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Abstract
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1 Introduction

A tax on consumption is a consumer tax levied through imposing a tax on purchase of goods and

services. It takes the form of a direct or an indirect tax, such as a value-added tax (VAT), sales

tax, excise tax on consumption, tari↵s at the import stage, or an income tax where savings are tax

free. The tax base is the price of consumption goods before tax.

A value-added tax is a consumption tax which is levied and collected at each stage in the supply

chain on the di↵erence of sales and purchases of all agents, such as importer, manufacturer, whole-

saler, distributer, and retailer, etc. A simple VAT is proportional to consumption, and is regressive

in nature, as with an increase in income, the proportion of consumption in total income falls. In-

vestment and savings do not get taxed under the ambit of consumption tax, however, as soon as

they get converted to consumption, they are taxed. In some countries, such as European Union,

it is common to exclude certain goods from VAT to make it less regressive. Consumption tax can

have di↵erent nomenclature in di↵erent countries, e.g., it is called as a ”Goods and Services Tax”,

in New Zealand, Australia, Singapore, India, and Canada (in Canada, also known as Harmonized

Sales Tax, when combined with a provincial sales tax). It is also knowm as a sales tax in some

countries, as it is applied at final point of sale in a supply chain, and is applicable on sale of goods,

and/or services. It is an ad valorem tax, i.e., a percentage of final price of goods and services. It

is also called as a use tax, when consumers are liable to deposit the tax directly into government

treasury. Laws may exempt certain items from consumption tax. An excise tax is also a sales

tax, and is applied at times to reduce consumption of certain goods, such as tobacco, alcohol, etc.

However, it is also applied for revenue generation, e.g., gasoline (petrol), tourism, etc.

Consumption tax can also be in the form of a direct tax as an expenditure tax, which is an income

tax after deduction of savings and investment, such as the Hall–Rabushka flat tax. In the form of

a direct tax, it is generally called as an expenditure tax, a cash-flow tax, or a consumed-income

tax and can be either a flat or progressive. In the past, some countries had implemented a direct

consumption tax, such as India and Sri Lanka. The base of this kind of tax is income minus savings.

If the direct consumption tax rate is flat, it is regressive with respect to income, however, it can be

made progressive by applying progressive tax rates, i.e., an increase in the tax rate with an increase

in personal consumption.

An optimal taxation is the one which minimizes e�ciency losses and distortion in the market as a

result of deviation from pre-policy e�cient market equilibrium, given the economic constraints when

a tax is imposed. The first contribution to theory of optimal taxation was made by Ramsey (1927),

through developing a theory for optimal commodity taxes and proposed a theoretical solution that

consumption tax on each good should be ”proportional to the sum of the reciprocals of its supply and

demand elasticities”. Suits and Musgrave (1953) find that ad valorem taxation yields a larger total
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surplus than unit taxes provided they give the same yield. Diamond and Mirrlees (1971) consider

commodity taxation along with the other kinds of taxes. Mirrless (1975) modified the standard

problem by considering simultaneously excise taxes and a poll tax. Diamond (1975) examines

the Ramsey rule for a many-person economy with excise taxes and a poll tax. Atkinson and

Stiglitz (1976) show that with an optimal nonlinear income tax, discriminatory commodity taxes

are only necessary to the extent that individual commodities are not weakly separable from leisure.

In Deaton (1981), rules for optimal di↵erential commodity taxes have been derived for the three

di↵erent cases usually studied in the literature: the one consumer economy, the unidimensional

continuum of consumers economy, and the finite number of discrete consumers economy. Lucas

and Stokey (1983) derive a time consistent optimal fiscal policy in an economy without capital

maximizing the consumer welfare subject to the condition that a competitive equilibrium holds in

each time period.

In Judd (1985), the government taxes capital income net of depreciation at a proportional rate,

which is assumed to be constant. Chamley (1986) analyzes the optimal tax on capital income

in general equilibrium models of the second best. Deaton and Stern (1986) show that optimal

commodity taxes for an economy with many households should be at a uniform proportional rate

under certain conditions. Cremer and Gahvari (1993) incorporate tax evasion into Ramsey’s op-

timal taxation problem. Skeath and Trandel (1994) show that ad valorem taxes Pareto dominate

specific taxes. Cremer and Gahvari (1995) prove that optimal taxation requires a mix of di↵erential

commodity taxes and a uniform lump-sum tax. Naito (1999) shows that imposing a non-uniform

commodity tax can Pareto-improve welfare even under nonlinear income taxation if the production

side of an economy is taken into the consideration. Saez (2002b) shows that a small tax on a given

commodity is desirable if high income earners have a relatively higher taste for this commodity or

if consumption of this commodity increases with leisure.

Nordhaus (1993) proposes an optimal carbon tax (tax per ton of carbon). Chari, Christiano and

Kehoe (1994) deal with the labor and capital income taxes instead of an advalorem tax as in our

model. Ekins (1996) takes into account the secondary benefits of Carbon dioxide abatement for an

optimal carbon tax. Coleman (2000) derives the optimal dynamic taxation of consumption, income

from labor, and income from capital, and estimates the welfare gain that the US could attain

by switching from its current income tax policy to an optimal dynamic tax policy. Pizer (2002)

explores the possibility of a hybrid permit system and a dynamic optimal policy path in order

to accommodate growth and not because of the adjustment over time to equalize the marginal

benefit and cost. It is implicitly assumed that the marginal cost equals the marginal benefit in each

time period. Jensen and Schjelderup (2011) study how a change in specific and ad valorem taxes

under nonlinear pricing a↵ects tax incidence. Aiura and Ogawa (2013) examine the choice of tax
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method between ad valorem tax and specific tax. Blackorby and Murty (2013) employ a general

equilibrium framework with a monopoly, hundred percent profit taxation and uniform lump-sum

transfers. Nawaz (2017) discusses the optimal quantity taxes in a dynamic setting.

In existing literature, while deriving an optimal tax, e�ciency loss in post-tax policy equilib-

rium/dead weight loss is minimized, however, there are additional e�ciency losses during market

adjustment toward final post-tax policy equilibrium. Without minimizing total e�ciency loss, i.e.,

the one during market adjustment as well as the dead weight loss in final equilibrium, the derived

tax policy cannot be optimal in true sense, and can be improved upon. When a consumption tax

is imposed, the buyer’s price jumps to the inital price plus the amount of tax. The price adjusts

over time to bring final post-tax market equilibrium with some dead weight loss. Supply and de-

mand also adjusts along with the price including tax until the new equilibrium arrives. Existing

literature ignores e�ciency losses on the adjustment path of the market to final equilibrium after

imposition of a tax to derive an optimal consumption tax. The quantum of e�ciency loss during

market adjustment is contingent upon market parameters as shown in later part (section 4) of this

article, however, theoretically ideally total e�ciency loss, i.e., during adjustment of market as well

as that in final post-tax policy equilibrium must be minimized to derive an optimal tax. This paper

considers total e�ciency loss (output and/or consumption lost), i.e., during market adjustment as

well as the dead weight loss in post-tax policy equilibrium as an objective function to be minimized

subject to tax revenue constraint to derive an optimal consumption tax.

The remainder of this paper is organized as follows: Section 2 explains how individual components

of market system are joined together to form a dynamic market model. Section 3 provides the

solution of the model with a consumption tax. Section 4 derives an optimal consumption tax

minimizing e�ciency losses subject to a tax revenue constraint. Section 5 summarizes findings and

concludes. Section 6 constitutes appendix.

2 The Model

Suppose there is a perfectly competitive market of a homogeneous good, and the market is in

equilibrium, i.e., initial conditions of a market equilibrium apply. Four types of infinitely-lived

market agents are there, i.e., a representative -or a unit mass of- producer, who demands capital

and labor to produce goods; a middleman who purchases goods from producer, holds an inventory

of goods, i.e., store them to be subsequently sold, and sells those to consumer; a representative –or

a unit mass of– consumer who supplies labor inelastically, accumulates capital through investment

and buys goods from the middleman; and government. Middleman’s role is instrumental to capture

adjustment of market to final equilibrium as producer is a price taker and cannot change price.

Middleman is shown to have an incentive to change price only during market adjustment and is

not better o↵ deviating from market price once equilibrium is achieved. Middleman sells goods
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to the consumer at market price p, which is chosen by maximizing the di↵erence between revenue

generated by selling goods to consumer and the cost of holding/storing goods after buying from

producer, i.e., cost of holding inventory of goods. Middleman pays a fixed fraction of initial market

price to producer, i.e., ↵p with ↵ < 1, and with fixed ↵ and p, producer is a price taker.

Price adjustment mechanism has the basis of lack of coordination among buyers and suppliers

at current prices when a shock puts the market out of equilibrium, and is illustrated as given

below: Suppose the market is in an initial equilibrium, and middleman holds an equilibrium level

of inventory due to supply and demand rates being the same. Inventory is the stock variable

and reflects the di↵erence between supply and demand rates accumulated over time. A change in

inventory happens when either supply or demand or both rates change by di↵erent magnitudes.

Supply and demand rates are flow variables, i.e., the quantity supplied/demanded per unit time. If

an exogenous shock leading to a demand contraction happens to the market, the stock of inventory

will pile up at the existing price as the supply from producer continues to be the same as before.

Middleman will reduce price which will increase demand along demand schedule, and producer will

find optimal to produce a lower quantity than before. A new equilibrium with both lower price and

output will be reached. The equilibrium is defined as follows:

(i) The middleman and the producer maximize their profits and the consumer maximizes utility

subject to their respective constraints (see Section 2).

(ii) The quantity consumed by the consumer equals the quantity supplied by the producer (the

inventory remains the same, when the market is in equilibrium).

The equilibrium conditions, i.e., Routh–Hurwitz stability criterion, which provides a necessary and

su�cient condition for the stability of a linear dynamical system, are mentioned in Section 3.

When the market is in equilibrium, the middleman is a price taker and sells the goods to the con-

sumer at the given market price on account of the fact that the set up is for a perfectly competitive

market. The middleman can change the price along the dynamic adjustment path when the market

is out of equilibrium, until the middleman again becomes a price taker when the new equilibrium

arrives. An ad valorem tax is announced and implemented at the same time by the government (the

agents’ expectations will be taken into account in a future research project when the announcement

and implementation dates of the tax could be di↵erent). The market does not suddenly jump to

the post-tax market equilibrium after the imposition of an ad valorem tax, rather the adjustment of

price takes place over time to bring the new equilibrium. The adjustment of price involves endoge-

nous decision making (on the basis of self-interest) by all the agents in the market, i.e., producer,

consumer, and the middleman. Suppose a producer produces a perishable good and sells it to a

middleman who subsequently sells it to a consumer living in a community. The middleman and

the producer sell a quantity equal to the quantity produced by the producer in each time period,

and the market stays in equilibrium. Suppose that the government announces and imposes an ad
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valorem tax on the consumer, which decreases the demand of the good, part of the production

sold to the middleman by the producer will remain unsold to the consumer by the end of the time

period in which the tax was imposed, and be wasted. If we assume that the middleman and the

producer can change the price and the production respectively, immediately, had they known the

pattern of new demand, they would immediately pick the price (by the middleman) and quantity

(by the producer) to maximize their profits and clear the market without any waste of production.

However, this information is lacking, so the middleman could decrease the price based on the best

guess he could have about the new demand (based on the amount of unsold production), which

would drive the market close to the new equilibrium. The producer produces a lower quantity at

the lower price. If the producer’s production is fully sold out to the consumer by the middleman in

the following time period, he will not be changing the production anymore knowing that the new

equilibrium has arrived, however, if some of his production still remains unsold, the middleman

will choose to reduce the price further (and the producer, the production accordingly) to bring the

market closer to the new equilibrium. The market eventually settles at a new equilibrium after

some e�ciency losses. The resources which went into the unsold production in each time period

by the imposition of the tax are wasted. A new equilibrium will be finally arrived at, with a dead-

weight loss due to ad valorem tax. As a result of an ad valorem tax, the e�ciency loss is the waste

of resources during the adjustment period plus the loss in the final equilibrium.

In mathematical terms, the objective function of all the market agents is maximized through the first

order conditions and the equations representing their individual actions are solved simultaneously,

to capture the collective result of their individual actions. We assume for simplification, that the

new equilibrium is not too o↵ from the initial equilibrium after the imposition of the ad valorem

tax. This makes the linearization of demand and supply curves a reasonable approach. In figure 1,

linearization seems to be a good approximation when moving from point a to b, whereas it does

not seem to be a good approximation in the movement from point a to c. For the movement of

the market equilibrium from point a to c, we need to model a non-linear dynamical system (not

covered under the scope of this article).

2.1 Middleman

The middleman buys goods from the producer and sells those to the consumer for profit. The

middleman does not purchase and sell the same quantity at all points in time, and hence holds

an inventory of the goods purchased to be sold subsequently. Inventory is an intermediary stage

between demand and supply, which reflects the quantum of di↵erence between demand and supply

of the goods in the market. If there is no change in inventory, it implies that supply and demand

rates are the same. A decrease or increase in inventory implies a change in demand, supply, or

both at di↵erent rates.
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Figure 2 illustrates the link between supply, demand, inventory, and prices. When the supply

shifts to the right (while demand does not change), the inventory increases at the initial price,

and the new equilibrium brings the price down. Similarly, when the demand shifts to the right

(while supply remains the same), the inventory depletes from the market at the initial price and

the new equilibrium brings the price up. This implies that there is an inverse relationship between

an inventory change and a price change (ceteris peribus). If both the demand and supply curves

shift by the same magnitude such that the inventory remains constant, then the price will also not

change. Inventory unifies the demand and supply shocks in the sense that they are both a↵ecting

the same factor, i.e., inventory. Therefore, each kind of shock is just an inventory shock. According

to the above discussion, there is an inverse relationship between an inventory change and a price

change; let us discuss the mechanism which brings about such a change. Consider a market of

homogeneous goods where the middlemen, such as whole salers, retailers, etc., hold inventories of

goods, incur some cost for holding those, and sell the goods to the consumers to make profits. The

cost of holding an inventory is a positive function of the size of the inventory, i.e., a larger inventory

is more costly to hold as compared to a smaller inventory. In the absence of an exogenous shock,

if the demand and supply rates are equal, then the market is in equilibrium and the price does

not change with time. Suppose that a technological advancement decreases the marginal cost of

production and increases the supply rate, whereas the demand remains the same. As the supply

and demand rates are no longer equal, the di↵erence will appear somewhere in the economy in the

form of piled up inventories. As the production flows from producers to the consumers through the

middlemen, it is reasonable to assume that the middlemen will be holding the net di↵erence (Note:

The piled up inventories can also appear as producers’ finished goods, however, the key point is

that a di↵erence of demand and supply rates directly a↵ect the inventories in the economy). The

economy cannot sustain this situation for an indefinite period of time, and the middlemen have to

think of some means of getting rid of piled up inventories. The only resort they have is to decrease

the price to bring the demand up along the demand curve.

The price, in a perfectly competitive market, will eventually come down to equalize the new marginal

cost, however the adjustment path depends on the actions of the middlemen, i.e., how they react

to the change in their inventories. Notice that although the marginal cost of production for the

producer has decreased, however, the marginal cost of holding an extra unit of inventory for the

middleman has increased. This intuitive explanation is theoretically consistent with the supply,

demand, profit, and utility maximization by a producer and a consumer respectively. In the real

world, the examples of this kind of behavior of middlemen are as follows: we enjoy the end of year

sales as consumers, there are o↵ers such as buy one get one free, gift o↵ers if consumers buy above a

certain quantity threshold, etc. For a mathematical picture, let us consider the profit maximization

problem of the middleman as follows:
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2.1.1 Short-run Problem

Let us first consider the short-run problem (Note: The middleman has a myopic objective, rather

than doing dynamic optimization. This is a one period analysis with discrete analog, and is pre-

sented for an intuitive purpose for clarity of the more complicated dynamic problem in section

2.1.2) of the middleman as follows:

⇧ = pq(p)� &(m(p, e)), (1)

where

⇧ = profit,

p = market price,

q(p) = quantity sold at price p,

m = inventory (total number of goods held by the middleman),

e = other factors which influence inventory other than the market price including the middleman’s

purchase price from the producer,

&(m(p, e)) = cost as a function of inventory (increasing in inventory).

The first order condition (with respect to price) is as follows:

pq
0(p) + q(p)� &

0(m(p, e))m0
1(p, e) = 0, (2)

The middleman’s incentive to change the price is only during the adjustment process, and will incur

losses by deviating from the price equal to the marginal cost, when the market is in equilibrium.

The supply does not equal the demand during the adjustment process, and the market drifts toward

the new equilibrium. However, the price cannot change automatically and has to be changed by

some economic agent in his/ her own benefit, therefore a change in price by the middleman in the

direction of bringing the new equilibrium is not against the market forces, so he/ she does not lose

business by changing the price on the dynamic adjustment path to the new equilibrium, unlike

when the market is already in equilibrium and the middleman faces an infinitely elastic demand as

given below:

pq
0(p) + q(p) = &

0(m(p, e))m0
1(p, e),

p


1 +

1

demand elasticity

�
= &

0(m(p, e))
m

0
1(p, e)

q0(p)
.

The expression on the right hand side is the marginal cost, which equals price when middleman

faces an infinitely elastic demand. Suppose a supply shock shifts supply curve downward due to

a reduced marginal cost of production, e.g., due to a technological innovation. The competitive
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market is no longer in equilibrium as supply does not equal demand after supply shock at initial

equilibrium price. As supply has expanded, price will come down in final equilibrium, however,

there cannot be a sudden jump in price from one equilibrium to the other, and rather middleman

will continue charging the same price as before, i.e., higher than the new lower marginal cost until

his inventory piles up enough and market forces make him realize that his profit maximization

condition has changed due to an expansion in market supply and he needs to reduce price to meet

his new profit maximizing condition after supply shock. The same reasoning goes for a reverse

supply shock, i.e., in case of shrinkage in market supply, price will increase in final equilibrium, and

middleman will not change price and continue charging a price lower than the new higher marginal

cost until inventory level goes down substantially to make middleman choose a higher selling price

than before. In this scenario, consumer will be the short term beneficiary for paying a price lower

than marginal cost. In the first scenario, middleman was a short term beneficiary as he charged

a price higher than the marginal cost during adjustment period of the market. Final equilibrium

price is equal to marginal cost of producer plus marginal cost of middleman for storing goods,

i.e., total marginal cost, in absence of a tax/subsidy, so neither does the middleman nor does the

consumer get any economic rent or economic benefit respectively by charging and paying a price

respectively di↵erent from marginal cost when market is in equilibrium.

To put it in mathemaical terms, suppose due to a positive supply shock while demand stays the

same, such as a technological advancement which brings down the marginal cost of production and

shifts supply downward, for middleman to have another unit of inventory, the marginal cost, i.e.,

&
0(m(p, e))

m
0
1(p,e)
q0(p) is higher at existing price due to the term &

0(m(p, e)) being higher at current

price. This could be due to higher storage charges as a results of increased demand of storage

places after positive supply shock. The second term, i.e.,
m

0
1(p,e)
q0(p) , being a function of price is the

same as before until the price changes. Middelaman’s purchase price is the same as before due to

producer being a price taker during adjustment of the market too, and charging a fixed fraction

of market price to the middleman. To understand the concept intuitively, in a discrete analog of

above scenario, middleman maximizes profits in each time period taking the purchase price from

producer as given and choosing the selling market price without considering future time periods.

Middleman faces following inequality at existing price:

@⇧

@p
= pq

0(p) + q(p)� &
0(m(p, e))m0

1(p, e) < 0, (3)

implying that middleman decreases price after supply shock to have another unit of inventory to

maximize profits after the shock. In above scenario, producer is the short-term beneficiary due to a

reduced marginal cost, but receiving the same price as before from middleman. If profit maximizing

combinations of inventories and respective prices for middleman are plotted together with price on

y-axis and inventory on x-axis, a downward sloping inventory curve results, which is analogous
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to traditional supply and demand curves for profit maximizing producers and utility maximizing

consumers respectively.

2.1.2 Dynamic Problem

In this section, dynamic problem of middleman is discussed. Middleman maximizes present dis-

counted value of series of future profits with zero time value as given below:

V (0) =
1R

0
[pq(p)� &(m(p, e))] e�rt

dt, (4)

with following description of variables in the above expression: r as discount rate, p(t) as control

variable and m(t) as state variable. Middleman’s maximization problem is as given below:

Max
{p(t)}

V (0) =
1R

0
[pq(p)� &(m(p, e))] e�rt

dt,

subject to the following constraints:
.

m(t) = m
0
1(p(t), e(p(t), z))

.

p(t) + m
0
2(p(t), e(p(t), z))e

0
1(p(t), z)

.

p(t) (state equation, which describes

change in state variable with respect to time; and z being exogenous inputs in the model),

m(0) = ms (initial condition),

m(t) � 0 (non-negativity constraint on state variable),

m(1) free (terminal condition).

For this case, current-value Hamiltonian can be expressed as given below:

eH = p(t)q(p(t))� &(m(p(t), e(p(t), z))) + µ(t)
.

p(t)


m

0
1(p(t), e(p(t), z)) +m

0
2(p(t), e(p(t), z))⇤

e
0
1(p(t), z)

�
.

(5)

Maximizing conditions can be written as follows:

(i) p⇤(t) maximizes eH for all t: @ eH
@p

= 0,

(ii)
.

µ� rµ = �@ eH
@m

,

(iii)
.

m
⇤ = @ eH

@µ
(this just gives back the state equation),

(iv) lim
t!1

µ(t)m(t)e�rt = 0 (the transversality condition).

The first two maximizing conditions can be expressed as given below:

@ eH
@p

= 0, (6)

and

.

µ� rµ = �@ eH
@m

= &
0(m(p(t), e(p(t), z))). (7)
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In equilibrium,
.

p(t) = 0, and @ eH
@p

reduces to the following expression (see appendix):

p(t)


1 +

1

demand elasticity

�
= &

0(m(p(t), e(p(t), z)))

⇢
m

0
1(p(t), e(p(t), z))

q0(p(t))
+

m
0
2(p(t), e(p(t), z))e

0
1(p(t), z)

q0(p(t))

�
.

In a dynamic setting, the right side of above expression is the marginal cost, which is quite di↵erent

from that in the short-term/myopic problem, due to the fact that for dynamic problem, middleman

also considers the impact of price he/she chooses on future purchase price from producer. Price

equals marginal cost for an infinitely elastic demand. Suppose a positive supply shock hits the

market, and middleman wants to increase the size of inventory. To have an extra unit in inven-

tory, middleman’s marginal cost is higher at existing price due to the term &
0(m(p(t), e(p(t), z))),

which is higher at previous price at that time. The term in parantheses in above expression, i.e.,
m

0
1(p(t),e(p(t),z))

q0(p(t)) +
m

0
2(p(t),e(p(t),z))e

0
1(p(t),z)

q0(p(t)) being a function of price is the same as before until price

gets changed by middleman. Therefore, on existing price, middleman’s profit maximizing expression

changes to the following:

@ eH
@p

< 0.

This implies at previous price after supply shock, middleman’s profit maximizing condition is

not being satisfied if he wants to have an extra unit of inventory, therefore, after supply shock,

middleman must decrease price to have another unit and to maximize profits. To increase inventory,

price must be decreased, therefore, there is a negative relationhip between price and inventory

change. Inventory is the state between supply and demand, and hence unifies both kinds of shocks,

i.e., each kind of shock influences the inventory size, therefore, each kind of shock is just an inventory

shock. If supply equals demand, market is in equilibrium, however, if any kind of shock happens

and either supply or demand or both rates get changed, and the economic agents do not respond

to the shock, price will be changing continuously until the system saturates, e.g., if a positive

exogenous supply shock happens, and the producer and consumer do not modify their responses

with a change in price, the market will get flooded with supply till the point of saturation. This

response can be depicted by the following mathematical expression:
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Price change / change in market inventory.

P = price change.

M = m�ms = change in inventory in the market,

m = inventory at time t,

ms = inventory in steady state equilibrium.

Input � output =
dm

dt
=

d(m�ms)

dt
=

dM

dt
,

or M =
R
(input � output) dt.

Price change /
R
(supply rate � demand rate) dt, or

P = �Km

R
(supply rate � demand rate) dt,

where Km is the costant of proportionality. Supply and demand rates are flow variables and reflect

the flow of supply and demand respectively per unit time in the market. When (supply rate � demand rate)

is positive, P is negative, i.e., excessive supply than demand leads to a decrease in market price

and vice versa. Above equation can also be written as follows:

R
(supply rate � demand rate) dt = � P

Km

, or

R
(wi � w0) dt = � P

Km

, (8)

wi = supply rate,

w0 = demand rate,

Km = dimensional constant.

At t = 0, market is in a steady state equilibrium, and supply rate equals demand rate. Putting

initial conditions in eq. (8), it can be expressed as given below:

R
(wis � w0s) dt = 0. (9)

Subscript s stands for steady state equilibrium, the state which reflects initial values of the market,

and P = 0, when market is in a steady state equilibrium. Subtracting eq. (9) from (8), results in

the following expression:

R
(wi � wis) dt�

R
(w0 � w0s) dt = � P

Km

, or

11



R
(Wi �W0) dt = � P

Km

, (10)

where wi � wis = Wi = change in supply rate,

w0 � w0s = W0 = change in demand rate.

P, Wi and W0 reflect deviation from initial equilibrium values, and hence have initial values equal

to zero. Eq. (10) can also be expressed as given below:

P = �Km

R
Wdt = �KmM, (11)

where W = Wi �W0.

If price gets a jump due to an input other than change in inventory, the output is just a sum of

impact of various inputs for a linear dynamical system, therefore P in eq. (11) can be expressed as

given below:

P = �Km

R
Wdt+ J = �KmM + J. (11a)

Inventory can also get an exogenous shock, such as fire, etc.

2.2 Producer

Producer maximizes present discounted value of series of future profits with zero time value as

given below:

V (0) =
1R

0
[↵p(t)F (K (t) , L (t))� w(t)L (t)�<(t)I(t)] e�rt

dt, (12)

with following description of variables in the above expression: ↵ as the fraction of the market price

charged by producer to middleman, L(t) (labor) and I(t) (level of investment) as control variables

and K(t) as state variable. Producer’s maximization problem is as given below:

Max
{L(t),I(t)}

V (0) =
1R

0
[↵p(t)F (K (t) , L (t))� w(t)L (t)�<(t)I(t)] e�rt

dt,

subject to the following constraints:
.

K(t) = I(t)��K(t) (state equation, which describes change in state variable with respect to time),

K(0) = K0 (initial condition),

K(t) � 0 (non-negativity constraint on state variable),

12



K(1) free (terminal condition).

For this case, current-value Hamiltonian can be expressed as given below:

eH = ↵p(t)F (K (t) , L (t))� w(t)L (t)�<(t)I(t) + µ(t) [I(t)� �K(t)] . (13)

Maximizing conditions can be written as follows:

(i) L⇤(t) and I
⇤(t) maximize eH for all t: @ eH

@L
= 0 and @ eH

@I
= 0,

(ii)
.

µ� rµ = �@ eH
@K

,

(iii)
.

K
⇤
= @ eH

@µ
(this just gives back the state equation),

(iv) lim
t!1

µ(t)K(t)e�rt = 0 (the transversality condition).

The first two maximizing conditions can be expressed as given below:

@ eH
@L

= 0, (14)

@ eH
@I

= 0, (15)

and

.

µ� rµ = �@ eH
@K

. (16)

After price increase, producer needs to increase production to satisfy new dynamic optimization

condition (see appendix). Let p = market price, c = a reference price (e.g., retail price including

production cost, and profits of producer and middleman), i.e., a reference point parameter with

respect to which variation in p is the basis of producer’s decision making regarding production.

Wm = Change in production due to change in price,

A higher value of (p� c) provides producer an incentive to produce more. Therefore,

Wm / ↵(p� c), or

Wm = Ks(p� c). (17)

During market equilibrium, Wm = 0, which implies that

0 = Ks(ps � cs). (18)

Ks is the constant of proportionality; ps and cs are values in steady state equilibrium. Subtracting

eq. (18) from (17) gives the following expression:

13



Wm = Ks [(p� ps)� (c� cs)] = �Ks (C � P ) = �Ks", (19)

where Wm, C and P reflect deviation from initial equilibrium values, and hence have initial values

equal to zero.

2.3 Consumer

Consumer maximizes present discounted value of series of future utilities with zero time value as

given below:

V (0) =
1R

0
U(x(t))e�⇢t

dt, (20)

with following description of variables in the above expression: ⇢ as discount rate and x(t) as control

variable. The maximization problem can be written as

Max
{x(t)}

V (0) =
1R

0
U(x(t))e�⇢t

dt,

subject to the following constraints:
.

a(t) = R(t)a(t) + w(t) � p(t)x(t) (state equation, which describes change in state variable with

respect to time). a(t) as asset holdings is a state variable, and w(t) and R(t) are exogenous time

path of wages and return on assets.

a(0) = as (initial condition),

a(t) � 0 (non-negativity constraint on state variable),

a(1) free (terminal condition).

For this case, current-value Hamiltonian can be expressed as given below:

eH = U(x(t)) + µ(t) [R (t) a (t) + w (t)� p (t)x (t)] . (21)

Maximizing conditions can be written as follows:

(i) x⇤(t) maximizes eH for all t: @ eH
@x

= 0,

(ii)
.

µ� ⇢µ = �@ eH
@a

,

(iii)
.

a
⇤ = @ eH

@µ
(this just gives back the state equation),

(iv) lim
t!1

µ(t)a(t)e�⇢t = 0 (the transversality condition).

The first two maximizing conditions can be expressed as given below:

@ eH
@x

= U
0(x (t))� µ(t)p(t) = 0, (22)

and

14



.

µ� ⇢µ = �@ eH
@a

= �µ(t)R(t). (23)

For an increase in price of the consumption good, consumer faces the following expression at existing

level of consumption:

@ eH
@x

= U
0(x (t))� µ(t)p(t) < 0.

To satisfy modified dynamic optimization condition after a price increase, consumer must reduce

consumption. If change in consumption is proportional to change in price, the following formulation

results:

Change in demand / P, or

Wd = �KdP. (24)

Wd is change in demand due to change in price, i.e., when P is positive Wd is negative.

3 Solution of the Model with a Consumption Tax

The model has been solved (see appendix) resulting in the following expression:

dP (t)

dt
= �Km [�Ks"(t) +KdP (t)] . (25)

If an ad valorem consumption tax T is imposed on buyer, the market price the buyer will be paying

will be inclusive of the consumption tax, however, price consideration for producer’s decision making

regarding how much to produce will be the one before tax, i.e.,

"(t) = Tp(t)� P (t). (26)

This implies that,

dP (t)

dt
+Km {Ks(1� T ) +Kd}P (t) = KmKsTps. (27)

For above di↵erential equation, the stability criterion, i.e., Routh–Hurwitz is as follows: Km {Ks(1� T ) +Kd} >

0. If this criterion is met, market will always adjust on its own to another equilibrium after a shock.

Solving the di↵erential equation with initial conditions, t = 0, P (0) = Tps, we obtain the following

expression:

P (t) = C1 + C2e
�[Km{Ks(1�T )+Kd}]t. (28)
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After putting values of C1 and C2 in eq. (28), we obtain the following expression:

P (t) =
KsTps

{Ks(1� T ) +Kd}
+

(Kd �KsT )Tps
{Ks(1� T ) +Kd}

e
�[Km{Ks(1�T )+Kd}]t. (29)

Initial conditions, i.e., t = 0, P (0) = Tps are being satisfied. When t = 1, P (1) = KsTps
{Ks(1�T )+Kd} ,

which is the final steady state equilibrium value. In final equilibrium, quantity demanded equals

quantity supplied (see appendix).

4 An Optimal Ad Valorem Tax

Deadweight loss due to imposition of a tax in post-tax equilibrium is the only e�ciency loss taken

into consideration in the existing literature for mathematical derivation of an optimal tax, however,

there is also loss of e�ciency during adjustment of market to final equilibrium after imposition of

tax. When a tax is imposed on goods, price jumps to initial price plus the amount of tax, and

gradually adjusts to bring final post-tax equilibrium in which price is higher than initial price and

less the one existing when tax was imposed depending on demand and supply schedules’ elasticities.

If inventory grows in size, it indicates that supply is higher than demand and vice versa. When

supply becomes equal to demand after adjustment of market, final equilibrium has arrived. During

adjustment due to supply and demand not being equal there is a loss of output/consumption.

Also, there is a lower level of production in post-tax equilibrium which implies that all resources

are not fully employed in final equilibrium and hence some e�ciency loss. By summing up total

consumption or production lost, total e�ciency loss can be computed and is as follows:

EL = �
1Z

0

Wd(t)dt = M(t)�
1Z

0

Wm(t)dt. (30)

For each unit of consumption/production in economy, e�ciency gain is as follows:

E�ciency gain = (willingness to pay � consumer price) + (tax ) +

(producer price � factors of production cost) + (factors of production cost � natural resources).

= willingness to pay � natural resources.

' willingness to pay.

Using above concept of e�ciency, loss in e�ciency in value terms due to imposition of tax is as

follows:
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EL = �
1Z

0


1

2
{new price(t)� old equilibrium price(t)}+ {old equilibrium price(t)}

�
Wd(t)dt

= �
1Z

0


1

2
P (t) + ps

�
Wd(t)dt.

Above expression can be written as given below:

EL =

1Z

0

KdP (t)


1

2
P (t) + ps

�
dt, (31)

ps is the price in initial equilibrium. E�ciency loss in value terms gets minimized when it is

minimized in terms of quantity. Initial value of �Wd(t) is as follows: �Wd(0) = KdTps (i.e.,

decrease in demand due to tax at t = 0 from eq. (24)). Figure 3 illustrates that consumption

change jumps to KdTps, i.e., there is a decrease in demand due to imposition of tax at t = 0.

Demand is not equal to supply any longer, and market forces come into play. Price along with

demand adjusts over time until final equilibrium arrives, i.e., Wd(1). Shaded area in the figure is

the e�ciency loss, i.e., consumption lost during adjustment of market to final equilibrium. Area

between lines �Wd(t) = 0, and �Wd(t) = �Wd(1) is e�ciency loss due to a shift in equilibrium

due to tax. Tax revenue expression is as given below:

TR = Tp(t) [wid(0)�KdP (t)] . (32)

The problem of minimizing e�ciency loss subject to revenue constraint, i.e., tax revenue generated

is greater than or equal to G in a given time period, is as given below:

min
T

EL s.t. TR � G.

Tax rate is control variable with constraint being binding. No closed form solution exists, hence

numerical solution is found as given below:

Suppose the tax revenue target is $1000. With Km = Kd = Ks = 1, wid(0) = 100, and ps = 10, tax

revenue expression can be written as given below:

T [P (t) + 10] [100� P (t)] = 1000.

For t = 0, P (0) = Tps = 10T, we have the above expression is follows:

T
3 � 9T 2 � 10T + 10 = 0.
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This implies that

T = �1.556098, 0.648635, 9.907463.

As price has to be positive, T = �1.556098 gets overruled. Among other two values, expression

(31) gets minimized for T = 0.648635. For t = 1, expression for tax revenue is as given below:

11T 2 � 25T + 10 = 0.

This implies that

T = 0.518115, 1.754612.

Expression (31) for e�ciency loss is minimized for T = 0.518115. The optimal consumption tax is

that government initially imposes a tax T = 0.648635, and then gradually decreases it to a final

value of T = 0.518115.

5 Conclusion

When an advalorem consumption tax is imposed on buyer, price of goods jumps to initial price plus

tax. Market forces come into play making supply and demand adjust to result in final equilibrium.

Traditionally, it is just the e�ciency loss in final equilibrium which is considered for derivation of an

optimal tax, however, when market adjusts to arrive at a new equilibrium, there are extra e�ciency

losses as supply and demand are not equal during market adjustment. If e�ciency losses during

market adjustment are ignored, the tax schedule derived is not optimal. Last section dealt with an

optimal tax schedule derivation generating target amount of tax revenue considering adjustment

of market supply and demand. For estimation of an optimal consumption tax schedule, data to

estimate slopes of supply, demand and inventory curve; price, and quantity in initial equilibrium is

required.

6 Appendix:

6.1 Dynamic Problem of the Middleman

In this section, dynamic problem of middleman is discussed. Middleman maximizes present dis-
counted value of series of future profits with zero time value as given below:

V (0) =
1R

0
[pq(p)� &(m(p, e))] e�rt

dt, (33)

with following description of variables in the above expression: r as discount rate, p(t) as control
variable and m(t) as state variable. Middleman’s maximization problem is as given below:
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Max
{p(t)}

V (0) =
1R

0
[pq(p)� &(m(p, e))] e�rt

dt,

subject to the following constraints:
.

m(t) = m
0
1(p(t), e(p(t), z))

.

p(t) + m
0
2(p(t), e(p(t), z))e

0
1(p(t), z)

.

p(t) (state equation, which describes
change in state variable with respect to time; and z being exogenous inputs in the model),
m(0) = ms (initial condition),
m(t) � 0 (non-negativity constraint on state variable),
m(1) free (terminal condition).
For this case, current-value Hamiltonian can be expressed as given below:

eH = p(t)q(p(t))� &(m(p(t), e(p(t), z))) + µ(t)
.

p(t)


m

0
1(p(t), e(p(t), z)) +m

0
2(p(t), e(p(t), z))⇤

e
0
1(p(t), z)

�
.

(34)
Maximizing conditions can be written as follows:

(i) p⇤(t) maximizes eH for all t: @ eH
@p

= 0,

(ii)
.

µ� rµ = �@ eH
@m

,

(iii)
.

m
⇤ = @ eH

@µ
(this just gives back the state equation),

(iv) lim
t!1

µ(t)m(t)e�rt = 0 (the transversality condition).

The first two maximizing conditions can be expressed as given below:

@ eH
@p

= q(p(t)) + p(t)q0(p(t))� &
0(m(p(t), e(p(t), z)))

⇢
m

0
1(p(t), e(p(t), z)) +m

0
2(p(t), e(p(t), z))⇤

e
0
1(p(t), z)

�

+ µ(t)
.

p(t) ⇤

2

4
m

00
11(p(t), e(p(t), z)) +m

00
12(p(t), e(p(t), z))e

0
1(p(t), z)+

m
00
21(p(t), e(p(t), z))e

0
1(p(t), z) +m

00
22(p(t), e(p(t), z))e

02
1 (p(t), z)+

m
0
2(p(t), e(p(t), z))e

00
11(p(t), z)

3

5

= 0, (35)

and

.

µ� rµ = �@ eH
@m

= &
0(m(p(t), e(p(t), z))). (36)

In equilibrium,
.

p(t) = 0, and @ eH
@p

reduces to the following expression:

q(p(t)) + p(t)q0(p(t))� &
0(m(p(t), e(p(t), z)))

⇢
m

0
1(p(t), e(p(t), z)) +m

0
2(p(t), e(p(t), z))⇤

e
0
1(p(t), z)

�

= 0,

p(t)q0(p(t)) + q(p(t)) = &
0(m(p(t), e(p(t), z)))

⇢
m

0
1(p(t), e(p(t), z)) +m

0
2(p(t), e(p(t), z))⇤

e
0
1(p(t), z)

�
,

p(t)


1 +

1

demand elasticity

�
= &

0(m(p(t), e(p(t), z)))

⇢
m

0
1(p(t), e(p(t), z))

q0(p(t))
+

m
0
2(p(t), e(p(t), z))e

0
1(p(t), z)

q0(p(t))

�
.
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In a dynamic setting, the right side of above expression is the marginal cost, which is quite di↵erent
from that in the short-term/myopic problem, due to the fact that for dynamic problem, middleman
also considers the impact of price he/she chooses on future purchase price from producer. Price
equals marginal cost for an infinitely elastic demand. Suppose a positive supply shock hits the
market, and middleman wants to increase the size of inventory. To have an extra unit in inven-
tory, middleman’s marginal cost is higher at existing price due to the term &

0(m(p(t), e(p(t), z))),
which is higher at previous price at that time. The term in parantheses in above expression, i.e.,
m

0
1(p(t),e(p(t),z))

q0(p(t)) +
m

0
2(p(t),e(p(t),z))e

0
1(p(t),z)

q0(p(t)) being a function of price is the same as before until price
gets changed by middleman. Therefore, on existing price, middleman’s profit maximizing expression
changes to the following:

@ eH
@p

= q(p(t)) + p(t)q0(p(t))� &
0(m(p(t), e(p(t), z)))

⇢
m

0
1(p(t), e(p(t), z)) +m

0
2(p(t), e(p(t), z))⇤

e
0
1(p(t), z)

�

+ µ(t)
.

p(t) ⇤

2

4
m

00
11(p(t), e(p(t), z)) +m

00
12(p(t), e(p(t), z))e

0
1(p(t), z)+

m
00
21(p(t), e(p(t), z))e

0
1(p(t), z) +m

00
22(p(t), e(p(t), z))e

02
1 (p(t), z)+

m
0
2(p(t), e(p(t), z))e

00
11(p(t), z)

3

5

< 0.

This implies at previous price after supply shock, middleman’s profit maximizing condition is
not being satisfied if he wants to have an extra unit of inventory, therefore, after supply shock,
middleman must decrease price to have another unit and to maximize profits. To increase inventory,
price must be decreased, therefore, there is a negative relationhip between price and inventory
change. Inventory is the state between supply and demand, and hence unifies both kinds of shocks,
i.e., each kind of shock influences the inventory size, therefore, each kind of shock is just an inventory
shock. If supply equals demand, market is in equilibrium, however, if any kind of shock happens
and either supply or demand or both rates get changed, and the economic agents do not respond
to the shock, price will be changing continuously until the system saturates, e.g., if a positive
exogenous supply shock happens, and the producer and consumer do not modify their responses
with a change in price, the market will get flooded with supply till the point of saturation. This
response can be depicted by the following mathematical expression:

Price change / change in market inventory.

P = price change.

M = m�ms = change in inventory in the market,

m = inventory at time t,

ms = inventory in steady state equilibrium.

Input � output =
dm

dt
=

d(m�ms)

dt
=

dM

dt
,

or M =
R
(input � output) dt.

Price change /
R
(supply rate � demand rate) dt, or

P = �Km

R
(supply rate � demand rate) dt,
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where Km is the costant of proportionality. Supply and demand rates are flow variables and reflect
the flow of supply and demand respectively per unit time in the market. When (supply rate � demand rate)
is positive, P is negative, i.e., excessive supply than demand leads to a decrease in market price
and vice versa. Above equation can also be written as follows:

R
(supply rate � demand rate) dt = � P

Km

, or

R
(wi � w0) dt = � P

Km

, (37)

wi = supply rate,

w0 = demand rate,

Km = dimensional constant.

At t = 0, market is in a steady state equilibrium, and supply rate equals demand rate. Putting
initial conditions in eq. (37), it can be expressed as given below:

R
(wis � w0s) dt = 0. (38)

Subscript s stands for steady state equilibrium, the state which reflects initial values of the market,
and P = 0, when market is in a steady state equilibrium. Subtracting eq. (38) from (37), results
in the following expression:

R
(wi � wis) dt�

R
(w0 � w0s) dt = � P

Km

, or

R
(Wi �W0) dt = � P

Km

, (39)

where wi � wis = Wi = change in supply rate,

w0 � w0s = W0 = change in demand rate.

P, Wi and W0 reflect deviation from initial equilibrium values, and hence have initial values equal
to zero. Eq. (39) can also be expressed as given below:

P = �Km

R
Wdt = �KmM, (40)

where W = Wi �W0.

If price gets a jump due to an input other than change in inventory, the output is just a sum of
impact of various inputs for a linear dynamical system, therefore P in eq. (40) can be expressed as
given below:

P = �Km

R
Wdt+ J = �KmM + J. (43a)
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6.2 Producer

Producer maximizes present discounted value of series of future profits with zero time value as
given below:

V (0) =
1R

0
[↵p(t)F (K (t) , L (t))� w(t)L (t)�<(t)I(t)] e�rt

dt, (41)

with following description of variables in the above expression: ↵ as the fraction of the market price
charged by producer to middleman, L(t) (labor) and I(t) (level of investment) as control variables
and K(t) as state variable. Producer’s maximization problem is as given below:

Max
{L(t),I(t)}

V (0) =
1R

0
[↵p(t)F (K (t) , L (t))� w(t)L (t)�<(t)I(t)] e�rt

dt,

subject to the following constraints:
.

K(t) = I(t)��K(t) (state equation, which describes change in state variable with respect to time),
K(0) = K0 (initial condition),
K(t) � 0 (non-negativity constraint on state variable),
K(1) free (terminal condition).
For this case, current-value Hamiltonian can be expressed as given below:

eH = ↵p(t)F (K (t) , L (t))� w(t)L (t)�<(t)I(t) + µ(t) [I(t)� �K(t)] . (42)

Maximizing conditions can be written as follows:

(i) L⇤(t) and I
⇤(t) maximize eH for all t: @ eH

@L
= 0 and @ eH

@I
= 0,

(ii)
.

µ� rµ = �@ eH
@K

,

(iii)
.

K
⇤
= @ eH

@µ
(this just gives back the state equation),

(iv) lim
t!1

µ(t)K(t)e�rt = 0 (the transversality condition).

The first two maximizing conditions can be expressed as given below:

@ eH
@L

= ↵p(t)F 0
2 (K (t) , L (t))� w(t) = 0, (43)

@ eH
@I

= �<(t) + µ(t) = 0, (44)

and

.

µ� rµ = �@ eH
@K

= �
⇥
↵p(t)F 0

1 (K (t) , L (t))� �µ(t)
⇤
. (45)

Substituting
.

µ and µ from eq. (44) in (45) yields

↵p(t)F 0
1 (K (t) , L (t))� (r + �)<(t) +

.

<(t) = 0.

If p(t) goes up (at previous level of investment and labor), producer faces the following expressions:
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↵p(t)F 0
2 (K (t) , L (t))� w(t) > 0,

↵p(t)F 0
1 (K (t) , L (t))� (r + �)<(t) +

.

<(t) > 0.

After price increase, producer needs to increase production to satisfy new dynamic optimization
condition (see appendix). Let p = market price, c = a reference price (e.g., retail price including
production cost, and profits of producer and middleman), i.e., a reference point parameter with
respect to which variation in p is the basis of producer’s decision making regarding production.

Wm = Change in production due to change in price,

A higher value of (p� c) provides producer an incentive to produce more. Therefore,

Wm / ↵(p� c), or

Wm = Ks(p� c). (46)

During market equilibrium, Wm = 0, which implies that

0 = Ks(ps � cs). (47)

Ks is the constant of proportionality; ps and cs are values in steady state equilibrium. Subtracting
eq. (47) from (46) gives the following expression:

Wm = Ks [(p� ps)� (c� cs)] = �Ks (C � P ) = �Ks", (48)

where Wm, C and P reflect deviation from initial equilibrium values, and hence have initial values
equal to zero.

6.3 Solution of the Model with a Consumption Tax

Eqs. (11a), (19) and (24) are reproduced as follows:

dP (t)

dt
= �KmW (t),

Wm(t) = �Ks"(t),

"(t) = C(t)� P (t),

Wd(t) = �KdP (t),

and

W (t) = Wm(t)�Wd(t),

in absence of an exogenous supply/demand shock. Above equations can be combined as given
below:
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dP (t)

dt
= �Km [Wm(t)�Wd(t)]

= �Km [�Ks"(t) +KdP (t)]

= �Km [�KsC(t) + (Ks +Kd)P (t)] .

After rearranging above expression, we get:

dP (t)

dt
+Km(Ks +Kd)P (t) = KmKsC(t). (49)

If an ad valorem consumption tax T is imposed on buyer, the market price the buyer will be paying
will be inclusive of the consumption tax, however, price consideration for producer’s decision making
regarding how much to produce will be the one before tax, i.e.,

"(t) = Tp(t)� P (t). (50)

This implies that

dP (t)

dt
= �Km [Ks {P (t)� Tp(t)}+KdP (t)] ,

dP (t)

dt
= �Km [Ks {P (t)� TP (t)� Tps}+KdP (t)] .

After rearranging, following expression is obtained:

dP (t)

dt
+Km {Ks(1� T ) +Kd}P (t) = KmKsTps. (51)

Characteristic function of above di↵erential equation is as given below:

x+Km {Ks(1� T ) +Kd} = 0.

Single root of characteristic function is given by:

x = �Km {Ks(1� T ) +Kd} ,

with the following complementary solution:

Pc(t) = C2e
�[Km{Ks(1�T )+Kd}]t.

Particular solution can be expressed as given below:

Pp(t) = C1.

Therefore, solution can be written in the following form:

P (t) = C1 + C2e
�[Km{Ks(1�T )+Kd}]t. (52)
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After substitution of above expression in the di↵erential equation, following equation is obtained:

�Km {Ks(1� T ) +Kd}C2e
�[Km{Ks(1�T )+Kd}]t +Km {Ks(1� T ) +Kd}C1+

Km {Ks(1� T ) +Kd}C2e
�[Km{Ks(1�T )+Kd}]t = KmKsTps,

C1 =
KsTps

{Ks(1� T ) +Kd}
.

Putting initial conditions, the value of C2 can be determined as given below:

P (0) =
KsTps

{Ks(1� T ) +Kd}
+ C2 = Tps,

C2 = Tps �
KsTps

{Ks(1� T ) +Kd}

=
KsTps �KsT

2
ps +KdTps �KsTps

{Ks(1� T ) +Kd}

=
(Kd �KsT )Tps

{Ks(1� T ) +Kd}
.

After putting values of C1 and C2 in eq. (52), we obtain the following expression:

P (t) =
KsTps

{Ks(1� T ) +Kd}
+

(Kd �KsT )Tps
{Ks(1� T ) +Kd}

e
�[Km{Ks(1�T )+Kd}]t. (53)

Initial conditions, i.e., t = 0, P (0) = Tps are being satisfied. When t = 1, P (1) = KsTps
{Ks(1�T )+Kd} ,

which is the final steady state equilibrium value. In final equilibrium, quantity demanded must
equal quantity supplied. This is verified as follows: From eq. (??), change in demand due to a
change in price after imposition of tax is as given below:

Wd(t) = �KdP (t),

or wnd(t)� wid(0) = �KdP (t),

where wid(0) is initial demand and wnd(t) is new demand after tax, because Wd(t) is a deviation
variable, i.e., deviation from initial equilibrium value. Similarly from eq. (48), for supply we have,

Wm(t) = �Ks"(t),

wnm(t)� wim(0) = �Ks [Tp(t)� P (t)] , or

wnm(t)� wim(0) = �Ks [TP (t) + Tps � P (t)] .

In final equilibrium
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wnm(1) = wnd(1), or

wim(0)�Ks [{T � 1}P (1) + Tps] = wid(0)�KdP (1),

which holds as in initial equilibrium, quantity demanded equals quantity supplied, i.e.

wim(0) = wid(0).

6.4 An Optimal Ad Valorem Tax

Deadweight loss due to imposition of a tax in post-tax equilibrium is the only e�ciency loss taken
into consideration in the existing literature for mathematical derivation of an optimal tax, however,
there is also loss of e�ciency during adjustment of market to final equilibrium after imposition of
tax. When a tax is imposed on goods, price jumps to initial price plus the amount of tax, and
gradually adjusts to bring final post-tax equilibrium in which price is higher than initial price and
less the one existing when tax was imposed depending on demand and supply schedules’ elasticities.
If inventory grows in size, it indicates that supply is higher than demand and vice versa. When
supply becomes equal to demand after adjustment of market, final equilibrium has arrived. During
adjustment due to supply and demand not being equal there is a loss of output/consumption.
Also, there is a lower level of production in post-tax equilibrium which implies that all resources
are not fully employed in final equilibrium and hence some e�ciency loss. By summing up total
consumption or production lost, total e�ciency loss can be computed and is as follows:

EL = �
1Z

0

Wd(t)dt = M(t)�
1Z

0

Wm(t)dt. (54)

For each unit of consumption/production in economy, e�ciency gain is as follows:

E�ciency gain = (willingness to pay � consumer price) + (tax ) +

(producer price � factors of production cost) + (factors of production cost � natural resources).

= willingness to pay � natural resources.

' willingness to pay.

Using above concept of e�ciency, loss in e�ciency in value terms due to imposition of tax is as
follows:

EL = �
1Z

0


1

2
{new price(t)� old equilibrium price(t)}+ {old equilibrium price(t)}

�
Wd(t)dt

= �
1Z

0


1

2
P (t) + ps

�
Wd(t)dt.
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Above expression can be written as given below:

EL =

1Z

0

KdP (t)


1

2
P (t) + ps

�
dt, (62a)

ps is the price in initial equilibrium. E�ciency loss in value terms gets minimized when it is
minimized in terms of quantity. Initial value of �Wd(t) is as follows: �Wd(0) = KdTps (i.e.,
decrease in demand due to tax at t = 0 from eq. (24)). Figure 3 illustrates that consumption
change jumps to KdTps, i.e., there is a decrease in demand due to imposition of tax at t = 0.
Demand is not equal to supply any longer, and market forces come into play. Price along with
demand adjusts over time until final equilibrium arrives, i.e., Wd(1). Shaded area in the figure is
the e�ciency loss, i.e., consumption lost during adjustment of market to final equilibrium. Area
between lines �Wd(t) = 0, and �Wd(t) = �Wd(1) is e�ciency loss due to a shift in equilibrium
due to tax. From eq. (??), change in demand due to change in price after imposition of tax is as
given below:

Wd(t) = �KdP (t),

or wnd(t)� wid(0) = �KdP (t),

wid(0) is initial value of demand and wnd(t) is the value after tax as Wd(t) is a deviation variable,
i.e. deviation from initial value. Tax revenue expression is as given below:

TR = Tp(t) [wid(0)�KdP (t)] . (55)

The problem of minimizing e�ciency loss subject to revenue constraint, i.e., tax revenue generated
is greater than or equal to G in a given time period, is as given below:

min
T

EL s.t. TR � G.

Tax rate is control variable with constraint being binding. No closed form solution exists, hence
numerical solution is found as given below:
Suppose the tax revenue target is $1000. With Km = Kd = Ks = 1, wid(0) = 100, and ps = 10, tax
revenue expression can be written as given below:

T [P (t) + 10] [100� P (t)] = 1000.

For t = 0, P (0) = Tps = 10T, we have the above expression as follows:

T [T + 1] [10� T ] = 10,

T (9T � T
2 + 10)� 10 = 0,

T
3 � 9T 2 � 10T + 10 = 0.

This implies that
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T = �1.556098, 0.648635, 9.907463.

As price has to be positive, T = �1.556098 gets overruled. Among other two values, expression
(62a) gets minimized for T = 0.648635. For t = 1, expression for tax revenue is as given below:

T [P (1) + 10] [100� P (1)] = 1000,

T


T

(2� T )
+ 1

� 
10� T

(2� T )

�
= 10,

T (20� 11T ) = 5(2� T ),

20T � 11T 2 � 10 + 5T = 0,

25T � 11T 2 � 10 = 0.

This implies that

T = 0.518115, 1.754612.

Expression (62a) for e�ciency loss is minimized for T = 0.518115. The optimal consumption tax
is that government initially imposes a tax T = 0.648635, and then gradually decreases it to a final
value of T = 0.518115.
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Figure 1: When is Linearity a Reasonable Assumption?
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Figure 2: Movement of Price with Inventory.
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Figure 3: Dynamic E¢ciency Loss because of an Ad Valorem Tax.
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