dead due to EVD, D(t). Using the initial values given in Table 1, the
reproductive number for EVD is found to be 1.5904 before interventions. Since R0 > 1, this
means that the EVD may continue to spread in the population and eventually wipes it out
if no control measures are put in place.

2.1.3 The endemic Equilibrium (EE)

The endemic equilibrium (E2) for EVD is a point for which the human population (atleast
(S∗, E∗, I∗, T ∗, R∗, D∗ > 0). Equating the RHS of Eq. (2.2), we obtain
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λ+ γR∗ − S∗[βI∗(1 + α0I
∗) + β0T

∗(1 + α1T
∗) + β1D

∗(1 + α2D
∗)]− µS = 0,

S[βI∗(1 + α0I
∗) + β0T

∗(1 + α1T
∗) + β1D

∗(1 + α2D
∗)]− (ϕ+ µ)E∗ = 0,

ϕE∗ − (ω + µ+ δ0)I
∗ = 0,

ωI∗ − (µ+ δ1 + h)T ∗ = 0, (2.6)

hT ∗ − (γ + µ)R∗ = 0,

δ0I
∗ + δ1T

∗ + µQ∗ − sD∗ = 0.

Where Q∗ = S∗+E∗+ I∗+T ∗+R∗. Rearranging equations in system (3.1) to get solutions
of (S∗, E∗, I∗, T ∗, R∗, D∗) in terms of I∗. Adding equations (1) and (2) of system (3.2) we
get S∗ = p0(λ−p1I

∗)+p2I
∗

µϕp0
and rearranging equations of system (3.1) we obtain

S∗ =
p0(λϕ− p1I

∗) + p2I
∗

µϕp0
,

E∗ =
(ω + µ+ δ0)I

∗

ϕ
,

T ∗ =
ωI∗

(µ+ δ1 + h)
, (2.7)

R∗ =
hωI∗

(γ + µ)(µ+ δ1 + h)
.

D∗ = d0 + d1I
∗ (2.8)

where

p0 = (γ + µ)(µ+ δ1 + h), p1 = (ϕ+ µ)(ω + µ+ δ0), p2 = µϕγωh d0 =
δ0(µ+ δ1 + h) + δ1ω

sµϕ((mu+ δ1 + h))
,

d1 =
k0 + k1(k2 + k3 + k4 + k5)

k6
, k0 = δ0(µ+ δ1 + h) + δ1ω, k1 = µ(µ+ δ1 + h),

k2 =
γωh

µ(γ + µ)(µ+ δ1 + h)
+

(ϕ+ µ)(ω + µ+ δ0)

µϕ
, k3 =

hω

(γ + µ)(µ+ δ1 + h)
, k4 =

ω + µ+ δ0
ϕ

,

k5 =
ω

µ+ δ1 + h
, k6 = s(µ+ δ1 + h).

3 Optimal Control

The main objective of optimal control theory applied in control of infectious diseases is
to identify a control set that minimizes the number of exposed, infected individuals in a
stipulated time interval. On the other hand in the process of undertaking control measures
the cost of vaccination, tracing contacts, implementing lockdown and curfew, treatment,
awareness to public through social media and pubic education have to be maintained at
low costs by all means. Modifying model system 3.2 with control e�orts through lock down
and curfew of populations (c1), contact tracing of the exposed persons (c2) and treating the
infected persons (c3) we get an optimal control system as follows
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Expanded Equation

Ṡ(t) = λ+ γR− (1− c1)S[βI(1 + α0I) + β0T (1 + α1T )]− Sβ1D(1 + α2D)− µS,

Ė(t) = (1− c1)S[βI(1 + α0I) + β0T (1 + α1T )] + Sβ1D(1 + α2D)− (ϕ+ µ+ c2τ)E,

İ(t) = (ϕ+ c2τ)E − (ω + µ+ δ0)I,

Ṫ (t) = ωI − (µ+ δ1 + (1 + c3)h)T, (3.1)

Ṙ(t) = (1 + c3)hT − (γ + µ)R,

Ḋ(t) = δ0I + δ1T + µN(t)− sD.

that reduces to

Ṡ(t) = λ+ γR− g(S, I, T,D)− µS,

Ė(t) = g(S, I, T,D)− boE,

İ(t) = b1E − b2I, (3.2)

Ṫ (t) = ωI − (b3 + b4)T,

Ṙ(t) = (1 + c3)hT − a3R,

Ḋ(t) = δ0I + δ1T + µN(t)− sD.

with initial conditions S(0) = S0 ≥ 0;E(0) = E0 ≥ 0; I(0) = I0 ≥ 0;
T (0) ≥ T0;R(0) = R0 ≥ 0;D(0) = D0 = 0.
Where g(S, I, T,D) = (1 − c1)[S (βI(1 + α0I) + β0T (1 + α1T )]) + β1SD(1 + α2D); b0 =
(µ+ ϕ+ c2τ); b1 = (ϕ+ c2τ); b2 = (ω + µ+ δ0); b3 = (1 + c3)h; b4 = (µ+ δ1)
Referring to the above optimal control system we get the objective function as follows.

f(c1, c2, c3) =

∫ T

0

(
boE + b1I + b2T +

1

2

3∑
l=1

(kic
2
i )

)
dt (3.3)

with T= Time when interventions are implemented, b0, b1, b2 are coe�cients balancing
the controls, ki/i = 0, 1, 2 are weight constants on the bene�t and cost, 1

2kici/i=1,2,3 are
cost of tracing contacts, implementing lock down and curfew and treatment costs.
Hypothesis: Let C be a measurable control set, the control functions ci are bounded and
lebesque measurable functions such that {ci(t) ∈ C : 0 ≤ ci(t) ≤ 1}, t ∈ [0, T ], i = 1, 2, 3.
Hence the optimal control is given as

f(c∗1, c
∗
2, c

∗
3) = min

C
f(c1, c2, c2) (3.4)

It is worth noting that a quadratic objective functional is preferred because control strategies
are assumed to be nonlinear [37].

3.1 Existence of an optimal control

3.2 Characterization of the Optimal Control

The Pontryagin's Maximum Principle is used to derive the necessary conditions for the
optimal control function. The principle transforms the model system of Eq 3.2 and Eq 3.3
into a Hamiltonian minimization problem H with regard to the control variables c1, c2, c3.
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Suppose L = boE + b1I + b2T + 1
2

∑3
l=1(kic

2
i ) be the Lagrangian function. Then the

Hamiltonian function H for the control problem is as follows

H = L+ e1
dS

dt
+ e2

dE

dt
+ e3

dI

dt
+ e4

dT

dt
+ e5

dR

dt
+ e6

dD

dt
. (3.5)

With ei, i = 1, 2, . . . , 6 representing adjoint variables related to that state variables {S,E, I, T,R,D}.
Substituting quantities of Eq.3.2 into Eq. 3.5 we obtain the Hamiltonian function H as

H = boE + b1I + b2T +
1

2

[
k1c

2
1 + k2c

2
2 + k3c

2
3

]
+ e1 (λ+ γR− (1− c1)S[βI(1 + α0I) + β0T (1 + α1T )]− Sβ1D(1 + α2D)− µS)

+ e2 ((1− c1)S[βI(1 + α0I) + β0T (1 + α1T )] + Sβ1D(1 + α2D)− (ϕ+ µ+ c2τ)E)

+ e3 ((ϕ+ c2τ)E − (ω + µ+ δ0)I)

+ e4 (ωI − (µ+ δ1 + (1 + c3)h)T )

+ e5 ((1 + c3)hT − (γ + µ)R)

+ e6 (δ0I + δ1T + µN(t)− sD) . (3.6)

Performing derivative operations of Eq. 3.6 with respect to state variables {S,E, I, T,R,D} ∈
Z and using dei

dt = − ∂H
∂Zi

de1
dt

= (e1 − e2) ((1− c1)[βI(1 + α0I) + β0T (1 + α1T )])− e1µ,

de2
dt

= (e2 − e3)(ϕ+ c2τ) + e2µ,

de3
dt

= (e1 − e2)(1− c1)S[β(1 + 2α0I) + ω(e3 − e4) + e3(µ+ δ0),

de4
dt

= (e1 − e2)(1− c1)S[β0(1 + 2α1T )] + (e4 − e5)(1 + c3)h) + e4(µ+ δ1), (3.7)

de5
dt

= e5µ,

de6
dt

= (e1 − e2)(Sβ1(1 + 2α2D) + se6.

Finding the Optimal control functions Taking derivatives of the Hamiltonian function
H with respect to controls ∂H

∂ci
we obtain the following system

∂H

∂c1
= k1c1 + (e1 − e2)S[βI(1 + α0I) + β0T (1 + α1T )] = 0,

∂H

∂c2
= k2c2 + (e3 − e2)τE = 0,

∂H

∂c3
= k3c3 + (e5 − e4)hT = 0. (3.8)
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From Eq. 3.8 we solve for c1, c2, c3 to get

c1 =
(e1 − e2)S[βI(1 + α0I) + β0T (1 + α1T )]

k1
,

c2 =
(e3 − e2)τE

k2
,

c3 =
(e5 − e4)hT

k3
. (3.9)

Using bounds we can obtain the optimal control strategies c∗1, c
∗
2., c

∗
3 as

c∗1 = max{0,min(1,
(e1 − e2)S[βI(1 + α0I) + β0T (1 + α1T )]

k1
)},

c∗2 = max{0,min(1,
(e3 − e2)τE

k2
)},

c∗3 = max{0,min(1,
(e5 − e4)hT

k3
)}. (3.10)

4 Numerical Simulations

The method described in [39] was used for the numerical solution of the optimal control
problem using the parameter values in Table 1.
In determining the impact of each control strategy on eradicating Ebola, we employ the
following control strategies; Lockdown, Contact tracing, combination of Lockdown and
contact tracing, combination of Contact tracing and treatment of infected population as
well as combination of Lock down and treatment of infected population.

4.1 Strategy I: Control with Lockdown (c1 > 0, c2 = c3 = 0)

Figure 3: Population under
treatment.

Figure 4: Population responding
positively to treatment.

Incorporating an optimal control measure as lockdown, the population undergoing treatment
and those responding positively to treatment reduced drastically as shown in Figure 3 and
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Figure 5: Ebola deceased population
with controls

Figure 6: Ebola infected population
with controls

Figure 4 respectively. It is evident that lockdown as a control measure has an e�ect on the
susceptible population as far as the spread of Ebola infection is concerned.

The population infected with the Ebola virus increases with time. As the lock-down
was introduced as a control measure, the population reduces with time. The implication is
that no additional infection was recorded as a result of the lockdown as an optimal control
measure as indicated in Figure 5 and Figure 6. Death recordings as a result of Ebola reduced
exponentially with time as a result of lockdown as a control measure as shown in Figure 5.

4.2 Strategy II: Control with tracing contacts (c2 > 0, c1 = c3 = 0)

Figure 7: Population undergoing
treatment

Figure 8: Poupulation responding
positively to treatment

Suspected cases of Ebola are usually traced and monitored. This control measure ensures
that no new cases are recorded and also infected cases are treated in isolation. Contact
tracing as an optimal control measure has an e�ect on the population under treatment and
those responding positively to treatment as shown in Figure 7 and Figure 8.

The dynamics of Ebola deceased population and infected population are observed in
Figure 9 and Figure 10. Both the deceased and infected populations decreased as a result
of contact tracing. The implication is that both death and infected populations are under
control as a result of contact tracing.
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Figure 9: Ebla deceased population
with controls.

Figure 10: Ebola infected population
with controls.

4.3 Strategy III: Combination of tracing contacts (c2 > 0) and
treatment of the infected (c3 > 0, ) c1 = 0

Figure 11: Population under
treatment with controls.

Figure 12: Population responding
positively to treatment with controls.

The combination of contact tracing and treatment to the population under treatment and
those responding positively to treatment has yielded positive results. This control measure
has cause a reduction in the population under treatment. This is an indication more people
are not tested positive to Ebola infection as shown in Figure 11 and Figure 12.

It can be observed that Ebola deceased population and Ebola infected population increase
steadily with time in the absence of any control measure. When a contact tracing and
treatment were instituted, there has been a reduction in Ebola infected and deceased
populations. This control strategy impacted positively as indicated in Figure 13 and Figure
14.
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Figure 13: Ebola deceased
population with controls.

Figure 14: Ebola infected population
with controls.

4.3.1 Strategy IV: Combination of Lock down (c1 > 0) and treatment of the
infected (c3 > 0), c2 = 0

Figure 15: Poulation under
treatment with controls.

Figure 16: Population responding
positively to treatment with controls.

The combination of lockdown and treatment of Ebola population have resulted in the
reduction of population responding positively to treatment as shown in Figure 15 and Figure
16. The biological implication is that combination of lockdown and curfew plus treatment
of infected population can be an e�ective control measure in combating Ebola.

Combining lockdown and treating the population infected with Ebola can be an e�ective
control strategy in �ghting the infection. It can be observed in Figure 17 and Figure 18
that this strategy has resulted in decreasing both Ebola deceased and infected population
as indicated in 17 and 18 respectively.
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Figure 17: Ebola deceased
population with controls.

Figure 18: Ebola infected population
with controls.

4.4 Strategy V: Combination of Lockdown (c1 > 0) and tracing
contacts (c2 > 0) .

Figure 19: Population under
treatment with controls.

Figure 20: Population responding
positively to treatment with controls.

The population under treatment and the population responding positively to treatment
experienced changes in population dynamics. This is as a result of the combination of
contact tracing, lockdown and curfew as control measures. Figure 21 and Figure 22 shows
the population dynamics of the population responding positively to treatment and those
under treatment.

The combination of contact tracing and lockdown as a control measure is one of the most
e�ective control measures in combating the infection as evident in Figure 19 and Figure 20.
There is a sharp reduction in the population infected and deceased with the virus as indicated
in Figure 19 and Figure 20.
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Figure 21: with controls. Figure 22: with controls.

5 Cost-e�ectiveness analysis

Applying health intervention strategies can be both cost and labour intensive. Hence the
need to identify and consider the best intervention strategy that comes with less cost. This
therefore calls for cost e�ectiveness analysis. Authors in [38], employed the Incremental
Cost-E�ectiveness Ratio (ICER) to compare the costs and infections averted (outcomes) of
two alternative interventions strategies. This approach is usually done by computing total
infection averted by each of the strategies and its corresponding costs.
The ICER between strategies A and B is the ratio of di�erences in cost to di�erences in
infection averted (outcomes). This is given by the relation;

ICER(A) =
Cost of strategy A-Cost of strategy B

Total infection averted by strategy A-Total infection averted by strategy B
(5.1)

The analysis of Incremental Cost-E�ectiveness Ratio (ICER) assumes that costs of various
interventions are proportional to the number of controls employed. All strategies are compared
incrementally by comparing one strategy to the next less e�ective alternative.
When only one intervention is applied, it can be e�ective in combating a disease dynamic
system or population. Hence, the emphasis is on the analysis of strategies that involves
more than one intervention. The total cost for the implementation of various strategies are
computed from the cost;

k1c
2
1

2
,
k2c

2
2

2
and

k3c
2
3

2
.

Generally, Incremental Cost-E�ectiveness Ratio (ICER) is �rst applied by putting all strategies
in order of increasing infection averted as shown in Table 2.

Table 2: Total infection averted and total cost

Strategies Description Total infection averted Total cost
III Contact tracing and treatment 22 31,355.00
V Lock down and contact tracing 23 35,255.00
IV Lock down and treatment 25 32,452.00
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Depending on infection averted, all control strategies are ranked in increasing order of
e�ectiveness. Considering Strategy (III) as the base line, we compare Strategy (III) and
Strategy (V).

ICER(III) =
31, 355

22

ICER (III) = 1, 425.2273
and

ICER(V ) =
35, 255− 31, 355

23− 22

ICER (V) = 3, 900.0000

Comparing Strategy (III) and Strategy (V), we reject Strategy (V) as it is very expensive
to implement as compared to Strategy (III).

Now comparing Strategy (III) and Strategy (IV).

ICER (III) = 1, 425.2273
and

ICER(IV ) =
32, 452− 31, 355

25− 22

ICER (IV) = 365.6667

Comparing Strategy (III) and Strategy (IV), we reject Strategy (III) as it is very expensive
to implement as compared to Strategy (IV). Hence, the best intervention strategy to be
implemented is Strategy (IV). This is the most cost e�ective intervention strategy that
comes with less cost. However, the most expensive intervention strategy to be implemented
is Strategy (V). This strategy should be avoided by policy or decision makers.

Figure 23 shows the plots for all intervention strategies. The most expensive intervention
strategy is Lock down and contact tracing. However, the cheapest intervention strategy to
be implemented is lock down and treatment of infected population.
Using all the intervention strategies would not be advisable considering the cost implications
as shown in Figure 23. Moreover, the use of only one intervention strategy should never be
considered since it is not e�ective in disease eradication.
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Figure 23: Cost function for the intervention strategies for a period of six months.

6 Discussion and Conclusion

In this study, we formulated and analyzed a deterministic nonlinear model for the transmission
dynamics of Ebola virus disease premised on the 4-month 2022 Ebola outbreak in Uganda
in which a total of 141 cases were recorded with 55 fatalities representing a case fatality rate
of 39%. The WHO o�cially announced an end to the outbreak on 11th January 2023. The
model incorporates a convex incidence term in the force of infection to account for a possible
double exposure to infection by the susceptible population. Using the next generation matrix
approach, we derived the expression for the basic reproduction number R0 which is a measure
of the severity of the outbreak. We estimated the basic reproduction number for the 2022
Ebola outbreak in Uganda to be R0 = 1.5904. This value is comparable with the 2000
Uganda outbreak (R0 = 1.34 as well as the 2014 Ebola outbreak in West Africa R0 = 1.757
for Liberia, R0 = 1.492 for Sierra Leone as well as R0 = 1.83 and R0 = 1.59 for the 1995 and
2000 Ebola outbreaks in DR Congo. For ease of analysis, the expression for R0 was split
into expressions represents contributions from individual infectious classes and we found out
that R0 = RI +RT +RD representing the infectious, treated and deceased classes.
An optimal control framework was designed based on the Pontryagin's Maximum principle
to illustrate the e�ect of the following controls ranged against Ebola: imposing lockdown and
curfew to limit interactions between populations; contact tracing of exposed and infected
and treatment of the infected persons. These control measures are widely employed in
�ghting an outbreak of Ebola virus and are aimed at minimizing the number of exposed as
well as infected and deceased persons while maximizing the number of treated and recovered
individuals at minimal costs in terms of resources.
A number of strategies to combat the outbreak were designed by applying these control
measures either singly or in combination. The �rst strategy involved enforcing lock-down
and curfew singly and it's e�ect is well illustrated in Figures 3-6. For the 2022, Ebola
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outbreak in Uganda, partial lock-down together with a dusk-to-dawn curfew were imposed
in the districts where an outbreak had been con�rmed. The second strategy involved carrying
out contact tracing of the exposed and infected individuals and it's e�ect is shown in Figures
7-10.
Contact tracing is a very laborious but rewarding exercise and involves even tracing contacts
of contacts which can be time consuming and tedious. Without contact tracing, the number
of both infected and deceased keeps on increasing. In the early stages of an Ebola outbreak,
its crucial to get the population on board through sensitization and mobilization to help in
identifying contacts either voluntarily and/or otherwise.
Another strategy involved carrying out contact tracing and treatment of the infected in
combination and the e�ect is well captured in Figures 11-14. Yet another strategy involved
a combination of lock-down and curfew together with treatment of the infected persons.
As shown in Figures 15-18, this strategy ensures that the number of infected and deceased
persons falls to zero within six months while the number under treatment and recovery
increase sharply hitting the peak value in about half the time. This is a desirable outcome.
Lastly, a combination of lock-down and curfew together with contact tracing was simulated
and Figures 19-22 illustrate their e�ect. To consider the best intervention strategy to employ
in combating an outbreak of Ebola in a locality, a cost e�ective analysis was conducted via the
incremental cost-e�ective ratio (ICER) that compares the costs involved and the infections
averted.
From our analysis, we found that the most expensive strategy involved imposing lock-down
and curfew together with contact tracing of the infected while the cheapest alternative was
lock-down and curfew together with treatment of the infected. As shown in Figure 23,
implementation of all the three controls is more expensive than any of the strategies that
employ only any two of the three controls.
However, given the seriousness of Ebola in terms of its case fatality rate, very fast progress
and the disruption and mayhem to the economy and society at large, it's imperative that
no costs should be spared in combating its outbreak in a locality. All resources should be
mobilized and availed to bring an end to an outbreak as soon as possible. This in part
entails prompt action, sensitization of the masses and availing all necessary resources.

Data availability

Data supporting this model are found in this manuscript.
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