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Challenges in cross-learning involve inhomogeneous or even inadequate amount of training data

and lack of resources for retraining large pretrained models. Inspired by transfer learning

techniques in NLP, adapters and pre�x tuning, this paper presents a new model-agnostic plugin

architecture for cross-learning, called CM3T, that adapts transformer-based models to new or

missing information. We introduce two adapter blocks: multi-head vision adapters for transfer

learning and cross-attention adapters for multimodal learning. Training becomes substantially

e�cient as the backbone and other plugins do not need to be �netuned along with these additions.

Comparative and ablation studies on three datasets Epic-Kitchens-100, MPIIGroupInteraction and

UDIVA v0.5 show e�cacy of this framework on di�erent recording settings and tasks. With only

12.8% trainable parameters compared to the backbone to process video input and only 22.3%

trainable parameters for two additional modalities, we achieve comparable and even better results

than the state-of-the-art. CM3T has no speci�c requirements for training or pretraining and is a

step towards bridging the gap between a general model and speci�c practical applications of video

classi�cation.

Corresponding author: Tanay Agrawal, tanay.agrawal@inria.fr

1. Introduction

Video classi�cation is a big �eld in computer vision with various sub-tasks and datasets for each of

these tasks. Recently, there has been an increase in tasks, datasets, and recorded modalities. Most

work is speci�c to a task with corresponding datasets or a subset of these modalities, and their
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modi�cation for a new input protocol is tedious. Methods including late and early fusion and cross-

attention are generally used for combining them, but they are not the most e�cient way to treat this

wide variety of data. Thus, there is a need for a method that can handle this increase in data having

high variability in structure and which learns robust relations that are shareable among tasks and

datasets. The �eld of parameter e�cient transfer learning  (PETL) is increasing in popularity to

answer this problem. The basic idea consists in adding adapters1 (i.e., plugin architectures of very few

trainable parameters) to a backbone and only train these while keeping the backbone frozen. With

increasing model and dataset sizes, PETL techniques facilitate �netuning only adapters with less

resources and time compared to full-�netuning (i.e., backbones + adapters).

The video backbones used as a starting point for PETL can be pretrained using either i) the traditional

supervised method on big datasets or using ii) more sophisticated self-supervised methods which

result in better general features, such as VideoMAE[1] or contrastive learning such as CLIP[2]. Existing

PETL techniques only work well after using the latter (i.e., self-supervised pretrained backbones). But,

self-supervised pretrained backbones are not widely available for use o� the shelf and their training is

resource intensive. For example, dual-path adapters[3]  and ST-adapters[4]  require a backbone

pretrained with CLIP. However, most works on self-supervised pretraining methods only use

Vit/ViViT. Swin/Video-Swin transformers have not been pretrained using these self-supervised

methods despite their superior performance. The main motivation behind this work is to propose new

adapters to work well with traditional supervised pretrained backbones. Figure 1 summarizes this, the

red arrow signi�es the problem we are trying to solve and the solution is in green.
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Figure 1. This is a representation of the main problem CM3T aims to solve. Backbones pretrained using

self-supervised learning provide good general features, thus all methods of �netuning work well. In the

case of supervised pretraining, adapters fail to perform well (in red) and CM3T is introduced to solve this

(in green).

We introduce CM3T (Cross Multimodal Multi-dataset Multitask Transformer), a novel PETL

technique, which can leverage these new adapters. CM3T takes a frozen backbone, for example, the

Video Swin Transformer[5]  pretrained (i.e., fully �ne-tuned) on Kinetics-400 or Something-

Something v2, and adds plugins (i.e., adapters) in parallel without changing the backbone

architecture. Only these plugins need to be trained for downstream tasks and di�erent datasets.

Inspired by the Mix-and-Match (M&M) adapters[6], we combine pre�x tuning with a newly

introduced plugin, multi-head vision adapters. These adapters (shown in blue in Figure 2.) improve

upon existing scaled parallel adapters by separating the processing for di�erent spatial chunks into

di�erent heads of the input. This greatly increases performance as interaction datasets generally have

almost �xed cameras and various objects and parts of the body always occur in particular spatial

locations which generally remain the same. In addition, an approximation for pre�x tuning, which has

been proven to work well, is used as done by[7], but with some modi�cations. This is shown in red in

Figure 2. The details are discussed in Section 3.

Furthermore, the above idea can be further extended to cross-modal learning where the weights of the

pretrained model do not have to be changed to incorporate new modalities, just as the backbone

doesn’t have to be changed to adapt to new datasets. This facilitates the use of existing work to build

more complex systems. For this, we introduce the third and �nal module in Figure 2, called cross-
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attention adapters (in green) for multimodal learning. Since cross-attention has been established as

an e�ective manner for multimodal learning, we show how to incorporate it in place of linear layers in

adapters, allowing their use for multimodal learning as well. It allows CM3T to learn the relationships

between vision and other modalities while retaining its other advantages. This is a challenging task to

execute in a resource e�cient manner as increasing the number of input modalities generally

increases the number of branches, hence the resources used. But, the theory of adapters allow us to

overcome this. Thus, this contribution is signi�cant as shown by the results in Section 4. Challenges in

processing multimodal data include heterogeneity of the present modalities, lack of correlation

between modalities (for example di�erent pitches in the audio could correspond to the same text), and

the need for many training samples for convergence. Building upon each challenge above in order,

CM3T addresses these challenges with the following additions. Adding a new modality is cumbersome

as it requires retraining parts of the backbone along with the new branches for the modality itself, but

with this framework, it would just be a new plugin which is trainable by itself. To capture the

relationship between di�erent modalities, we add an additional module to capture the relationships

between all modalities other than vision (the backbone), when available. To make training faster and

convergence easier as compared to using the generic embedding from large transformer models, the

downsampling layer in adapters provides a good embedding to use for cross-attention. Additionally,

training cross-modal adapters across datasets improves performance and provides a good pretrained

feature extractor for small datasets.

To show that CM3T is suitable for multimodal, multi-dataset and multitask learning, we experiment

on three di�erent datasets with di�erent recording scenarios and tasks: Epic-Kitchens-100 (EK-100)

with �rst-person human-object interaction videos, MPIIGroupInteraction (MPIIGI) and UDIVA v0.5

(UDIVA) with human-human interactions in group settings while talking or doing di�erent tasks

respectively. We choose a mix of small and large multimodal interaction datasets to show the e�cacy

of our work in di�erent settings. We show that we achieve comparable accuracy to state-of-the-art

for all the datasets using only 12.8% trainable parameters as compared to the backbone to process

video input and only 22.3% trainable parameters to process two additional modalities. We perform

additional experiments to study how CM3T works in di�erent scenarios and explore the reasons for

the results obtained.

In summary, our contributions are:
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We introduce multi-head vision adapters which perform well with traditional supervised

pretraining, in contrast to existing PETL techniques.

We introduce cross-attention adapters which are easier to modify than traditional multimodal

methods. They also bene�t from weight sharing, similarly to traditional adapters, by storing the

relations between vision and other modalities and reusing them later.

We provide a framework, CM3T, for combining these techniques along with an approximation of

pre�x tuning to achieve state-of-the-art performance.

2. Related Work

2.1. Parameter E�cient Task Adaptation

Transformer-based backbones, such as Video Swin Transformer[5]  or ViVit[8], are state-of-the-art

feature extractors which are carefully trained on big datasets using either supervised or the better

performing self-supervised methods. But �netuning these models is resource-intensive and does not

converge for small datasets. The main theory behind all PETL work for computer vision is that

�netuning any general feature extractor involves learning the environment in which the new data is

recorded and the intricacies of the new task. The basic spatial understanding of the video remains the

same. Thus, we can use this basic understanding by these pretrained models and employ only a few

additional parameters to learn the new information.

The �eld of NLP has seen a lot of work following the above idea, such as adapters[9], LoRA[10], and

pre�x tuning[11]. These methods get similar results while adding less than 10% parameters to existing

models which are trained to learn the new task while the pretrained weights are frozen. These have

also been extended to computer vision[12][13][14][15].

There are three recent PETL methods which show good results: (1)  only updating new parameters

added to the model or the input[9][16][17][11]; (2)  updating some of the parameters of the model in a

sparse manner[18][19][20]; and (3) low-rank factorization of weight matrices to reduce the number of

parameters to be updated while keeping the weight matrix approximately the same[21]. Combining

these approaches,[7][22]  propose a uni�ed parameter e�cient training framework. Among these

approaches, adapters, which belong to the �rst category, have been used in computer vision[23]

[24]  and natural language processing[9][25][26]. While adapters add more parameters into models,
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prompt-based approaches instead add trainable parameters to inputs[27][17][11], and experiments have

shown their value in language and vision tasks. We use both techniques in[7]  as an inspiration for

CM3T. VL Adapters[12]  compare various adapter techniques[9][16][26]  applied to question answering

tasks, but not to pure vision tasks. Their work aims to use adapters to project vision and language

pretrained model embeddings into the language model’s space whereas we show that it is possible to

do it across vision datasets and also be used to add new modalities.

AdaptFormer[13] uses adapters with only the linear layers of a transformer and achieves better results

than full �netuning. But it uses VideoMAE[28] for pretraining ViT[29] which is not feasible if resources

are limited and cannot be used to make a generalized framework. Their method fails with models not

carefully pretrained using self-supervised methods. Similarly, ST-adapters[4]  use ViT pretrained

using CLIP. They convert image models to video models using convolutions for time aggregation in

addition to the upsampling and downsampling linear layers in an adapter and it works well, except for

the case when traditional supervised pretraining is employed. Visual prompt tuning  (VPT)[14]  uses

prompt tuning for images, but prompts alone do not work well for videos which is also mentioned

by[13].

The paper[15]  shows that adapters only work for vision if the bottleneck dimension is large. They

introduce a pruning technique to reduce the size of these adapters. We introduce multi-head vision

adapters as an alternative that works well even with a small bottleneck dimension and without any

speci�c pretraining method. Dual-path adaptation from image to video transformers[3]  show better

results compared to others using supervised training methods, but it is still not comparable to full

�netuning. They also have a speci�c input method that limits the maximum temporal size of input

that can be provide which makes their model less scalable and not suitable for all datasets and

downstream tasks.

2.2. Multimodal Learning

There is an inherent di�erence between videos and other modalities, such as audio or text, and thus it

is challenging to combine them into one model. VATT[30] uses early fusion, where they concatenate all

input modalities. Although the earlier the fusion, the better the results, there is a trade-o� with the

amount of data required for training as it is harder for models with early stage fusion to converge

which leads to tedious self-supervised learning.
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Some works design a specialized architecture for fusion at feature level[31][32]. These work better but

there are limitations as the fusion is done after downsampling the input features which leads to loss of

information and poor cross-modality relations.[33][34][35]  have feature level fusion with minimal

downsampling, but lack in handling speci�c modalities di�erently. So, there is a need for a model

which can bene�t from cross-modality learning at di�erent levels. To answer this and so make the

model �exible, we propose using cross-attention added to each block of a transformer architecture.

State-of-the-art methods M&M Mix[6]  and MuMu[36]  are either modality speci�c or have a rigid

architecture making it hard to add and remove modalities. This work addresses these drawbacks by

having a �exible architecture that can accommodate any type of input.

3. CM3T Framework

We de�ne an easy way to use existing multimodal data and pretrained models when approaching a

video classi�cation or video understanding task. This will assist in bridging the gap between research

and practical applications. This section discusses some of the technical details of the background and

then the methodology of our work.

3.1. Choosing a Pretrained Model

Our method is focused on transformer-based backbones which have produced state-of-the-art

results for various vision tasks. We use the Video Swin Transformer  (Video Swin-B)[5], but the

following steps of the framework are model invariant and the backbone can be chosen according to the

need. The reason for choosing Video Swin-B is that di�erent blocks process the input at di�erent

spatial resolutions. Depending on the side input (other modalities), cross-attention performs well

with di�erent blocks, that is, di�erent spatial resolutions.

3.2. Finetuning or Using Adapters

Once we have a pretrained vision model, the next step is to �netune and adapt it to the target dataset.

If computational resources or time are a constraint, adding adapters and pre�x tuning and training

them in place of full �netuning produces comparable results with signi�cantly fewer parameters to

train. There is also the possibility of combining this step with the following steps (in this section and

the next one) for end-to-end learning, but we perform each step separately to compare their
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performance with corresponding state-of-the-art. The results for end-to-end training are also

shown in the next section.

3.2.1. Background

We take inspiration from scaled parallel adapters and pre�x tuning (PT) as used by[7]. Figure 2 shows

all the additions to the pretrained model along with our modi�cations. Multi-head vision adapters

(MHVA) (in blue) and pre�x tuning (in red) are discussed in this subsection and cross-attention

adapters (CAA) (in green) are discussed in Section 3.3.

Figure 2. Detailed architecture of CM3T. Colored parts are the ones that are �netuned and the rest are

frozen. It has three separate blocks added to it which are shown in three di�erent colors. Pre�x tuning is

complicated to show in detail, so only a schematic is shown. The rest of the details are described in

Section 3.
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Mathematically, adapters from[9] are de�ned as

where   is the input of size  ,   is the weight matrix for the down-projection layer

with bottleneck dimension  ,   is the up-projection layer, and   is the scaling factor. We use

this in parallel instead of sequential, similar to[7]. We also use their de�nition for pre�x tuning (for

simpli�cation, Figure 2 does not show recurrent connection for pre�x tuning),

where    is the weight matrix for getting query vector from the input  ,    and 

  are pre�x tuning vectors which are learned using    and    (key and query weight

matrices of the transformer backbone). Here,   is a learned embedding which is randomly initialized

and    is the factor used for gated addition. The red part of Figure 2 shows pre�x tuning added to

transformers, it is added in parallel to each head of multi-head attention.

3.2.2. Incorporating Multi-Head Vision Adapter and Pre�x Tuning into CM3T

Using adapters for vision tasks is more challenging than NLP as language understanding does not

change with the task or dataset, but video datasets have a wide variety of settings, such as indoor or

outdoor recording scene, di�erent views and camera angles, lighting changes, and more. Finetuning

allows the networks to overcome these changes, but it is hard for adapters owing to less capability to

change the original model’s activations. But with a few changes, adapters can show performance

comparable to fully �netuned models. Blue parts of Figure 2 mark the adapters.

AdaptFormer[13]  adds scaled parallel adapters to linear layers only and achieves better results than

�netuning owing to a sophisticated pretrained ViT model using VideoMAE[28]. We achieve very poor

performance with the same method without this speci�c pretraining, even when coupled with pre�x

tuning. So, this leads to our �rst change, inspired by multi-head attention, we introduce Multi-Head

Vision Adapter (MHVA). This is di�erent from multi-head attention as the input is divided along the

window dimension of Video Swin transformers (or spatial patch dimension in ViViT) and not the

channel dimension. Essentially, there are di�erent linear layers for di�erent sets of windows/patches.

y = s ⋅ Δha (1)

Δ = ReLU( ) ⋅ha haWdown Wup (2)

= xha d ∈Wdown R
d×r

r ∈Wup R
r×d s
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We saw that increasing the bottleneck dimension in adapters only increased the performance slightly

(as shown by[15]), but adding the above change allowed the network to learn better even with a smaller

bottleneck dimension. Overall, the parameters do not increase by a big margin as compared to

traditional adapters as we use a smaller bottleneck dimension. To de�ne the change mathematically,

the input    is divided along the window dimension to get  . Each has its own parallel

adapter and the output is concatenated along the same dimension before scaling and addition.

Extending Equation 3,

where each operation is performed element-wise.

Our second change is that we make the scaling factor for adapters (   in Equation 1) added to linear

layers learnable, allowing greater change to activations. Attention in pretrained models might focus

on features that are not relevant to the new downstream task or dataset, but this change allows

adapters to overcome this. For EK-100, when the value is �xed at  , we achieve 1.1% lower

performance.

Without the two changes mentioned above, adapters have very poor performance for the domain of

computer vision with traditionally available pretrained models. These adapters are named multi-head

vision adapters. These are speci�c to Video Swin transformers, but the same concept can be applied to

modify adapters for any model using di�erent linear layers in adapters for di�erent sets of windows to

which attention is applied. Section 4 shows results for ViViT-B as a backbone model too. The reason

for good performance with this addition is that it gives the adapters the ability to learn di�erent

representations for di�erent chunks of the input.

The third change is more speci�c as compared to the �rst two. We use ReLU activation in place of tanH

with a lower dropout for Pre�x Tuning  (PT) and that provides a smoother training curve and easier

convergence. It also allows for 0.7% gain in accuracy on EK-100 dataset.

3.3. Adding Other Modalities (CAA)

Cross-attention adapters are used for adding modalities to the model received from the previous step.

Cross-attention adapters are simply obtained by replacing the two linear layers in the adapters with a

cross-attention module. Each added modality has its own adapter. The query and value inputs to this

adapter are taken from the concatenation of hidden states from the bottleneck hidden state in the

h { , , , . . . }h1 h2 h3

{ , , . . . } ← { , , . . . } + s ⋅ Δ{ , , . . . }ha1 ha2 ha1 ha2 ha1 ha2 (6)

s

4.0
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multi-head vision adapter  , where    is the input to the Video Swin-B block

and   is the same as that in Equation 2. The key is taken as the feature embedding from the new

modality.

To merge all the adapters trained for di�erent modalities, in place of simple addition,

AdapterFusion[37] is used which captures the interaction between di�erent side inputs i.e, modalities

other than vision. It is an attention block where each head has the same query as that of attention in

cross-attention adapter for each modality, described above, let’s say  . The key and value for each

head are taken from the output    of each cross-attention adapter with    signifying the  -th

modality. The module is expressed as

where   is the output and   are weight matrices for query, key and value respectively,

and N is the number of side modalities.

To incorporate a new modality into the model, there are two additions, a new cross-attention adapter

and a new concatenation to   and   vectors above. One disadvantage of this is that model size keeps

increasing with more modalities. To alleviate this, the cross-attention module proposed by [38] is used

in place of the traditional one and results are shown in Section  4. It makes adding new modalities

hard, but it is a trade-o� between �exibility and optimizing the usage of resources.

4. Experiments

4.1. Datasets

To show robustness, we experiment using three datasets with di�erent tasks and modalities. First, an

egocentric Epic-Kitchens-100[39]  consisting of three modalities RGB, optical-�ow, and audio for

actions related to human-object-interactions. Second, MPIIGroupInteraction[40]  which is a body

language dataset aiming at understanding human behavior in human-to-human interactions. For this

dataset, we use the following modalities, RGB and audio. Finally, we have UDIVA  v0.5[32]  which

tackles the task of human personality analysis, using also di�erent modalities such as RGB, transcript,

Q = V = ReLU(x )Wdown h

Wdown

h

zn n n

= softmax( ⨂ ),n ∈ {1, . . . ,N}s′ hTWQ zTn WK (7)

= ,n ∈ {1, . . . ,N}z′
n znWV (8)

= [ , . . . , ]Z ′
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and audio. Our approach shows e�ectiveness on all three tasks, proving our approach of bringing

adapters mechanisms into vision problems to tackle all the challenges mentioned in the previous

parts.

Epic-Kitchens-100 (EK-100) is a �rst-view and human-object interaction dataset. It contains 89,977

segments of �ne-grained actions annotated from 700 long videos. Footage length amounts to 100

hours. It consists of a total of 97 verbs and 300 nouns, each action is a combination of a verb + noun

and has a total of 3806 action classes.

MPIIGroupInteraction dataset (MPIIGI) is 26 hours of spontaneous human behavior with 15 distinct

body language classes. This dataset presents a novel set of actions which are challenging in computer

vision and human-behavior understanding. It consists of body language behaviors such as gesturing,

grooming, or fumbling.

UDIVA v0.5 dataset (UDIVA) is 90.5 hours of dyadic interactions among 147 participants distributed in

188 sessions, recorded using multiple audiovisual and physiological sensors. But only half of the data

has been released. UDIVA’s main task is personality recognition. It has 5 main classes: Openness,

Conscientiousness, Extroversion, Agreeableness, and Neuroticism (OCEAN).

4.2. SOTA Comparison

In this section we compare our results to the existing SOTA methods for each dataset and related PETL

methods. The aim is to achieve similar performance to the methods we compare against while having

considerably less trainable parameters.

4.2.1. SOTA Comparison on EK-100 dataset

1. Multimodal methods: Table 1 shows the highest accuracy of M&M Mix [6] on EK-100 dataset [39].

M&M Mix  [6]  processes each of the three modalities using three branches of ViViT at di�erent

spatial resolutions using di�erent sizes of input tubelets and di�erent variants of ViViT. They use

additional modules to share information across views and models for di�erent modalities. One

branch has more parameters than Video Swin-B, so the total number of parameters is more than

three times the number of parameters of Video Swin-B. When taking Video Swin-B trained on

Kinetics-400 as the backbone, we achieve performance comparable to the state-of-the-art

(SOTA) (only 1.4% worse) with a minuscule number of trained parameters (more than 13 times
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less). Using a self-supervised trained backbone, CLIP, we achieve SOTA results (with the base

variant of the backbone).

2. PETL methods: Table  1 shows the comparison against SOTA PETL techniques, Dual-path

adapters  [3]  and ST-Adapters  [4]. They do not provide these results and the results stated are

from our own experiments using their code. We achieve considerably better performance when

the pretraining protocol is the same. The results shows that it is hard to overcome the gap created

by better pretraining as PETL techniques add minimal processing capacity. But, our plugins allow

better performance when self-supervised pretrained backbones are not available.

To show the robustness of our proposed adapters design, we compare the proposed MHVA against the

typical adapters from AdaptFormer[13]. We compare the results of CM3T and adapters without

additional modalities. Scaled parallel adapters (used in AdaptFormer) with PT achieve 28.7% whereas

MHVA achieves 39.8%. This shows that our design of adapters is more robust. The motivation for the

change discussed in the methodology section is thus justi�ed from these results.
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Method Backbone Top-1 accuracy (%) Epochs GFLOPs

Multimodal methods

M&M Mix[6] ViViT 49.6 50 >4790

CM3T Video Swin-B 48.2 22 616

CM3T CLIP-B 50.1 18 754

PETL Methods

Dual-Path Adapters[3] ViT-B 35.8 21 642

ST-Adapters[4] ViT-B 34.3 18 911

Dual-Path Adapters[3] CLIP-B 44.8 24 642

ST-Adapters[4] CLIP-B 44.1 18 911

Adaptformer[13] + PT Video Swin-B 28.7 6 357

MHVA + PT Video Swin-B 39.8 14 449

MHVA + PT CLIP-B 45.5 13 589

Table 1. SOTA comparison on EK-100. Acronyms- MHVA: Multi-head vision adapter, PT: Pre�x Tuning, CAA:

Cross Attention Adapters, CM3T: MHVA + PT + CAA, K400: Kinetics-400. Epochs presented are the number of

epochs taken for convergence. All backbones other than CLIP-B are pretrained on Kinetics-400.

4.2.2. SOTA Comparison on UDIVA and MPIIGI

For UDIVA and MPIIGI, we compare to FAt transformers[38], the SOTA for these datasets. FAt

transformers have a lot of additions, speci�cally for UDIVA, which is the reason for their good

performance. They have additional input branches with face crops and contextual videos and a

complex method for preprocessing too. Tables 2 and 3 show a comparison against the published

results. As for MPIIGI, we achieve better results with transfer learning techniques than FAt

transformers which are fully �netuned. There are two reasons for this. One is that MPIIGI is a small

dataset and it is easier for these PETL techniques to converge. The second reason is that Kinetics-400

is very close to MPIIGI and the CM3T backbone networks are initialized very well. This enables
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adapters to work better. In summary, CM3T achieves results equivalent to the SOTA for these two

datasets with around 5 times less trainable parameters as compared to the previous SOTA. Using CLIP

backbone, we achieve SOTA results.

We also show that our �ndings are consistent in the domain of PETL methods as we outperform ST-

Adapters using our plugins.

Method Backbone Mean MSE Epochs

Multimodal methods

FAt transformers[38] - 0.72 30

CM3T Video Swin-B 0.69 27

CM3T CLIP 0.65 22

PETL Methods

ST-Adapters[4] CLIP 0.91 14

MHVA + PT CLIP-B 0.8 14

Table 2. SOTA comparison on UDIVA. Acronyms from Table 1.
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Method Backbone mAP Epochs

Multimodal methods

FAt transformers[38] - 0.899 18

CM3T Video Swin-B 0.901 9

CM3T CLIP 0.918 11

PETL Methods

ST-Adapters[4] CLIP 0.886 14

MHVA + PT CLIP-B 0.894 9

Table 3. SOTA comparison on MPIIGI. Acronyms from Table 1.

4.2.3. Baseline Comparison

Video Swin is one of the SOTA transformers trained on many datasets and tasks, hence it is chosen as

the backbone. In Table 4 we compare to full-�netuning the backbone vs. frozen backbone and only our

plugins trained. For each dataset, we compare for multimodal input and only RGB input.

For only RGB input, we achieve slightly lower results than full-�netuning. This is in tune with what

we expect as traditionally pretrained backbones do not provide good generalizable features that can

extend to other datasets and adapters have a limited capacity to take into account the distribution

shift of the input. But as shown for EK-100, our plugins perform better than SOTA PETL methods

when the same pretraining is applied.

Looking at multimodal input, for EK-100 dataset, CM3T achieves an accuracy of only 0.7% lower than

the fully �netuned model. Our method achieves comparable results with only 22.3% parameters

whereas Video Swin-B combining CAA goes up to 109.5% parameters  (compared to Video Swin-B).

Top-1 accuracy is the metric used here.

Moreover, for UDIVA[32]  and MPIIGI[40], we achieve the same results with CM3T as with full-

�netuning and again with only 22.3% of the total number of parameters in Video Swin-B. Mean MSE

and mAP are used as metrics for them respectively.
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Method Backbone Eval. metric Epochs Trained params

RGB input (EK-100)

Full �netuning Video Swin-B 41.7% 49 100.0%

MHVA + PT Video Swin-B 39.8% 14 12.8%

Multimodal input (EK-100)

Full �netuning + CAA Video Swin-B 48.9% 56 109.5%

CM3T Video Swin-B 48.2% 22 22.3%

RGB input (UDIVA)

Full �netuning Video Swin-B 0.82 51 100.0%

MHVA + PT Video Swin-B 0.85 35 12.8%

Multimodal input (UDIVA)

Full �netuning + CAA Video Swin-B 0.69 32 116.1%

CM3T Video Swin-B 0.69 27 28.9%

RGB input (MPIIGI)

Full �netuning Video Swin-B 0.887 17 100.0%

MHVA + PT Video Swin-B 0.882 8 12.8%

Multimodal input (MPIIGI)

Full �netuning + CAA Video Swin-B 0.901 18 116.1%

CM3T Video Swin-B 0.901 9 28.9%

Table 4. Baseline comparison. Acronyms from Table 1. Top-1 accuracy for EK-100, MSE for UDIVA and

mAP for MPIIGI. Number of trained parameters are reported on a relative scale, 100% is equivalent to 88M.

4.2.4. Cross-Attention Module

An interesting thing to note is that MTV-B which is the base model for M&M Mix and uses only RGB

videos as input, achieves 46.7% accuracy and there is only a 2.9% accuracy increase when optical �ow
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and audio are added to it. We achieve a higher increase of 8.4% with CM3T when the two modalities

are added. This might be because MTV-B is a better backbone as compared to Video Swin-B and

captures most of the information present in optical �ow already as optical �ow is also a visual feature.

Thus adding optical �ow does not increase performance for them as much as us. This proves the

e�cacy of cross-attention adapters as we achieve similar performance to M&M Mix, even when we

are comparatively farther as compared to MTV-B. Moreover, we compare two methods for cross-

attention: MMCA[38]  and our proposed CAA and we observe that with our proposed solution we can

achieve 0.5% higher accuracy, showcasing robustness and e�cacy of the proposed CAA. All results are

in Table 5.

Method Backbone Accuracy (%) Epochs Trained params

RGB input

MTV-B[41] - 46.7 80 >100.0%

MHVA + PT Video Swin-B 39.8 14 12.8%

Multimodal input

M&M Mix[6] - 49.6 50 >300.0%

CM3T: MHVA + PT + CAA Video Swin-B 48.2 22 22.3%

MHVA + PT + (MMCA[38]) Video Swin-B 47.7% 24 22.7%

Table 5. Experiments for e�cacy of CAA. Acronyms from Table 1. MMCA: multimodality cross-attention[38]

4.3. MHVA / PT

MHVA and PT work well, as shown above. But, PT alone does not work very well as it tries to �nd

learnable �xed inputs to be added to the actual input to provide context, but since supervised

pretrained models do not give good relevant features for a di�erent dataset, these inputs are not very

useful unless combined with MHVA which provides a way for the model to learn the distribution shift

in the input associated with the new dataset.
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4.4. Di�erent Backbones

This experiment supports our claim of CM3T being model-agnostic. Our plugins trained along with

frozen ViViT-B achieve even better performance than full-�netuning. Table 6 shows CM3T achieving

better results with Video Swin as it is a better backbone, but this comparison does not say anything

about out modules and is included here just for completeness.

Method Backbone Accuracy (%)

Backbone with supervised pretraining using K400

Full �netuning ViViT-B 37.4%

MHVA + PT ViViT-B 38.1%

CM3T ViViT-B 44.3%

Table 6. Results using di�erent backbones. Experiments were done on EK-100 dataset. Acronyms from

Table 1.

4.4.1. Computational Resources

We state that CM3T saves computational resources and we have already discussed a reduction in

trainable parameters. Table 1 shows that fewer epochs are required for the convergence of models with

our plugins and also low FLOPs. For just �netuning RGB models, multi-head vision adapters and

pre�x tuning require a third of the time as compared to full �netuning. For adding a new modality,

given an embedding corresponding to features of the new modality, only 5.8M additional parameters

are required (with Video Swin-B as the backbone).

5. Conclusion

In this work, we presented CM3T (Cross Multimodal Multi-dataset Multitask Transformer), a

framework for using common pretrained video classi�cation models with a transformer-based

architecture. The framework consists of three modules, two introduced by us, multi-head vision

adapters and cross-attention adapters, and one already existing, pre�x tuning. We show that in

contrast to previous related works, these work well without speci�c pretraining or training methods
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(self-supervised methods) and study di�erent variants. This work helps bridge the gap between

research and practical applications of video classi�cation models by making it easier to adapt existing

work to new datasets and tasks, and also to utilize additional available modalities. Also, the framework

bene�ts from weight sharing across di�erent datasets for the same modalities.

The limitation of this approach is that if the dataset used for pretraining is very dissimilar to the target

one, the results will not be good. The frozen pretrained model needs to have the relevant information

for the target task or dataset. Using various data augmentation, self-learning methods, or fully

�netuned smaller models might give better results. For future work, combining adapters with

selective �netuning of the model might resolve the above issue while keeping a low number of

trainable parameters.
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Footnotes

1 In this paper, we refer to adapters including a mix of multiple techniques as in the M&M adapters.
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