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This paper proposes a novel approach to analyzing multi-hop reasoning in language models through

Hamiltonian mechanics. We map reasoning chains in embedding spaces to Hamiltonian systems,

defining a function that balances reasoning progression (kinetic energy) against question relevance

(potential energy). Analyzing reasoning chains from a question-answering dataset reveals that valid

reasoning shows lower Hamiltonian energy values, representing an optimal trade-off between

information gathering and targeted answering. While our framework offers complex visualization and

quantification methods, the claimed ability to ”steer” or ”improve” reasoning algorithms requires

more rigorous empirical validation, as the connection between physical systems and reasoning

remains largely metaphorical. Nevertheless, our analysis reveals consistent geometric patterns

distinguishing valid reasoning, suggesting this physics-inspired approach offers promising

diagnostic tools and new perspectives on reasoning processes in large language models.

1. Introduction

1.1. Motivation for a physics-inspired approach

The scientific method integrates mathematical abstractions with empirical observations to advance our

understanding of natural laws[1]. Mathematical equations effectively encode physical processes[2],

creating abstract structures that humans can manipulate intellectually[3]. This approach generates

predictions from theoretical models that can be experimentally verified.
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The philosophical underpinnings include questions about abstract mathematical objects’ existence

beyond physical reality[4], how we acquire knowledge of abstract domains[5], and structural realism’s

claim that mathematical and physical structures correspond[6]. Universal structural realism proposes

that the physical universe maps directly to mathematical structures[7].

Physics’ success in mathematically modeling complex phenomena suggests similar approaches could

benefit artificial intelligence systems and cognitive science[8]. Mathematical models serve as powerful

tools for describing and predicting physical systems[9], capturing essential properties in forms suitable

for analysis and application[10]. The successes of physics-based formalisms in diverse fields[11][12] provide

a solid justification for exploring their relevance in AI systems, particularly in the assessment and

improvement of large language models’ reasoning capabilities[8][13]. Similar to how physicists apply

mathematical models to explain the behavior of elementary particles, quantum fields, and particle

states[14], we propose the use of analogous formalisms for understanding the dynamics of LLMs

reasoning within embedding spaces[15][16]. This physics-based methodology provides a robust

framework for analyzing LLMs complex reasoning, potentially yielding important advancements in the

discipline[17].

1.2. Background on multi-hop reasoning in AI

Multi-hop question-answering, where multiple facts are needed to derive an answer, is an important step

to perform complex reasoning and provide explanations for answers in Language Models, LLMs[18]. QA

provides a quantifiable and objective way to test the reasoning ability of intelligent systems. QA tasks

provide numerical metrics such as accuracy, F1 score, or mean reciprocal rank, allowing for precise

comparison between different AI systems. QA assignments generally have clearly defined correct

answers, hence reducing subjectivity in evaluation and minimizing human bias in assessment. QA

processes can be designed to evaluate several types of reasoning like deductive or inductive reasoning,

deriving conclusions from established premises, and abductive reasoning (formulating the most

plausible answer from partial knowledge)[19].

Recent developments using knowledge graphs struggle to model multi-hop relations efficiently and lack

transparency into the model’s prediction rationale[20]. For example, knowledge graphs (KGs) neglect the

latent relational information among question concepts and answers.[21]  suggested a hierarchy-aware

methodology that uses hierarchical structures in knowledge graphs to enhance comprehension and
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reasoning about complex questions, addressing the flaw of prior approaches that mostly emphasized

language models for context encoding. This method captures more complex interconnections between

concepts and facilitates a thorough understanding of semantic connections that may remain hidden in

simpler representations. Hierarchical architectures facilitate advanced reasoning patterns that mimic

human cognitive processes. It can more successfully address challenging questions requiring multi-step

or multi-level reasoning[22].

But we still have several challenges to improve reasoning processes. One of the most important

requirements is LLM interpretability and explainability[23]. The struggle in understanding the internal

reasoning process in LLMs, especially in deep neural networks, limits their real assessment and the

capability of generating human-understandable explanations for AI decisions and inferences[24][25].

Ensuring that reasoning processes are robust to slight variations in input or context, and developing

models that can generalize reasoning skills across different domains and types of questions is another

key target we must address to improve the reasoning process[26][27]. Without these efforts, we can’t

identify and correct biases in model’s reasoning to ensure fair reasoning across different demographic

groups or topic areas[28]. We have also some challenges in scaling up reasoning capabilities to handle

increasingly complex and multi-step problems and integrating updated external knowledge[29]. This is

important to enhance thinking processes where model has to take decisions with limited information.

[30][23]. Addressing ambiguity in natural language questions and contexts will be decisive for improving

the model’s reasoning abilities, as will the development of new metrics that overcome existing ones’

limits in capturing the nuances of complex reasoning. We must also deal with the reality of temporal and

causal thinking, particularly in the modeling and analysis of temporal sequences and causal

relationships[31]. Additional issues like ethical reasoning, adversarial attacks[32], long-term consistency,

and human-AI collaboration[33] will require substantial revision to develop effective reasoning models.

An further important roadblock in enhancing the model’s reasoning process is training data. Recent

multi-hop question answering datasets seek to address several shortcomings of earlier multi-hop QA

datasets[34][35][36][18]. These new datasets provide thorough elucidations of the reasoning process from

QA, improving deficiencies in existing datasets. They additionally provide ”evidence information” which

defines a reasoning pathway for multi-hop questions, adding comprehensive explanations for

predictions and simplifying model’s reasoning abilities evaluation[37][38]. Moreover, these datasets

address the issue noted in earlier versions, where several examples lacked the necessity for multi-hop
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reasoning, by using logical rules to generate questions that are both natural and require multi-hop

reasoning[39]. The mechanisms for generating question-answer pairs aim to guarantee both, the multi-

hop reasoning and the quality of the questions. These datasets may improve the development of more

transparent models in question answering and create a more rigorous standard for evaluating and

developing multi-hop QA systems.

2. Hamiltonian of dynamical systems

2.1. Brief review of Hamiltonian mechanics

The Hamiltonian formalism is an elaborated mathematical framework for the analysis of conservative

dynamical systems in classical mechanics. It should be noted that the majority of macroscopic physical

phenomena observed in ”classical” reality lack a Lagrangian description, thereby precluding a

Hamiltonian formulation. Such physical systems are predominantly dissipative in nature, characterized

by non-conservation of energy due to irreversible processes. The presence of symmetries, which

manifest as conserved quantities according to Noether’s theorem[40], can be rigorously derived from the

Lagrangian formalism (or its Hamiltonian counterpart), with the existence of such a formalism being a

necessary precondition. Fundamental physical theories have shown that nature’s elementary

interactions—gravitational, electromagnetic, strong nuclear, and weak nuclear forces—adhere to

conservation principles and consequently take Lagrangian descriptions, allowing their formulation via

the principle of stationary action. This formalism may be conceptualized as a geometric language

permeating multiple domains of theoretical physics[41], aligned with Hilbert’s proposition regarding the

fundamentally geometric structure of physical theory[42].

The application of Hamiltonian mechanics to language model reasoning in embedding spaces offers two

significant advantages. First, it provides a mathematically rigorous framework for characterizing the

evolution of semantic representations across high-dimensional manifolds, potentially revealing

conserved quantities in reasoning processes that may correspond to fundamental cognitive invariants

(symmetries). Second, the symplectic structure inherent in Hamiltonian systems[43]  enables the

identification of canonical transformations that preserve the fundamental dynamics of reasoning while

simplifying its analysis, potentially offering insights into the optimization of inferential pathways that

might otherwise remain unseen in standard approaches to natural language processing.

We can define Hamiltonian with the following   ordinary differential equations[44]:2n
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where    is the Hamiltonian,    and    are the position and momentum vectors of a

mechanical system with    degrees of freedom, and    is the time. In these equations    – an

open set in  ,  . Given the Lagrangian[45]

where   is the kinetic energy and   is the potential energy. We can rewrite this equation as

Equation 5 is the Euler-Lagrange equation describing the motions of the system, and is equivalent to the

Hamiltonian system[46]:

Hamiltonian equations can be rewritten as

The Hamiltonian formalism introduces the concept of phase space, a  -dimensional space where    is

the number of degrees of freedom. Each point in phase space represents a unique state of the system,

defined by its position and momentum coordinates  . The phase space of a Hamiltonian system is a

symplectic manifold, and Hamiltonian flows preserve the symplectic structure[43]. Symplectic structures

are fundamental geometric objects in differential geometry and classical mechanics[43]. These objects are

a framework for understanding the relationship between position and momentum in physical systems

using Hamiltonian equations of motion. We could say that symplectic structures are specific rules that

define how things move in physics, similar to an equation for motion. They help us grasp how items’

positions and velocities are related, allowing us to predict how things will evolve over time.

Formally, a symplectic structure on a smooth manifold    is a closed, non-degenerate 2-form  . This

structure on an even-dimensional manifold   satisfies two key properties[43]:

a. Closure:  , where   is the exterior derivative.

b. Non-degeneracy: For each point    in  , the map    from the tangent space    to its

dual is an isomorphism[43].

= , = −q̇ Hp ṗ Hq (1)

= (t, q,p), = − (t,p, q)q̇ i

∂H

∂pi
ṗ i

∂H

∂qi
(2)

H = H(t, q,p) q p

n t (t, q,p) ∈ O

× ×R
1

R
n

R
n and 1 < i < n

L = T − U (3)

T U

L = T (q, ) − U(q)q̇ (4)

( ) =
d

dt

∂L

∂q̇

∂L

∂q
(5)

H(q,p, t) = − L(q, , t)pT q̇ q̇ (6)

= H(q,p), = − H(q,p)q̇ ∇p ṗ ∇q (7)
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These structures allow for the definition of Poisson brackets and canonical transformations[44]. In local

coordinates  , a standard symplectic form can be written as  . In accordance with

Liouville’s theorem[47], these structures preserve phase space volume. while ensuring the conservation of

certain geometric properties under the flow of Hamiltonian vector fields.

Symplectic structures and Poisson brackets (explained in section 2.2) are fundamental tools from

classical mechanics that we can adapt to analyze reasoning paths in LLMs embedding spaces. By

mapping reasoning chains to trajectories in a symplectic space, we can use these frameworks to quantify

the “energy” and “dynamics” of cognitive processes, potentially uncovering underlying principles of

effective reasoning and guiding the development of more robust algorithms.

2.2. The Poisson bracket

The fundamental feature of Hamiltonian systems is the conservation of energy. In isolated systems, the

Hamiltonian system   remains constant over time, representing the “total energy” of the system:

where    denotes the Poisson bracket operator[48]. Many of the special properties of Hamiltonian

systems are formulated in terms of the Poisson bracket operator.

Let  ,  , and   be smooth functions from an open set   in  , the Poisson bracket of   and 

 is defined as[44]:

where   is a smooth map from   to  . We can verify that    is skew-symmetric and bilinear.

When    is independent of  , a critical point of    as a function represents an equilibrium point of the

Hamiltonian system’s differential equations.

2.3. Canonical transformations

Canonical transformations are a central component in Hamiltonian mechanics. Generalized canonical

transformations for generalized Hamiltonian systems transform one Hamiltonian system into another

while maintaining its original structure[49].

A set of transformations of  ,    and  , we say that is a canonical transformation for generalized

Hamiltonian systems if it transforms the time-varying generalized Hamiltonian system into another

( , )qi pi ω = d ∧ d∑i qi pi

H(q,p, t)

= + {H,H} = = 0
dH

dt

∂H

∂t

∂H

∂t
(8)

{, }

F G H O × ×R
1

R
n

R
n F

G

{F,G} = ∇ J∇G = −F T ∂F T

∂q

∂G

∂p

∂F T

∂p

∂G

∂q
(9)

{F,G} O R
1 {⋅, ⋅}

H t H

x y H
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one[49].

Figure 1. Canonical Transformations in Reasoning Space

Figure 1 illustrates the basic idea of canonical transformations used in our Hamiltonian model. The

composition has two phase plots: the “Original Space” on the left and the “Transformed Space” on the

right. The original space denotes the initial model. Elliptical trajectories indicate fluctuating rates of

change in states and momentum, while contour lines denote energy levels. The transformed framework

illustrates the identical system after a canonical transformation. Circular trajectories indicate a more

consistent advancement across states. Modified contour lines indicate a revised energy distribution. 

  correlates original reasoning states with new ones.    modifies the Hamiltonian

(total energy) by incorporating an additional term  . Finally,   transforms the momentum.

The green arrow in the illustration indicates the operation of the canonical transformation. The arrow

represents the transformation process from the original space (left plot) to the transformed space (right

plot). It illustrates the mapping of locations, trajectories, and energy levels from the original space to

their corresponding elements in the transformed space. The arrow’s smoothness indicates that the

transformation is continuous and clearly specified for all points within the reasoning space.

= Φ(x, t)x̄ (10)

= H(x, t) + U(x, t)H̄ (11)

= y + a(x, t)ȳ (12)

Φ(x, t) H(x, t) + U(x, t)

U(x, t) y + a(x, t)

qeios.com doi.org/10.32388/7OXUG3 7

https://www.qeios.com/
https://doi.org/10.32388/7OXUG3


3. A new framework for reasoning systems

3.1. Hamiltonian framework for reasoning

3.1.1. Defining the reasoning state space

In our correlation, we can represent reasoning states as vectors in a high-dimensional embedding

space[50]. This embedding space is derived from a pre-trained language model[51], capturing the semantic

content of each reasoning step. Formally, we define the reasoning state   as:

where   is the embedding function,   is the vocabulary of the language model (corpus), and 

 is the input text (e.g., a fact or question in the reasoning chain). The input text   is first tokenized

into a sequence of tokens    using a tokenizer  . Each token    is mapped to its

corresponding embedding vector  :

The model processes these token embeddings[52] through its layers (e.g., transformer layers) to produce

contextual embeddings:

where    are the contextual embeddings. Finally, we aggregate these contextual embeddings to

represent the entire input:

where   is an aggregation function[53], which could be mean pooling,

max pooling,   for each dimension  , or   token:   (assuming the first token is a

special [CLS] token).

3.1.2. Hamiltonian for reasoning chains

A reasoning chain can be represented as a sequence of states   where each  . We

define a Hamiltonian for reasoning   as:

q

q = E(x) ∈ R
d (13)

E : V → R
d V

x ∈ V ∗ x

( , , … , )t1 t2 tn T ti

ei

= ( ) ∈ei Etoken ti R
d (14)

( , , … , ) = model([ , , … , ])c1 c2 cn e1 e2 en (15)

∈ci R
d

q = A( , , … , )c1 c2 cn (16)

A

q = ( )
1

n
∑
i

ci (17)

= (qj maxi ci)j j [CLS] q = c1

Q = ( , , … , )q1 q2 qm ∈qi R
d

: × → RHR R
d

R
d
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where    represents the current state of reasoning, analogous to position in mechanical systems, and 

 represents the change in reasoning, corresponding to momentum[54]. The reasoning momentum   can

be defined as the difference between consecutive states  .    is the “kinetic” term

representing the cost of changing the reasoning state, and   is the “potential” term representing the

relevance or correctness of the current reasoning state. The notation   denotes a reasoning system. Note

that this equation is similar to Lagrangian equation already introduced. Although Lagrangian mechanics

is contained in Hamiltonian mechanics as a special case, “the Hamiltonian point of view allows us to

solve completely a series of mechanical problems which do not yield solutions by other means”[41]. The

kinetic term    can be understood as the cognitive effort or the computational cost associated with

changing the reasoning state[54]. We define this effort as:

where   is the magnitude of the change vector. This quadratic form is analogous to kinetic energy in

classical physics, penalizing large and sudden changes in reasoning. The term   represents the degree

to which the current reasoning state corresponds with the target question being addressed. A lower

potential energy indicates a more relevant or realistic state. We could define it as:

where    is a similarity function like cosine similarity[55], and    is the embedding of the desired

answer or goal state.

 and   are represented as two non-zero vectors in an inner product space. The reasoning phase space 

  inherits the symplectic structure discussed earlier. This implies that our reasoning Hamiltonian

will preserve certain geometric properties as it evolves, analogous to the conservation of phase space

volume in dynamical systems[56]. Then, we can apply canonical transformations to our reasoning

Hamiltonian  , allowing us to change variables while preserving the fundamental structure of the

system[57]. We can write this transformation as:

(q,p) = T (p) − V (q)HR (18)

q

p p

= −pi qi+1 qi T (p)

V (q)

R

T (p)

T (p) = ∥p
1

2
∥2 (19)

∥p∥

V (q)

V (q) = −sim(q, )qd (20)

sim(⋅, ⋅) qd

sim( , ) =q ⃗ q ⃗ d
⋅q ⃗  q ⃗ d

∥ ∥∥ ∥q ⃗  q ⃗ d
(21)

q ⃗  q ⃗ d

(q,p)

(q,p)HR

x̄

H̄R

ȳ

= Φ(x, t)

= (x, t) + U(x, t)HR

= y + a(x, t)

(22)

(23)

(24)
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where    represents our original phase space variables  , and    represents the transformed

variables.    is the transformed Hamiltonian, and    is a generating function for the

transformation.

A special case in Hamiltonian systems is when we represent them in a two dimensional space (

). The importance of recognizing a system as Hamiltonian lies in the ability to build

the phase view without requiring a solution to the system[58]. Assuming that    is not constant on any

open set, we proceed with drawing the level curves  . Solutions lie on these level sets,

with trajectory orientations determined directly by the vector field. It is important to note that the

equilibrium points of a Hamiltonian system are located at the critical points of  , namely at the places

where both partial derivatives of   equal zero.

Figure 2. Phase plots for focused and multi-concept reasoning in a two-dimensional Hamiltonian system

Figure 2 illustrates a phase plot for a reasoning system, with the  -axis denoting the current state of

reasoning, similar to position in mechanical systems, and the  -axis indicating the change in reasoning,

analogous to momentum. The contour lines denote the energy levels associated with reasoning. The blue

lines illustrate potential reasoning paths and the evolution of reasoning over time within the phase space.

The blue dots indicate stable states or key concepts. Figure 2.1 illustrates a focused problem-solving

x (q,p) ( , )x̄ ȳ

H̄R U(x, t)

: × → RHR R
2

R
2

H

H(q,p) = constant

H

H

q

p
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approach, characterized by tighter orbits around a singular concept, reflecting a concentrated emphasis

on a single concept. Figure 2.2 illustrates a multi-concept reasoning framework, illustrating a larger orbit

that includes several key concepts, thereby representing the integration of multiple reasoning levels.

In the context of our reasoning system, these transformations allow us to change the representation of

our reasoning state while preserving the fundamental structure of the system. It also introduces new

variables that may provide insights into the reasoning process, simplifying the analysis of the reasoning

dynamics by choosing appropriate transformations. For example, we can use a transformation to move

from a word embedding space to a more abstract concept space, or to focus on particular aspects of the

reasoning process. The ability to perform these transformations, while maintaining the canonical

structure of our Hamiltonian, is key for the flexibility and capability of this approach. Then, we can

analyze the reasoning process from multiple perspectives and at different levels of abstraction, all within

the same theoretical framework. The geometry of this embedding space is important for understanding

reasoning dynamics[59] and will be presented in section 3.2.

3.1.3. Calculation of Hamiltonian energies for reasoning

We assume an optimal reasoning process in which the total energy   remains invariant. This implies a

trade-off between exploration (high  , low  ) and exploitation (low  , high  ) during the reasoning

process. This trade-off is analogous to key principles in reinforcement learning and statistical physics. In

RL, it proves as the balance between trying new actions (exploration) and leveraging known good

strategies (exploitation) [60]. In physical systems, it appears in phenomena like simulated annealing [61],

where high temperatures allow broad exploration of state space, while low temperatures exploit known

low-energy configurations. Our Hamiltonian formulation provides a rigorous mathematical framework

for analyzing this trade-off in reasoning processes, potentially leading to new insights into optimal

reasoning strategies and their connections to learning and physical systems. A practical application of

this trade-off in reasoning processes would be to explicitly define   and   in terms of exploration

and exploitation measures in our reasoning space. Therefore, we can analyze how different reasoning

strategies balance   and   over time to find successful reasoning chains with a particular   ratio or

evolution pattern. We can explore associations with Reinforcement Learning algorithms, potentially

adapting approaches such as Thompson sampling  [62], or intrinsic motivation  [63], to guide reasoning

processes. It will be very stimulating to consider quantum analogies, where “superposition” could

represent simultaneous exploration of multiple reasoning paths [64].

HR

T V T V

T (p) V (q)

T V T/V
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To calculate the Hamiltonian energies for each reasoning chain, we follow these steps:

a. Embed each fact and question in the reasoning chain using the embedding function  .

b. Calculate   as the difference between consecutive reasoning states.

c. Compute   and  .

d. Calculate the total Hamiltonian energy  .

We perform these calculations for each step in the reasoning chain, allowing us to analyze the energy

profile of the complete reasoning process.

3.2. Geometric analysis of reasoning trajectories

The application of differential geometry to reasoning trajectories offers a robust framework for studying

the structure and attributes of cognitive processes. By conceptualizing reasoning paths as curves within

a high-dimensional space, we can apply mathematical tools from differential geometry to measure and

describe the properties of these paths  [65]. With this approach we can move beyond simple distance

metrics in embedding spaces and consider the intrinsic geometry of reasoning trajectories.

3.2.1. Differential geometry in cognitive spaces

As we have already introduced, our framework considers reasoning processes as paths    in a high-

dimensional manifold  , which represents the space of possible cognitive states. This manifold is

provided with a metric  , which defines distances and angles in the cognitive space  [66]. The metric

captures the semantic similarity between different cognitive states and can be derived from embedding

models such as BERT or GPT  [51]. The tangent vector    at each point represents the immediate

direction and velocity of reasoning, while higher-order derivatives capture how this direction changes

over time. With this geometric approach we can analyze both the content and the dynamics of reasoning

processes.

3.2.2. Trajectories’ curvature and cognitive flexibility

One of the key geometric properties we can analyze is the curvature of reasoning trajectories. For a curve 

, the curvature   at a point is given by:

E

p = −qt+1 qt

T (p) V (q)

HR

γ(t)

M

g

(t)γ ′

γ(t) κ

κ =
| (t) × (t)|γ ′′ γ ′

| (t)γ ′ |3
(25)
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where   denotes the cross product and   the magnitude[67]. In the context of reasoning, curvature can

be interpreted as a measure of “cognitive flexibility” or the rate at which the direction of reasoning chain

evolves. High curvature indicates rapid shifts in reasoning direction, potentially representing moments

of insight or even the integration of diverse ideas. Low curvature suggests more linear, focused

reasoning[68].

3.2.3. Frenet-Serret framework and multi-aspect reasoning

The Frenet-Serret theorems provide mathematical measurements for turning and twisting a curve in  .

Let   be a unit speed curve with curvature   and torsion  [67]

,  , and   are the tangent, normal, and bi-normal unit vectors.   is the unit tangent vector field

of  , and has a constant length of 1. Thus, its derivative   measures how the curve is turning.   is

the principal vector field of  , and   is the bi-normal vector field of   (figure 3).

Figure 3. Representation of curvature with Frenet frame field.

In our framework,   represents the current direction of reasoning,   indicates the primary direction of

change in reasoning,   captures secondary changes orthogonal to both   and  , and   quantifies how

× | ⋅ |

R
3

β : I → R
3 κ > 0 τ

(t) = κ(t)N(t)T ′ (26)

(t) = −κ(t)T (t) + τ(t)B(t)N ′ (27)

(t) = −τ(t)N(t)B′ (28)

T N B T = β ′

β =T ′ β ′′ N

β B = T × N β

T N

B T N τ
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the osculating plane (spanned by    and  ) changes along the curve (Figure 3). Consequently, we can

analyze not just the “bendiness” of a reasoning path, but also how it twists in the high-dimensional

concept space, providing insights into multi-aspect reasoning processes.

Figure 2.1 illustrates the progression of a reasoning chain from an initial point, altering its trajectory as

new elements are evaluated, potentially diverging into secondary issues, all while preserving the

geometric connections defined by the Frenet-Serret framework. The Frenet frame offers a more natural

method to visualize and understand complex reasoning processes in LLMs. High curvature or torsion

points in reasoning processes may represent critical choice points or insights, facilitating targeted

interventions or optimizations. Different reasoning processes may be geometrically contrasted, thereby

facilitating the identification of more efficient or successful methods.

Consider a large e-commerce company deploying an AI-driven customer attention chat-bot. With this

framework to analyze the chat-bot’s reasoning processes, the organization could identofy client

interactions, with each interaction represented as a curve within the reasoning space (Figure 4). We can

get insights about the current direction of reasoning,  , identify shifts in topic during conversation, 

, or unforeseen situations during the conversation,  . The curvature,  , would show the rate at

which the discussion is altering direction, while the torsion,  , would indicate the conversational

framework is evolving (Figure 4). Geometric analysis enables identifying optimal low-curvature

trajectories for common inquiries, while recognizing when high curvature is necessary for complex

problems requiring strategic shifts.

T N

T (s)

N(s) B(s) κ

τ
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Figure 4. Representation of curvature for a large e-commerce company chatbot example.

Torsion analysis can be used to prepare the chat-bot for complex, multi-concept challenges (Figure 2). In

summary, Frenet frames enable assessment of successful interactions, identification of ideal geometric

patterns, and implementation of real-time dialogue analysis to dynamically adapt chat-bot strategies.

3.2.4. Arbitrary speed curves

Given a regular curve    with speed function  , we can calculate its velocity and

acceleration[67] as:

where   is the tangent to the curve, and   is the curvature in Frenet frame. This equation has two parts: 

 is a tangential component and measures the rate of change of  , and   is the normal that points

perpendicular to motion. The normal is a vector that represents a force acting at a 90-degree angle to the

axis of motion, which does not alter the object’s velocity in the direction of its original motion. According

β : I → R
3 v

= vTβ ′ (29)

= T + κ Nβ ′′ dv

dt
v2 (30)

T κ

Tdv

dt
β ′ κ Nv2
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to Newton’s laws of motion, this normal will create an angle such that a part of its velocity is now aligned

with the normal direction. The two components combine to generate diagonal velocity at an angle

dependent upon the magnitude of the applied force.

Figure 5. Velocity, acceleration and trajectory angle in a curve using Frenet frame.

In the context of reasoning, the velocity of reasoning defines a “magnitude”. A higher magnitude implies

swifter transitions between ideas, whereas a smaller magnitude denotes a more gradual progression.

This magnitude likewise represents the “distance” between successive concepts in reasoning. Large

magnitude values represent substantial leaps between divergent ideas, whereas small magnitude values

represent a progressive evolution between closely related ideas. Acceleration in reasoning represents the

changes in velocity over time. An increase in acceleration suggests an intense rate of ideation in problem-

solving, while a decrease in acceleration indicates a deliberate deceleration to concentrate on particular

elements.
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In Frenet frame, the trajectory angle   can be seen as the angle between the tangent vector   and a fixed

reference direction (Figure 5). This angle changes as the curve evolves, reflecting changes in reasoning

process direction. The rate of change   is correlated with the curvature  . The term   represents the

normal component of acceleration, which is responsible for changing the direction of velocity. We can

define the trajectory angle   as

This equation links the angular rate of change with the trajectory’s curvature, velocity and magnitude. A

high magnitude could indicate creative, divergent thinking processes[69], while decreasing magnitude

over time could represent a convergence towards a solution or conclusion[70]. Sudden large magnitude

transitions could correspond to moments of insight or breakthrough in problem-solving[71], while

consistent, moderate magnitude transitions could indicate systematic, analytical thinking[72].

Understanding these dynamics can help in analyzing and potentially optimizing reasoning processes in

both human cognition and language models. A model fine-tuned for creative work could be optimized

for rapid transitions, whereas one built for analytical tasks can be tuned for steady, measured

progressions. Cognitive processes can be viewed as continuous trajectories in state spaces[73]. The

trajectory angle   could represent the current direction of reasoning in the conceptual space. Changes in 

  indicate shifts in the focus or approach of the reasoning process. For example, sudden changes in 

 might correspond to creative leaps or relevant insights[74],meanwhile slow, steady changes in   could

represent methodical and analytical reasoning[75]. Magnitude represents the rate of concept progression

through the model, whereas   denotes the trajectory. In combination, they offer a more comprehensive

understanding of the trajectory of reasoning.

3.3. Symmetry and conservation laws in reasoning processes

The connection between symmetry and conservation, first formalized by Emmy Noether in 1918[40],

reveals deep insights into the nature of invariances in physical systems. Our analysis of reasoning

trajectories through the lens of Hamiltonian mechanics and Lie group theory highlights how conserved

quantities emerge from system symmetries[41]. In classical physics, the invariance of physical laws under

time translations leads to energy conservation, just as we find analogous conserved quantities in our

reasoning space.

θ T

dθ κ κ Nv2

θ

= κv
dθ

dt
(31)

θ

θ

θ θ

θ
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A symmetry can be described as a transition that preserves certain properties of a system[41]. For a simple

example, consider rotating a perfect circle 90º; it remains the same afterward. Mathematically, a group

action on a set   is defined as a function

and is a symmetry group if its group action   preserves the structure on  , that is, leaves   invariant.

For example, a square   has rotational symmetry   - it looks the same after rotating 90 degrees. But

the concept of symmetry expanded beyond geometric shapes. It became about transformations that

preserved particular properties, even in more complex abstract spaces like embedding spaces. Many

natural laws are symmetrical. For example, the laws of physics apply the same sense regardless of where

we are in space (implying translational symmetry), or the direction we take (rotational symmetry). A Lie

group    is a continuous transformation group that is also a differentiable manifold[57], with the group

operations being differentiable maps. A symmetry   can be defined as

where  ,    and    is called generator. Lie groups give a language for describing and

analyzing continuous symmetries with precision[76].

As said, Noether’s theorem[40] defines an important connection between symmetries and conservation

laws in physics. For any continuous symmetry in a physical system, there exists a corresponding

conserved quantity that remains invariant across time. A symmetry implies an invariant system property

under a transformation. For instance, running an experiment today or tomorrow (temporal translation)

will provide consistent physical laws. A conserved quantity is the property that remains unchanged while

a system evolves. The invariance of physical theories about spatial and temporal transformations results

in conservation laws, including the conservation of momentum and energy in the universe. Noether’s

theorem addresses the deep connection in nature: the symmetries observed in the world are closely

linked to the conserved quantities in the transformation of physical systems. In other words, for each

symmetry identified in an embedding space, there must be a corresponding conserved quantity in this

space. The canonical transformations we applied to our reasoning trajectories, transforming from the

original phase space to action-angle variables, unveil that while the “energy” (action) of reasoning

processes tends to be conserved, the “phase” (angle) varies. This mirrors the behavior of classical

mechanical systems and suggests that effective reasoning maintains a consistent level of complexity or

engagement while exploring different cognitive directions. Our approach uses a Hamiltonian   for

X

Φ : G × X → X (32)

Φ X X

(X) (G)

G

S

S(t) = exp(t )Xa (33)

S(t) ∈ G t ∈ R Xa

(q,p)HR

qeios.com doi.org/10.32388/7OXUG3 18

https://www.qeios.com/
https://doi.org/10.32388/7OXUG3


reasoning, where    represents the current state of reasoning and    the change in reasoning. This

Hamiltonian system is analogous to those in classical mechanics, but is applied to abstract reasoning

spaces. The Hamiltonian evolution along reasoning trajectories can be represented as:

It provides a mathematical description of how reasoning processes unfold in our abstract space. The

analysis of trajectory properties, such as curvature    and torsion  , provides quantitative measures of

symmetries in reasoning patterns, offering insights into the “cognitive flexibility” of reasoning

processes.

where  ,  , and   are the tangent, normal, and bi-normal vectors of the Frenet-Serret frame.

4. Methodology

4.1. Dataset description

We used the OpenBookQA (OBQA) dataset for our research, which provides a standard to assess the

question answering and reasoning abilities of AI systems. The OBQA dataset was presented by Mihaylov

et al.[77]  in their research on open-book question answering. It was developed to evaluate AI systems’

capacity to respond to inquiries necessitating the integration of information from a specified text corpus

with general knowledge. The dataset emulates open-book examinations, wherein a limited collection of

fundamental facts is supplied, requiring the integration of this information with general knowledge to

respond to questions. The dataset centers on elementary science topics, being appropriate for assessing

factual memory and reasoning skills. The dataset has been built to create difficulties for contemporary

foundation models (synthesis of retrieval, reasoning, and common sense comprehension).

The OBQA dataset contains 5,957 multiple-choice questions (4,957 for training, 500 for testing), each with

four options and one correct answer. Questions require multi-step reasoning that combines provided

facts with general knowledge. Unlike other datasets, OBQA doesn’t include explanations or reasoning

q p

=
dq

dt

∂HR

∂p
(34)

= −
dp

dt

∂HR

∂q
(35)

κ τ

κ =
∥ ∥T ′

∥ ∥T ′
(36)

τ =
−B ⋅ (N )N ′

∥N × ∥N ′
(37)

T N B
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chains, making it ideal for testing explanation generation models. Questions span various reasoning

types including causation, purpose, and property attribution. Our experiment focuses on generating and

annotating reasoning chains for the 500 test questions using the QASC corpus and our proposed

technique.

4.2. Implementing the Hamiltonian framework for NLP

4.2.1. Embedding representation

We use a BERT-based model to analyze and build reasoning chains. BERT (Bidirectional Encoder

Representations from Transformers), developed by Devlin et al.[51], is a transformer-based methodology

for natural language processing. We selected BERT due to its exceptional performance in several NLP

tasks, such as question answering and natural language inference. Our BERT-based model is optimized

for the task of recognizing valid reasoning chains. The system accepts a question, an answer, and a

proposed reasoning chain, subsequently producing a score that reflects the chain’s validity. The

architecture of the model comprises a BERT-base-uncased model serves as the primary encoder and a

specialized layer above BERT for binary classification (valid/invalid chain). Input formatting that

amalgamates the question, answer, and reasoning chain sentences, delineated by [SEP] tokens. We

incorporate the OBQA dataset with our BERT-based model and the QASC corpus to create a framework

that enables both question answering and the generation and assessment of explanations for those

answers, thereby addressing the problem of explainable AI in multi-hop reasoning tasks.

4.2.2. Basic concepts

Our implementation allows us to apply Hamiltonian framework to discrete linguistic elements. Each step

in a reasoning chain is treated as a discrete point in our continuous embedding space, forming a

trajectory that can be analyzed using our framework. We can define the basic elements in our

Hamiltonian framework as follows:

a. Position ( ): Represented by the BERT embedding of each fact or question in the reasoning chain.

b. Momentum ( ): Calculated as the difference between consecutive embeddings in the chain.

c. Kinetic Energy ( ): Defined as the squared magnitude of the momentum, representing the “cost” of

transitioning between reasoning states.

q

p

T
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d. Potential Energy ( ): Computed using the cosine similarity between the current state and the

question embedding, representing the relevance of the current reasoning step to the overall

question.

e. Hamiltonian Energy ( ): Calculated as  , balancing the progression of reasoning against its

relevance.

4.3. Analytical approaches

4.3.1. Energy analysis

We aim to distinguish the distribution of Hamiltonian energy across valid and invalid reasoning chains.

This analysis is based on the principle that the Hamiltonian,  , represents the total “energy”

of a reasoning process[78]. We use several statistical measures and visualizations to identify patterns that

represent effective reasoning.

4.3.2. Trajectory analysis

We apply Principal Component Analysis (PCA) to reduce the dimensionality of BERT embeddings,

allowing for both visualization and analysis of reasoning trajectories[79]. We formalize these trajectories

using geometric properties derived from differential geometry[66]:

a. Magnitude,  : Representing the “velocity” of cognitive advancement.

b. Angle,  : Indicating changes in reasoning direction.

c. Curvature,  : Quantifying the rate of change in trajectory direction.

d. Torsion,  : Measuring how the trajectory twists in three-dimensional space.

These properties provide insights into the dynamics of reasoning processes and how they differ between

valid and invalid chains.

4.3.3. Conservation laws

Using the basic idea of Noether’s theorem[40], we explore whether quantities analogous to conserved

physical quantities emerge in our reasoning trajectories. We analyze the conservation of certain

combinations of trajectory properties across reasoning steps, which could indicate underlying

symmetries in the reasoning process.

V

HR T − V

= T − VHR

v

θ

κ

τ
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4.3.4. Canonical transformations

We explore alternative representations of reasoning dynamics through transformations inspired by

classical mechanics[57]. By mapping our original phase space   to new coordinates (e.g., action-angle

variables), we aim to unveil hidden patterns and invariants in the reasoning process.

4.4. Experimental setup

The analysis of the reasoning chains uses a synthesis of natural language processing methodologies

together with Hamiltonian-inspired calculations. Our methodology primarily involves utilizing BERT

(Bidirectional Encoder Representations from Transformers) to generate significant representations of

reasoning states.

a. We use a pre-trained BERT model (bert-base-uncased) to produce embeddings for each element of

the reasoning chains[51]. For every fact and inquiry in a reasoning sequence, we derive a high-

dimensional vector representation utilizing BERT’s last hidden layer. These embeddings

encapsulate the semantic essence of each reasoning step in a mathematically analyzable format.

b. We compute Hamiltonian energies for each reasoning chain utilizing BERT embeddings. In our

Hamiltonian  ,    denotes the existing state of reasoning (BERT embedding of a fact), and 

  denotes the variation in reasoning (the difference between consecutive BERT embeddings). The

potential term is computed using the cosine similarity between   and the question embedding. We

analyze the distribution of Hamiltonian energy in valid versus invalid reasoning chains. We use

different statistical analyses and visual representations to identify effective reasoning energy

patterns.

c. We apply Principal Component Analysis (PCA) to reduce the dimensionality of the BERT

embeddings for the purpose of visualization of the analysis of trajectories in embedding space. We

analyze the characteristics of these trajectories, including length, smoothness, curvature, and

torsion inside the restricted space. We calculate the geometric characteristics of the trajectories

within the BERT embedding space:

i. Magnitude,  : Indicating the “velocity” of cognitive advancement.

1. Angle  : Signifying alterations in the trajectory of reasoning.

2. Curvature,  : Assessing the rate of alteration in the trajectory of reasoning.

(q,p)

HR q

p

q

v

θ

κ
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5. Results

Our BERT-based model, fine-tuned for the goal of recognizing valid reasoning chains, has shown strong

performance in discerning between valid and invalid chains. The differentiation between valid and

invalid chains can be seen in figure 6.

5.1. Hamiltonian framework

Figure 6. Energies of trajectories for the sample chains within the OBQA dataset. Valid chains (green), invalid

chains (red).

The main reasoning chains (figure 6) are grouped within an energy range from -9.5 to -9.0. This implies

that most reasoning processes (valid and invalid) operate in a rather small energy range. The distinction

in energy levels between valid and invalid chains appears ambiguous, which is remarkable and

somewhat paradoxical. The prevalence of high-energy outliers predominantly within invalid chains may

suggest that highly “energetic” or complex reasoning processes are more susceptible to errors or

incorrect results. In contrast, very low-energy outliers correspond mainly to invalid chains, indicating

oversimplified or short thinking.
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These significant energy states appear to be mostly linked to invalid chains. The generally stable energy

band across chain indices indicates that the energy of a reasoning chain is not much influenced by its

particular content or length, but rather by intrinsic characteristics of the reasoning process.

Figure 7: Distribution of Hamiltonian energy in valid and invalid chains within the OBQA dataset.

Hamiltonian energy (top left); kinetic vs. potential energy (top right); Hamiltonian energy valid/invalid chains

(bottom left); energy conservation score (bottom left).
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Distribution of Hamiltonian energies

Average Energy Conservation Score 0.019

Correlation between Energy Conservation and Validity -0.189

t-test for difference in Hamiltonian Energy

t-statistic: -6.5304

p-value: 0.0001

Table 1. Energy conservation scores and Hamiltonian energy

The Hamiltonian-inspired energy framework for analyzing reasoning chains shows several key insights

into cognitive processes (Figure 7). The energy distribution across chains shows a consistent pattern,

suggesting a fundamental stability in reasoning regardless of content. There is a clear correlation

between kinetic and potential energy, indicating that as reasoning becomes more dynamic, it also tends

to involve deeper or more complex concepts.

Valid reasoning chains generally show higher energy levels and more variability compared to invalid

chains. Sound logical reasoning often demands deeper cognitive engagement, though our framework

reveals multiple valid pathways with distinct energy signatures.

Energy conservation within chains appears to be a common feature, implying that effective reasoning

maintains a balance between introducing new ideas and making logical connections. Interestingly,

invalid chains mainly show lower energy profiles, which may indicate the use of cognitive shortcuts or

simplistic associations.

The framework’s ability to differentiate between valid and invalid reasoning chains based on energy

levels offers promising applications in assessing LLMs logical processes. Moreover, statistical analysis

confirms significant differences in the energy patterns of valid versus invalid chains.

This approach reveals parallels between cognitive and physical systems through shared energetic

principles. Viewing reasoning as a physical process offers fresh insights into logical thinking and may

unlock new ways to understand cognitive mechanisms.
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Figure 8. Distribution of energy conservation score for the sample chains within the OBQA dataset.

Energy Conservation Scores measure the extent to which the total energy of a reasoning chain is

maintained along its trajectory. These scores are generally obtained from the balance between kinetic

energy (indicating “movement” or shifts in reasoning) and potential energy (depth or complexity of the

concepts involved). The distribution is approximately normal, with a small right skew. Figure 8 illustrates

the distribution of Energy Conservation Scores for reasoning chains. Main results range between 0.018

and 0.022, showing a moderate level of energy saving in common reasoning chains. The complete scores

range from approximately 0.010 to 0.032, indicating diversity in the energy chain’s conservation value.

The peak of the distribution indicates the optimal or significant level of energy conservation in cognitive

operations. A limited number of chains show either very low or very high conservation scores,

potentially indicating irregular or limit reasoning patterns. Within our framework, this distribution

suggests that most reasoning chains achieve a balance between energy change and conservation, but

certain chains show deeper patterns of energy dynamics throughout the reasoning process.

Figure 9 shows energy distributions for valid and invalid reasoning chains. Both distributions overlap

significantly and center between -9.8 and -9.5, but with key differences. Valid trajectories (green) form a

narrower, taller distribution, indicating more consistent energy profiles. Invalid trajectories (red) spread

more widely with extended tails at both energy extremes, suggesting that both overly simple (low-
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energy) and highly complex (high-energy) reasoning can lead to incorrect conclusions. This overlap

demonstrates that energy alone cannot definitively determine reasoning validity, highlighting the need

for additional assessment criteria.

Figure 9. Distribution of trajectory energies for valid (green)and invalid chains (red).

Figure 10. Distribution of Hamiltonian energy. Valid chains (blue) and invalid chains (red).
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Figure 10 shows the distribution of refined Hamiltonian energy, suggesting that valid chains generally

mainly show lower energy states, centering between -60 and -70, while invalid chains show a broader

spectrum of energies, reaching higher values. The average energy for valid chains is significantly lower

than that of invalid chains. These findings indicate that valid reasoning is characterized by maintaining

lower overall energy levels, suggesting an equilibrium between cognitive efficiency and thoroughness in

valid reasoning processes. Invalid reasoning tends to involve a broader range of energy levels and rates of

change, possibly suggesting less consistent or less efficient cognitive processes.

The Frenet-Serret framework is particularly interesting, as we have already highlighted, because it allows

analyzing trajectories geometrically without being dependent on the particular embedding. This is

important when working with high-dimensional data that has been reduced to lower dimensions. This

framework offers a way to measure the patterns in which reasoning paths twist and curve in abstract

space, therefore revealing significant differences between reasoning processes that are valid and invalid.
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Figure 11. Reasoning Trajectories in PCA space using Frenet framework: valid (green) vs invalid chains (red).

The PCA space representation of the Frenet-framed reasoning trajectories in Figure 11 shows complex

patterns of both valid and invalid chains. Although there appears to be some differences between the two

groups based on visual assessment, the statistical tests offer more detailed information. There is a slight

overall difference between valid and invalid trajectories across the three PCA dimensions, according to

the MANOVA test with a p-value of 0.0830[80]. According to individual t-tests for each dimension, PCA1

shows a trend toward significance (p = 0.0800), but PCA3 shows clear statistically significant differences

(p-value = 0.0496). Although the individual effect sizes of these dimensions are not significant with

Cohen’s values ranging from 0.0476 to 0.2134[81], high accuracy from the logistic regression model’s

(90.48%) in classifying chains based on their PCA coordinates suggests the combined discriminatory
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potential of these dimensions. Specifically, there appear to be different geometric properties between

reasoning paths that are valid and invalid based on the difference in trajectory lengths (p = 0.0390).

Together, these results show that, although no single geometric feature can characterize valid and invalid

reasoning processes, the combination of Frenet-frame derived properties in lower dimensional space

opens a promising way to explore.

Figure 12. Reasoning trajectories evolution trough reasoning process for the first 10 chains within the OBQA

dataset.
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Statistical analysis of reasoning trajectories

MANOVA test   Multivariate lineal model

Intercept Value   Num DF   Den DF   F Value   Pr > F

Wilks’ lambda 0.9954   3.00   994.00   1.5475   0.2006

Pillai’s trace 0.0046   3.00   994.00   1.5475   0.2006

Hotelling-Lawley trace 0.0047   3.00   994.00   1.5475   0.2006

Roy’s greatest root 0.0047   3.00   994.00   1.5475   0.2006

is_valid Value   Num DF   Den DF   F Value   Pr > F

Wilks’ lambda 0.9933   3.00   994.00   2.2313   0.0830

Pillai’s trace 0.0067   3.00   994.00   2.2313   0.0830

Hotelling-Lawley trace 0.0067   3.00   994.00   2.2313   0.0830

Roy’s greatest root 0.0067   3.00   994.00   2.2313   0.0830

t-test for PCA1 t-statistic   1.7552   p-value   0.0800

t-test for PCA2 t-statistic   0.4261   p-value   0.6701

t-test for PCA3 t-statistic   1.9655   p-value   0.0496

Logistic Regression Accuracy   0.9048

Cohen’s d for PCA1 0.2006

Cohen’s d for PCA2 0.0476

Cohen’s d for PCA3 0.2134

t-test trajectory lenghts t-statistic   -2.0666   p-value   0.0390

Table 2. Statistical analysis of reasoning trajectories: MANOVA, PCA, and geometric properties

Figure 12 illustrates the Hamiltonian evolution along reasoning paths. It shows a tangible representation

of the temporal variations in the “energy” of cognitive reasoning processes, illustrating how different
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reasoning sequences (both valid and invalid) may exhibit divergent patterns of Hamiltonian evolution.

Some trajectories have a more accelerated growth in Hamiltonian value, suggesting more complex

reasoning processes.

Figure 13. Canonical transformations in embedding space of valid vs invalid chains. Original phase space

(left), two-dimensional action-phase space (center), and three-dimensional action phase space (right).

Figure 13 illustrates the analysis of reasoning paths with the canonical transformations. This approach

creates new coordinates  , or action-angle variables, by mapping the original phase space

coordinates    to new coordinates. Regarding reasoning paths,    and    can be understood as

generalized location and momentum in the cognitive space, representing the reasoning process’s present

state and rate of change, respectively. The conversion to action-angle variables offers an alternative

viewpoint on reasoning dynamics. Similar to energy in physical systems, the action variable   measures

the total intensity or complexity of the thought process. It is almost constant along a trajectory,

indicating that cognitive resources are conserved or that the degree of engagement is maintained

throughout the reasoning activity. Conversely, the phase or direction of reasoning is represented by the

angle variable  , which captures how the approach or focus changes over time.

We can observe in Figure 13 that for both valid and invalid chains, there are complex, nonlinear

trajectories in the Original Phase Space. The paths seem to mix, indicating that it is difficult to discern

between valid and invalid reasoning in this representation. A strange pattern emerges from the Action-

Angle Space: most trajectories are horizontal lines, suggesting that the action    is mostly constant

while the angle   fluctuates. This implies that while the “phase” or direction of reasoning changes with

time, the “energy” of reasoning processes tends to be conserved. This trend is further highlighted by the

(I, θ)

(q,p) q p

I

θ
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three-dimensional action-angle space, which shows trajectories that mostly rotate around the Action

axis. While keeping action values generally constant, the illustration emphasizes the angle variable’s

periodic nature.

Quantitatively, we find that the mean action of invalid chains is higher (253.4054) than that of valid

chains (229.8741). The statistical significance of this difference (t-statistic = -2.5152, p-value = 0.0121)

suggests that reasoning processes that are deemed invalid typically have greater “energy” or complexity.

Nonetheless, there is little statistically significant difference in the mean angle ranges of the valid (3.3961)

and non-valid (3.3409) chains (t-statistic = 1.1158, p-value = 0.2648). This implies that the variety of

“phases” or directions that reasoning processes, whether correct or invalid, traverse in their trajectories

is comparable.

These results suggest that, although the reasoning directions covered by valid and non-valid chains may

be similar, the reasoning directions covered by non-valid chains are typically more complex or have

higher overall energy. This may suggest that while valid reasoning maintains a more efficient energy

level while still examining the necessary range of logical processes, non-valid reasoning often involves

more complex or convoluted paths, potentially increasing reasoning process complexity.

The Hamiltonian evolution and the analysis of canonical transformations provide different yet

complementary insights into the dynamics of reasoning. Figure 12 illustrates the progressive increase of

reasoning processes over time, whereas the action-angle representation shows, through the canonical

transformations, a more detailed perspective. The consistent action values observed during the

transformation indicate that the overall complexity or “energy” of reasoning tends to remain stable, in

contrast to the progressively rising Hamiltonian values. Canonical transformations are very good at

showing conserved quantities that aren’t obvious in the original representation because of this apparent

inconsistency. The angle variable, which indicates the phase or direction of reasoning, shows comparable

ranges for both valid and invalid chains. This suggests that the effectiveness of energy utilization, rather

than the extent of cognitive exploration, drives the differentiation between them. This observation,

which is not evident from the Hamiltonian evolution alone, illustrates how the action-angle framework

enhances comprehension of the fundamental dynamics, uncovering complex differences in reasoning

processes that could be essential for differentiating between valid and invalid chains in AI systems.
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5.2. Conservation laws in reasoning dynamics

Hamiltonian conservation (blue color in Figure 14) shows a pronounced skew towards smaller standard

error values. A significant fraction of trajectories shows few alterations (high conservation). As the

standard error increases, the frequency decreases rapidly. This suggests that numerous reasoning paths

consistently preserve the Hamiltonian. The plot illustrating the conservation of angular momentum

(green) is analogous to the Hamiltonian, however exhibiting a little broader distribution. The plot

consistently shows a significant trend towards lower standard error levels. The decrease in frequency as

the standard error rises is less pronounced than that of the Hamiltonian. This suggests effective

conservation of angular momentum, although maybe less strict than the Hamiltonian. Finally, in the plot

showing a quantity analogous to energy conservation (Red and Blue colors in Figure 14), the distribution

is far broader than the other two. Although a peak persists at lower standard error levels, it is less

prominent. The distribution’s tail stretches wider, indicating an increased number of cases with bigger

variations. This suggests that the energy-like quantity conservation is less consistent than that of the

Hamiltonian and angular momentum.

Figure 14. Conservation Laws in Reasoning Trajectories: Hamiltonian (left), Angular Momentum (middle),

and Energy-like Quantity (right).

The plots confirm a different conservation structure. The Hamiltonian is the most rigorously conserved,

closely followed by angular momentum, whereas the energy-like quantity shows the lowest level of

conservation. Hamiltonian conservation explains that some reasoning paths maintain a stable overall

“energy” or complexity over their progression. The broader distribution of the energy-like amount may

suggest that this component of reasoning has greater flexibility or variability over diverse paths. These
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distributions’ unique patterns may be used in the classification of different thinking styles. Trajectories

with minimal standard errors across all parameters indicate very stable or consistent reasoning paths. All

quantities show different levels of conservation, supporting the idea that there are fundamental

principles or limitations governing the dynamics of reasoning processes. These differing levels of

conservation offer empirical evidence for enhancing our theoretical framework. Strong Hamiltonian

conservation parallels physical systems, validating this framework as an explanatory model for

reasoning processes.

Different conservation levels across Hamiltonian, angular momentum, and energy-like quantities

suggest underlying symmetries in LLMs reasoning processes. The strongly conserved Hamiltonian

indicates a fundamental invariance in reasoning structures, similar to time-translation symmetry in

physics. Less strictly conserved quantities point to approximate symmetries in cognitive processes.

These findings validate our Hamiltonian approach while opening new paths to explore symmetries in

LLMs. Applying Noether’s theorem to reasoning processes provides a framework for understanding

fundamental principles of human and artificial intelligence, potentially advancing more robust reasoning

models.

5.3. Geometric Analysis of Reasoning Trajectories

Differential geometry applied to reasoning trajectories offers a robust framework for analyzing reasoning

structures and properties, allowing us to characterize cognitive paths through high-dimensional space.

qeios.com doi.org/10.32388/7OXUG3 35

https://www.qeios.com/
https://doi.org/10.32388/7OXUG3


Figure 15. Reasoning trajectories within OBQA dataset mapped in a three dimensional space. Valid chains

(green), invalid chains (red).

Figure 15 illustrates PCA-reduced reasoning paths from the OBQA dataset, revealing complex cognitive

structures. The densely populated space shows invalid chains (red) dominating with chaotic, scattered

patterns, while valid chains (green) appear less frequently but follow more focused, directed trajectories.

Blue arrows indicate general reasoning flow. Trajectory clusters in the core region suggest common

reasoning patterns, while outlying paths represent unusual cognitive processes. Where valid and invalid

paths converge, subtle distinctions emerge. This visualization demonstrates reasoning complexity and

the challenge of distinguishing valid from invalid reasoning through trajectory patterns alone.
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Figure 16. Trajectory length (left) and smoothness (right) within OBQA dataset.

Figure 16 quantifies two key features of reasoning chains: length and smoothness. The box plots show

that valid and invalid trajectories have similar length distributions (comparable medians and inter-

quartile ranges), confirming our observation from the three-dimensional visualization where both types

appeared mixed. However, smoothness significantly differs - valid trajectories demonstrate greater

smoothness with higher median values and narrower distributions, corresponding to the more focused

green trajectories in the three-dimensional plot. Outliers appear in both plots but are more prevalent

among invalid chains, reflecting their erratic patterns. These metrics confirm that while path length

doesn’t reliably indicate validity, the smoothness of cognitive movement through conceptual space better

distinguishes valid reasoning processes.
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Figure 17. Magnitude (left) and angle (right) distributions of reasoning trajectories within OBQA dataset. Valid

chains (orange), invalid chains (blue).

Figure 17 shows trajectory magnitude and angle distributions for valid and invalid reasoning chains.

Valid chains (orange) have slightly higher magnitudes peaking between 2-3, consistent with their more

directed trajectories in three-dimensional space. Invalid chains (blue) show wider magnitude dispersion,

matching their scattered three-dimensional representation. For angles, valid chains cluster near 

  radians, indicating more uniform directional changes, while invalid chains distribute more evenly

across angles, suggesting irregular patterns. These distributions confirm our box plot findings: trajectory

smoothness differs slightly between valid and invalid chains, while trajectory length alone cannot

reliably identify valid chains.

π
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Figure 18. Trajectory magnitude vs angle of reasoning trajectories of valid/invalid chains within OBQA

dataset.

These visualizations reveal characteristic differences in reasoning patterns: valid chains exhibit more

uniform magnitudes and angles, creating smoother, more directed trajectories through conceptual space,

while invalid chains display greater variability, resulting in scattered, less predictable paths.
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Statistical tests for different features

Average Energy Conservation Score 0.019

Correlation Energy Conservation vs. Validity -0.189

Correlation between Angle and Magnitude (overall) -0.029

Correlation for Valid Chains -0.129

Correlation for Invalid Chains -0.020

T-test for difference in Trajectory Angle

t-statistic 0.1439

p-value 0.8856

T-test for difference in Trajectory Magnitude

t-statistic 0.2467

p-value 0.8052

Table 3. Geometric properties statistics of reasoning chains
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Figure 19. Two-dimensional reasoning trajectories within OBQA dataset.

Figure 19 represents a two-dimensional projection of reasoning paths, complementing our previous

three-dimensional analysis while revealing temporal dynamics in the OBQA dataset. This visualization

combines phase space features with critical points for enhanced analytical clarity. Valid (green) and

invalid (red) reasoning chains appear as trajectories in the space defined by the first two principal

components. Gray arrows form a vector field showing the general flow of reasoning, comparable to

energy contours in Figure 2, while blue stars mark stable states or key concepts representing pivotal

transformations in reasoning. The trajectories exhibit both focused problem solving and multi-concept

reasoning patterns. Valid chains often follow more constrained and directed paths, suggesting deep

engagement with specific topics. Some invalid chains cover broader conceptual areas, potentially

indicating multi-concept reasoning with less coherence. Vector field convergence and divergence regions

likely correspond to equilibrium points where significant conceptual shifts occur. While this two-
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dimensional representation clarifies the overall reasoning structure at the expense of some detail, it

effectively bridges our abstract three-dimensional visualization with theoretical phase space concepts,

demonstrating how OBQA dataset reasoning sequences align with Hamiltonian systems in both focused

and multi-concept reasoning modes.

5.4. Statistical mechanics and computational analysis of reasoning trajectories

We analyzed trajectory entropy and free energy distributions (Figure 20), finding a strong bias toward

higher entropy values (primarily around 1.4, with a minor peak at 1.0). This indicates widespread

instability or unpredictability in reasoning paths. The more dispersed free energy distribution peaks

between 2-3 with an extended tail toward higher values, revealing varying degrees of stability across

reasoning processes, with some pathways being more energetically favorable than others.

Figure 20. Analysis of entropy (left) and free energy (right) in reasoning trajectories within OBQA dataset.

Mean trajectory Entropy=1.3004 ; Mean free energy=4.0237

Figure 21 shows a non-linear increase in computation time as the number of trajectories increases. The

estimated complexity of    suggests that our algorithm scales sub-linearly with the number of

trajectories. This is quite efficient and indicates high scalability for larger datasets.

O( )n0.43
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Figure 21. Calculation of computational complexity. Estimated complexity: 

Figure 22 presents three examples of misclassified reasoning chains, ranging from nearly linear

trajectories to complex paths in PC1-PC2 space. This visualization shows potential classification error,

including similar endpoints or unusual path geometries. Our model effectively identifies invalid chains

(0.91 precision, 0.83 recall) but performs poorly on valid chains (0.18 precision, 0.33 recall). Overall

accuracy of 0.78 indicates significant improvement opportunities, particularly for valid chain

identification.

Confusion matrix

148 31

14 7

Table 4. Confusion matrix for classification of valid and invalid chains

O( )n0.43
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Classification Report

precision recall f1-score

False 0.91 0.83 0.87

True 0.18 0.33 0.24

accuracy 0.78

macro avg 0.55 0.58 0.55

weighted avg 0.84 0.78 0.80

Table 5. Report for classification of valid and invalid chains

Figure 22. Classification of reasoning trajectories within OBQA dataset.

6. Discussion

Applying Hamiltonian mechanics and differential geometry to reasoning trajectories reveals key insights

for understanding and improving AI reasoning. This framework offers a novel perspective on cognitive

dynamics in embedding spaces with important theoretical and practical implications.

6.1. Interpretation of key findings

Valid reasoning chains show lower Hamiltonian energy levels than invalid chains, suggesting effective

reasoning achieves a more efficient balance between the ”kinetic” energy of state transitions and the
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”potential” energy of semantic relevance. Invalid chains show wider energy ranges with higher values,

suggesting ineffective reasoning may involve less stable or more energy-intensive cognitive transitions.

Trajectory geometry analysis shows valid reasoning follows smoother paths with lower curvature,

indicating direct and focused conceptual progression. Invalid chains show higher curvature and torsion,

suggesting convoluted or incoherent reasoning. We identified quantities analogous to physical

conservation laws in reasoning trajectories, with stronger conservation in valid chains pointing to

fundamental invariances in model effective reasoning processes, similar to physical systems.

Converting reasoning trajectories to action-angle variables demonstrates that while reasoning tends to

conserve ”action” (energy-like quantity), the ”angle” (conceptual direction) varies freely. This supports

the intuition that effective reasoning maintains consistent engagement complexity while exploring

diverse cognitive directions.

6.2. Implications for LLMs reasoning

This Hamiltonian approach provides novel quantification and visualization of reasoning processes,

potentially improving AI system explainability by representing reasoning as physical-like trajectories.

While conceptually elegant, we must acknowledge several limitations to this framework’s practical

utility.

The mapping between physical systems and reasoning processes remains largely metaphorical rather

than established. There’s limited empirical evidence that optimizing for lower-energy or smoother

trajectories would meaningfully improve reasoning performance beyond what existing methods achieve.

The abstract nature of embedding spaces also presents challenges in translating theoretical insights into

actionable algorithm improvements.

Nevertheless, this framework may offer valuable diagnostic capabilities. Unusual trajectory patterns or

anomalous energy distributions could identify problematic reasoning, potentially helping detect biases

or logical inconsistencies. The geometric representation of reasoning might also provide a shared

conceptual framework for comparing human and LLM reasoning processes, though claims of direct

parallels should be approached with caution until more thoroughly validated.

6.3. Limitations and challenges

This study’s scope is limited by its reliance on the OBQA dataset alone, requiring validation across diverse

reasoning tasks and domains. PCA visualization, while necessary for interpretation, likely obscures
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important high-dimensional nuances; alternative dimension reduction techniques like t-SNE should be

explored. We must guard against drawing unwarranted conclusions from the physical-cognitive analogy,

ensuring observed patterns represent genuine reasoning dynamics rather than mathematical artifacts of

our formalism.

6.4. Future directions

We propose several key research directions: (1) extending this framework to diverse reasoning tasks and

larger datasets to assess domain-general applicability and identify task-specific patterns; (2) developing

real-time trajectory analysis methods for dynamic intervention in LLM reasoning; (3) incorporating

energy conservation principles and geometric constraints into neural network architectures; (4)

exploring quantum mechanical analogies for uncertainty management and concept superposition; (5)

collaborating with cognitive scientists to investigate parallels between AI and human reasoning; and (6)

creating accessible tools for implementing this framework.

This integration of Hamiltonian mechanics and differential geometry into AI reasoning represents a

promising approach for quantifying, visualizing, and potentially optimizing reasoning processes. Further

refinement could enhance LLM performance while providing deeper insights into the fundamental

nature of reasoning and cognition of these models.
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