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Abstract—Current practice defines the front velocity of a signal as
the limit of the phase velocity for infinitely high frequency. How-
ever, the present article provides evidence that the propagation
velocities of signal fronts for input signals of nonzero temporal
duration can result from the phase velocities in the low-frequency
range. In conclusion, although the impulse response propagates
at the phase velocity for infinitely high frequency, this is not
generally true for the step response.

Index Terms—front velocity, phase velocity, signal velocity

I. Introduction

The front velocity is defined in the scientific literature as the
limit of the phase velocity vp(ω → ∞) = c (e.g., [1]–[4]).
However, this article mathematically demonstrates by means of
a causal counterexample that the current definition of the front
velocity is incorrect. In fact, only the speed of the impulse
response of a transmission line is limited by c. The speed of
the step response, in contrast, can be dominated by the phase
velocities in the low-frequency range.

At a first glance, this aspect seems to be a contradiction,
because the step response is the convolution of the impulse
response with the unit step function. However, this article
shows that no paradox exists, and the step response could
move faster than c if the transmission line had phase velocities
faster than c.

The definition of the front velocity as the limit of the phase
velocity originates from a paper published in 1914 by the well-
known theoretical physicist Arnold Sommerfeld [5]. His math-
ematical reasoning is essentially based on the discontinuity in
a sine signal when the signal is turned on. This discontinuity
consists of arbitrarily high frequencies which propagate with
phase velocity vp(ω → ∞) = c. On this basis, he concluded
that a front, i.e., a sudden change in the signal level, likewise
cannot propagate faster than at a speed of c.

These considerations continue to represent the foundation of
what is considered the current state of the art [2], [6]. Often
this definition is used to shortcut a discussion or to argue that
a transmission of information at a speed faster than light in
vacuum is principally impossible. This might be the case, but
the reason is probably that there are no transmission media
that have phase velocities that exceed the speed of light.

This seems to be in contradiction with the term superluminal
phase velocity which can occasionally be found in the litera-
ture [3], [7]–[9]. We note that this refers to phase velocities
of partially standing waves, i.e., waves in which a part of the
wave is moving in one direction and another part is moving in
the opposite direction. Such partially standing waves appear
when electromagnetic waves are reflected from surfaces or
molecules in the transmission medium. The phase velocities of
such partially standing waves are not one-way phase velocities
and do not represent true phase velocities.

II. Starting point

To make it evident that Sommerfeld’s front velocity definition
is inadequate, we assume that a signal si(t) with the corre-
sponding Fourier transform

ŝi(ω) :=
1
√

2 π

+∞∫
−∞

si(t) e− jω tdt (1)

is applied to the input at location x = 0 of a transmission line
with the transfer function ĥ(ω). We further assume without
loss of generality that the input signal is normalized so that the
total energy E {si(t)} is unity and consequently that equation

E {si(t)} :=

+∞∫
−∞

si(t)2 dt = 1 (2)

is satisfied.

Let the transfer function of the transmission line be

ĥ(ω) = e− jω x/vp(ω), (3)

with vp(ω) being the phase velocity at a given angular fre-
quency ω and x being the location of the measurement point
at the transmission line. As can be seen, this transfer function
has unity gain for all frequencies and thus represents an all-
pass filter. Note that for physically reasonable phase velocities,
condition vp(ω) = vp(−ω) must apply.

The effect of the transmission line on the input signal can
be obtained by applying the inverse Fourier transform to the
product of the signal spectrum ŝi(ω) and the transfer function
ĥ(ω), i.e., by calculating

so(t) =
1
√

2 π

+∞∫
−∞

ŝi(ω) ĥ(ω) e jω tdω. (4)
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By substituting the transfer function (3) into (4), we obtain
the output signal

so(t) =
1
√

2 π

+∞∫
−∞

ŝi(ω) e jω (t−x/vp(ω))dω (5)

of the transmission line for the applied input signal si(t). As
equation (5) clearly shows, the output signal so(t) consists
simply of running waves superimposed and weighted with the
signal spectrum ŝi(ω) of the input signal si(t). Thus, equation
(5) is consistent with intuitive understanding.

III. Energy conservation

For the following it is important that the overall energy of
the output signal so(t) is preserved at any location x > 0. This
aspect can be easily shown by using Parseval’s theorem, which
gives the equation

E{so(t)} =

+∞∫
−∞

|ŝi(ω) ĥ(ω)|2 dω =

+∞∫
−∞

|ŝi(ω)|2 |ĥ(ω)|2 dω. (6)

Because |ĥ(ω)| = 1, we obtain

E{so(t)} =

+∞∫
−∞

|ŝi(ω)|2 dω = E {si(t)} = 1. (7)

Consequently, a transmission line with the transfer function
(3) does not change the energy of the signal.

IV. Specific phase velocity function

Let us now assume a specific and very simple phase velocity
function:

vp(ω) =
{

u, |ω| ≤ ωu

c, otherwise. (8)

Herein, all phase velocities for |ω| ≤ ωu are equal to u but
beyond that are equal to c.

Substituting the phase velocity function (8) into equation (5)
yields the output signal

so(t) =
[
si

(
t −

x
c

)
− α
(
t −

x
c

)]
+ α
(
t −

x
u

)
, (9)

with the auxiliary function

α(ζ) :=
1
√

2 π

+ωu∫
−ωu

ŝi(ω) e jω ζ dω. (10)

As expected, the output signal so(t) apparently consists of two
components

sc(t) := si

(
t −

x
c

)
− α
(
t −

x
c

)
. (11)

and
su(t) := α

(
t −

x
u

)
(12)

moving at velocities c and u, respectively.

V. Ideal rectangular pulse as input

We now analyze the propagation of an ideal rectangular pulse
with variable duration τ:

si(t) =
1
√
τ

(Θ(t) − Θ(t − τ)) . (13)

Here, Θ is the Heaviside step function. As can be verified, the
condition (2) holds for this signal, i.e., the overall energy is 1.
Of note, for t < 0 the signal is exactly 0, and for t = 0, it has
an infinitely steep slope. The signal is therefore completely
causal and contains infinitely high frequencies. Note that the
function (13) can represent both very short impulses (τ → 0)
and a single change of the signal level (τ→ ∞).

The Fourier transform ŝi(ω) can be easily calculated:

ŝi(ω) =
1
√

2 π

+∞∫
−∞

si(t) e− jωtdt

=
1
√

2 π τ

τ∫
0

e− jωtdt

=
j
(
e− jωτ − 1

)
√

2π τω
.

(14)

The term α(ζ), defined by equation (10), can we obtain by
substituting equation (14) and computing the integral. We get

α(ζ) =
1
π
√
τ

(Si (ωu ζ) − Si (ωu (ζ − τ))) , (15)

with

Si(ζ) :=

ζ∫
0

sin(t)
t

dt (16)

beeing the sine integral. The output signal so(t) = sc(t)+su(t) is
now determined for all locations x. For the signal component
that propagates at the speed u, we obtain

su(t) =
Si
(
ωu

(
t − x

u

))
− Si
(
ωu

(
t − τ − x

u

))
π
√
τ

. (17)

Figure 1 shows the waveform of the signal power so(t)2 for
example parameters at different distances x from the input of
the transmission line.

We can also calculate the energy E {su (t)} that is transported
by the signal component su(t). Because of Parseval’s theorem,
the energy is given by

E {su (t)} =

+∞∫
−∞

|ŝu (ω) |2 dω. (18)

As can be seen from equations (10) and (12),

ŝu (ω) = (Θ(ω + ωu) − Θ(ω − ωu)) ŝi(ω) e− jω x/u, (19)

i.e.,

E {su (t)} =

+ωu∫
−ωu

|ŝi(ω)|2 dω =

+ωu∫
−ωu

ŝi(ω) · ŝi(ω)∗ dω. (20)



3

µs µs µs

µs µs µs

c c

c c

Fig. 1. The figure shows the waveform of the energy so(t)2 of the signal at different distances x from the input of the transmission line. In this example,
u = 3 c, τ = 100 µs and ωu = 1 MHz. As can be seen, the rectangular pulse propagates with velocity 3 c. The high-frequency components, in contrast, have
only the velocity c and form small glitches, which are increasingly left behind with increasing distance (as an aid, the locations that can be reached by a
signal with velocity c are marked by small arrows). The low frequency part of the signal su(t) clearly does not have an infinitely steep slope. However, this
does not mean that there is no clearly recognizable front.

By substituting equation (14) we get

E {su (t)} =

+ωu∫
−ωu

(
e− jωτ − 1

)
√

2π τω

(
e jωτ − 1

)
√

2π τω
dω

=

+ωu∫
−ωu

1 − cos (ωτ)
πω2 τ

dω.

(21)

Evaluating the integral yield

E {su (t)} =
2 (cos (τωu) + τωu Si(τωu) − 1)

π τωu
. (22)

As equation (22) reveals, the energy of this signal component
depends only on the product τωu. For τ → ∞, E {su (t)}
becomes equal to 1. Therefore, in this case, all the energy
of the signal moves with velocity u, and the component with
velocity c disappears.

For finite τ, i.e., for true rectangular signals, a major part of
the energy can be contained in the signal part that propagates
with velocity u. For example, for τωu = 1000 the energy
E {su (t)} is approximately 0.99937. Even for τωu = 2 π, there
is still a significant amount of energy in the signal component
su (t), because in this case E {su (t)} ≈ 0.90282. For τ → 0,
however, E {su (t)} becomes 0 and we can conclude that very
short impulses can only propagate at the speed c.

VI. Discussion

As has become apparent, the transmission line defined by
equation (8) behaves strangely. If we were to attempt to
measure the impulse response, we would find that the impulse
propagates with velocity c along the transmission line. We

would not notice that there is an additional part that propagates
with velocity u, because the energy of that part is close to 0.

However, if we were to measure the step response, we would
observe that although the front loses steepness because of the
low-pass filtering, the front needs only the time x/u and not
the time x/c to reach the location x. However, we would not
notice that in addition, there is a part that propagates with
velocity c, because that part contains practically no energy.

Thus, one might be inclined to state that the impulse response
propagates with velocity c, but the step response propagates
with velocity u. This conclusion seems to diretly contradict
the rule that the step response can be represented as the
convolution of the unit step or Heaviside step function with
the impulse response. Therefore, several questions arise:

1) Is this effect an artifact of the non-causality of the
studied transmission line?

2) How can this paradox be resolved?
3) How should we define the front velocity correctly?

Question 1 can be answered quickly by imagining the to-
tal transmission line as a parallel network of two separate
transmission lines, as shown in figure 2. In this model, one
transmission line transmits the low-frequency part of the input
signal, and the other transmits the high-frequency part by
placing causal low-pass and high-pass filters before each line.
Subsequently, the delay behavior is modeled with ideal delay
elements with delay constants x/u and x/c. These ideal delay
elements are also causal, because they do not produce any
dispersion.

As can easily be seen, the complete transmission line is causal.
Nevertheless, nothing changes the fact that the limit of the
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si(t) so(t)

Fig. 2. This transmission line is causal, because all components are causal: the upper channel is a series of a causal low-pass filter and a causal transmission
line in which all phase velocities have the same value, u. The lower channel is a series of a causal high-pass filter and a causal transmission line in which
all phase velocities have the value c.

phase velocity for ω→ ∞ is c and that the impulse response
propagates with velocity c, while the step response moves
mainly with velocity u. For causal filters, the existence of a
mixed region where both transmission lines are conductive is
not important for this argument.

To further illustrate this statement, we consider the two most
simple known causal filters, namely resistor-capacitor circuits.
The transfer function of the low-pass filter is

ĥL(ω) =
1

1 + jωR C
. (23)

The transfer function of the complementary high-pass filter is

ĥH(ω) =
jωR C

1 + jωR C
. (24)

The total transfer function corresponding to figure 2 is then

ĥ(ω) = ĥL(ω) e− jω x
u + ĥH(ω) e− jω x

c . (25)

It is not difficult to calculate the corresponding step response,
that means the output signal

so(t) = Θ
(
t −

x
u

) (
1 − e−

1
R C (t− x

u )) + Θ (t − x
c

)
e−

1
R C (t− x

c ) (26)

of the input signal
si(t) = Θ(t). (27)

As can be easily seen, so(t) is perfectly causal and consists of
two parts with two fronts, namely

• one with an infinitely steep slope which moves with
velocity c (Fig. 3, dotted line) and

• one which rises only with 1/(R C) but propagates with
velocity u (Fig. 3, solid line).

But the limit of the phase velocity for ω → ∞ is obviously
equal to c since ĥL(ω → ∞) = 0. Nevertheless, there is a
signal part that is propagating at velocity u independently
of this limit. This, however, demonstrates once more that

t in µs

Fig. 3. Parts of signal so(t) in equation (26) at x = 1000m for R C = 1µs and
u = 3 c. It is obvious that the signal is causal, but the step response moves
faster than the impulse response.

Sommerfeld’s front velocity definition is definitely inadequate
and incorrect, since the term “front” suggests that this part is
in any case the fastest. For u > c, however, this is not true.

Figure 2 also answers question 2: the apparent paradox can
be resolved because in measuring the impulse response, es-
sentially only the properties of the lower channel are effective,
whereas in measuring the step response, essentially only the
upper channel has an effect. Mathematically, however, the
system response for an rectangular pulse of variable duration
is given by equation (9), which contains components that move
with velocity u and components that propagate with velocity
c. In conclusion, measuring only the impulse response or
only the step response may be insufficient, because important
information may be missing in both.

Finally question 3 remains regarding how to define the front
velocity. First of all, it has become obvious that the phase
velocity for infinitely high frequency represents not the upper
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limit for the propagation speed of signal fronts. Instead, it
is only an impulse response velocity and does not necessarily
provide information about the speed at which the step response
or information propagates. It seems reasonable to suppose here
that the true front velocity is given by the fastest phase ve-
locity. However, there are further arguments to be considered.
Therefore, the question 3 needs to be investigated in more
detail and cannot be answered conclusively at this point.

VII. Summary

The article has demonstrated that it is impossible to be certain
that the phase velocity for infinitely high frequency represents
the upper limit for the propagation speed of information
in a transmission line. The reasoning that led to this false
assumption is essentially based on the justified claim that a real
transmission line must always have a causal impulse response.
However, Sommerfeld failed to realize that a real transmission
line could also be a network. As shown by a simple and causal
example, it is possible that in such a network the energy of
an impulse moves through a different part of the network than
the main part of the energy of a rectangular pulse. For this
reason, it is not generally possible to deduce the propagation
speed of the step response from the propagation speed of the
impulse response.
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