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Dark Energy as an intrinsic property of Matter1

Richard L. Bowen1, ∗
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1Patiently, LLc, 570 Long Point Rd., Mount Pleasant, SC. 29464, United States3

Starting from the proviso that general relativity is the valid theory of gravitation, we invoke a novel line
of thought that assigns to matter the intrinsic property of permanent space emission. With this property, dark
energy is seen as a property of matter. According to these thoughts, we set up a matter model and derive
its equation of state. Both matter and volume expansion remain tightly linked through the energy-momentum
conservation law and the key-assumption of strict proportionality of the respective energy densities in time,
associated with a two-component fluid model. In essence, the so-introduced ‘Space Production Model’ (SPM)
posits that both ‘matter’ and ‘dark energy’ are two manifestations of the same entity. One realization of SPM
leads to a fluid analogy of a scalar field matter model that is minimally coupled to gravity, and that resides in
permanent virial equilibrium. This latter property of SPM implies a constant ratio of 1/3 of matter energy and
2/3 of dark energy in agreement with current observations. We discuss the resulting expansion and acceleration
laws that occur within homogeneous cosmology, as well as some consequences for inhomogeneous cosmology.
While SPM leads to expansion in the homogeneous case, it also allows for contraction in the inhomogeneous
case. In both cases SPM implies a stationary state that may arise after a relaxation period of inflation. While not
discussed here, the proposal that matter and space are, in the SPM sense, contingent one upon the other could
have implications beyond cosmology.
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I. BACKGROUND4

The world models by Friedmann and Lemaître have been established since the early 20th century as effective models of the5

Universe. The robustness of these homogeneous-isotropic models is exemplified by their consistency with the enormous collec-6

tion of observational data accumulated over the last several decades, although recently an increasing number of ‘tensions’ have7

been pointed out [7, 9, 19], especially between the expansion rates as drawn from Cosmic Microwave Background observations8

and the late Universe. During this collection of new observational data, changes of the model have been entirely due to adap-9

tations of its parameters. The contemporary, still accepted, model is Lemaître’s coasting model, coined ‘concordance model’.10

It starts out with a singularity, the ‘Big Bang’, and infinite expansion. The expansion then slows down due to the gravitational11

attraction of its energy content, and experiences a period of ‘scale-factor acceleration’ since the epoch of structure formation.12

This acceleration period is modeled in the simplest case by Einstein’s cosmological constant—being repulsive if positive, and it13

dominates the expansion history since then. The cosmological constant is interpreted as ‘dark energy’ if put on the side of the14

sources of Einstein’s equations, nowadays thought to make up about two thirds of the universal energy budget.15

However, the description of the early stages of the Universe still enjoys a variety of scenarii, governed by the paradigm of16

‘inflation’. Invoking an inflationary period helps to explain the apparently causally connected visible Universe, as documented17

by the analysis of the uniform Cosmic Microwave Background radiation. The favoured models of inflation are mostly due to a18

single or several scalar fields whose potential energy density dominates at early stages, hence acting like a positive cosmological19

constant. Such phenomenological scalar fields are also employed to model ‘dark energy’ at late epochs of the cosmological20

evolution and coined ‘quintessence’ (besides other suggestions). We have observed a qualitative transition in the discussion of21

inflationary models since the discovery of the Higgs boson: until then, no scalar field was known to exist in nature. The Higgs22

field will certainly play a major role in understanding the early Universe (e.g. [21] and references therein), and the model we are23

presenting may allow for a new perspective on the Higgs field.24

The standard model of cosmology, well after inflation, invokes the matter model of radiation, governed by an equation of state25

of radiation in local thermal equilibrium. As soon as the Universe becomes less dense and ceases to be opaque, the recombination26

of matter allows the radiation to propagate freely and matter dominates the expansion of the Universe thereafter. This matter is27

then thought of to be dominated by ‘dark matter’ that may, to a good approximation, be treated as dust, i.e., pressure-less and28

non-collisional matter. Certainly, these are macroscopic matter models that won’t reveal much about the microscopic state.29

Since the beginning of the 20th century, there have been numerous efforts to work out alternative cosmologies, mostly based30

on the hypothesis that the Universe in the large can be described by a homogeneous solution of Einstein’s equations. Although31

there has been much effort to reconcile these alternative models with observational evidence at the time—some models needed32

efforts to reconcile their hypotheses with Einstein’s laws of gravitation—numerous such models have been abandoned (for some33

overview articles, see e.g. [3, 11, 13, 18]).34

II. INTRODUCTION35

Contrary to the alternative cosmological thoughts mentioned above, we believe that the Space Production Model (SPM) we36

introduce here invokes an interesting way of thinking about the nature of matter. SPM exploits the largely phenomenological37

treatment of the energy-momentum tensor in general relativity. In cosmology and in other fields, the interpretation of Einstein’s38

equations with regard to what is geometrical in nature and what is due to intrinsic properties of the sources, enjoys considerable39

flexibility. We are reminded of the geometrical freedom of the cosmological constant that is interpreted as a source of ‘dark40

energy’. Also, the dynamical aspects of high-density objects that seem to require a component dubbed ‘dark matter’ that could41

just as well be, at least partly, a result of spatial curvature on the geometrical side of Einstein’s equations. This is neglected in42

the standard ‘concordance model’ with everywhere flat space sections.43

Assigning to matter the intrinsic property of space emission is on the one hand phenomenologically realized in terms of an44

equation of state in an otherwise standard cosmological setting, but on the other hand it allows for another way of thinking about45

repulsive effects. The underlying microscopic mechanism has to be left open, similar to the explanation of ‘dark energy’ through46

e.g. the vacuum energy of space (see, however, [2]).47

This paper is structured as follows. In Section III we explain the ‘Space Production Model’ and derive a matter model that is48

inspired by these thoughts. The defining equations are explicitly discussed in the framework of homogeneous-isotropic universe49

models that are sourced, and hence thought to be dominated by this matter model. We here advance an equation of state that50

results from an equilibrium between the postulated inherent property of matter to emit space (i.e. to act repulsively), and the51

gravitational attraction of matter. We discuss the resulting solution and a mapping of the SPM matter model to a minimally52

coupled scalar field in virial equilibrium. In section IV we put SPM into the context of inhomogeneous cosmologies, and in53

section V we summarize the properties of the proposed model.54
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III. HOMOGENEOUS COSMOLOGY55

We will discuss the SPM proposal in terms of a matter model as an energy-momentum source for Einstein’s equations,56

Rµν −
1
2

Rgµν + Λgµν = κTµν , (1)

with the Lorentzian 4−metric components gµν, the 4−Ricci tensor components, Rµν, and its trace, the 4−scalar curvature R, the57

cosmological constant Λ, and a perfect-fluid form of the energy-momentum tensor, Tµν = diag(−ε, p, p, p), with the energy58

density ε and an isotropic pressure p.1 We will concentrate on spatial properties, which implies that we assume a foliation59

of spacetime. In the following discussion we first specify our considerations to homogeneous-isotropic solutions of Einstein’s60

equations, and we will employ a flow-orthogonal 3 + 1-foliation that requires the matter fluid to be irrotational.61

A. The Friedmannian framework62

We assume the Einstein equations to hold and specify them to locally isotropic models that obey the well-known Friedmann63

equations, consisting of an expansion law, that is the temporal change of a scale-factor a(t) of the universe model, and an64

acceleration law, that is the temporal change of the expansion:65 ( ȧ
a

)2
=

8πGϵh
3
+
Λ

3
− k

a2 ;( ä
a

)
= −4πG(ϵh + 3ph)

3
+
Λ

3
;

ϵ̇h + 3
( ȧ
a

)
(ϵh + ph) = 0 . (2)

In the first equation, ȧ/a = H(t) is the relative rate of change of the scale factor a(t), i.e. the expansion, often denoted by the66

Hubble function H(t), ϵh is the energy density of the sources, i.e. the energy per unit volume, and ph their pressure (where the67

index h stands for homogeneous); k is a constant that describes a homogeneous curvature of space. In the second equation we68

can observe that the cosmological constant, if it is positive, can lead to a positive second time-derivative of the scale factor,69

dubbed ‘acceleration’ of the universe model, and so can counteract gravitation. The third equation describes energy-momentum70

conservation. The three equations are connected in the sense that, if the third equation holds, then the second equation is just the71

time-derivative of the first. Note that the set of equations (2) is not closed until we specify an equation of state that relates ph72

with ϵh.73

The parameters of the model are usually written by dividing the expansion law above (the first equation of the set (2)) by the74

square of the Hubble function H2. Then, one obtains a sum of three cosmological parameters:75

Ωm + Ωk + ΩΛ = 1 , (3)

with the definitions:76

Ωm :=
8πGϵh
3H2 ; Ωk :=

−k
a2H2 ; ΩΛ :=

Λ

3H2 . (4)

We, henceforth, omit the cosmological constant, Λ = 0.77

B. The matter model of SPM78

We base the construction of a matter model on the paradigmatic thought that ‘matter inherits the permanent property of79

emitting space’. We may think of two components, whose energy densities are associated to ‘matter’ and ‘space’, respectively.80

A change in ‘volume’ as the geometric representative of ‘space’ is thus tightly linked to and seen as an intrinsic property of the81

matter model.82

We furthermore invoke, to simplify the realization of such a matter model and as already stated, the energy-momentum tensor83

to be of the form of a perfect fluid with energy density and isotropic pressure. Having in mind that the presence of matter84

1 The coupling constant is κ := 8πG/c4. Units are c = 1, but we often reinsert the speed of light; the signature of the Lorentzian 4−metric is (−,+,+,+).
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comes along with the production of volume, we may invoke an illustration within the homogeneous point of view: distributing85

elements of matter evenly throughout space and assuming that they all exert jointly a uniform negative pressure that tends to push86

the elements apart (and that represents the intrinsic property of space emission), we are led to think that such a matter model tends87

to an equilibrium state of totally zero gravitational acceleration, balancing out the intrinsic properties of matter (gravitational88

attraction and repulsion). This state of zero acceleration in the homogeneous models is mirrored by the stationarity of the scale89

factor, i.e. the vanishing of the source ϵh + 3ph = 0 (for Λ = 0).90

We note that this matter model is difficult to realize within a Newtonian picture, since pressure is not self-gravitating. The91

Newtonian analogy is possible, if we invoke Tolman’s observation [23] of ‘active mass’: a clearcut line of arguments is given in92

[10], where the effective Newtonian source equation for the gravitational field strength gh is given by:93

∇ · gh = ϵh +
3
c2 ph . (5)

Since gh = (ä/a)x in the homogeneous models, we get the same result of stationarity of the scale factor, ä = 0.94

The matter model of SPM thus assumes, within the perfect fluid approximation, an equilibrium equation of state (setting again95

c = 1):96

ph = −
1
3
ϵh . (6)

A more general realization of a matter model would transform a component with energy density ϵmh into a component with energy97

density ϵeh, and this would obey the, in general time-dependent, ansatz for the corresponding homogeneous sources:98

ϵh = λϵ
m
h + (1 − λ)ϵeh , (7)

where the function λ(t) would (phenomenologically) determine the transition. Similar transitions or interactions between dark99

matter and dark energy have been considered, see e.g. [1], [15], compare also suggestions such as in [12]. SPM also includes100

the assumption that both ‘matter’ and ‘space’ are two manifestations of a single entity inheriting an associated volume pro-101

duction. Literally, we will not consider a transformation, but instead a permanent constant fraction between the two within a102

two-component view, and we write:103

ϵh = ϵ
m
h + ϵ

e
h ; ϵeh = µϵ

m
h , (8)

with a constant fraction µ between the two energy densities. This should not be viewed as a simplification, rather it is a key104

element of the paradigm. Accordingly, the total pressure is split into p = pm
h + pe

h with a priori individual equations of state105

for the two components, pm
h = αϵ

m
h and pe

h = βϵ
e
h. Hence, according to (6) and (8), ϵmh (1 + µ + 3α + 3βµ) = 0, which enjoys106

some freedom in the properties that we wish to assign to the individual components. We will later invoke a fluid model for a107

scalar field that suggests α = 1 (‘stiff equation of state’) and β = −1 (‘dark energy equation of state’) implying µ = 2. If we108

invoke a dust equation of state for matter, ϵmh = ϱc
2, i.e. pm

h = 0, then α = 0, β = −1 leads to µ = 1/2, or alternatively keeping109

µ = 2 implies β = −1/2. The first suggestion is favoured based on observations: in terms of the energy balance within the110

Friedmannian framework (for reasons of simplifying the model, with no curvature and no cosmological constant), we have:111

Ωm + Ωe = 1 ; Ωe = µΩm , (9)

with a common Hubble expansion H(t), where Ωm := 8πGϵmh /3H2 and Ωe := 8πGϵeh/3H2. Specifying the constant fraction to be112

µ = 2, we have ϵeh = 2ϵmh . This choice can be considered to comply, if normalized to the standard model at present time, with a113

total matter density parameter of 33, 3% and a dark energy density parameter of 66, 6% (which is only slightly off the currently114

accepted best-fit values to observations [20]), but fits exactly the values quoted in the recent analysis [4].115

116

We summarize the elements underlying the SPM model:117

i. The energy-momentum tensor is modeled by a perfect fluid source with a gravitational equilibrium equation of state.118

ii. The energy density of the source can be thought of as being made up of a constant fraction between a component that119

models matter energy density, obeying a ‘stiff’ equation of state in the scalar field model, and a component that models120

energy density associated with volume production, with a ‘dark energy’ equation of state in the scalar field model [17].2121

iii. In the homogeneous-isotropic framework this amounts to the energy density ϵh(t) = ϵmh (t)+ ϵeh(t), ϵeh = µϵ
m
h , with a constant122

µ that is determined in the scalar field model through the equilibrium equation of state (6): µ = 2.123

2 For details on the scalar field properties, see section III D.
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We now look at the conservation equation (the last equation of the set (2)), and write the total energy density as ϵh = ϵmh + ϵ
e
h =124

3ϵmh , with total pressure ph = pm
h + pe

h = −ϵmh , where we took µ = 2. Using the equations of state and the assumption above, the125

conservation equation and its integral becomes, e.g. for the m-component:126

ϵ̇mh + 2Hϵmh = 0 ; ϵmh =
ϵmh (ti)

a2 . (10)

The solution for the Friedmannian scale factor follows from the expansion law for the matter component,127

H2 = 8πG
ϵmh (ti)

a2 , (11)

to yield the solution128

a(t) = a(ti) ±
√

8πGϵmh (ti) (t − ti) , (12)

which we write for a(ti) =
√

8πGϵmh (ti)t2
i ≡ 1 as follows:129

a(t) = ±
(

t
ti

)
, (13)

i.e. the scale factor behavior of this model is the same as a stationary solution with ä = 0.3 This can be readily confirmed with130

regard to (2) since ϵh + 3ph = 0.131

Introducing the (positive) Hubble length (reintroducing the speed of light here), we obtain (with the initial time ti normalized132

as above):133

Lh := c/H(t) =
cti√

8πGϵmh (ti)
a(t) = c t , (14)

i.e., we have that it increases along the (here by assumption flat) light cone.134

For the flat universe model considered here we have a simple geometry of an Euclidean sphere surrounding any observer with135

proper radius R, surface area A = 4πR2 and enclosed volume V = 4/3πR3. Inserting the Hubble length, we obtain a relation of136

the volume to surface fraction of a Hubble sphere to the sources:137

Vh

LhAh
=

1
3
= − ph

ϵh
. (15)

C. Considerations on the equations of state138

The missing piece for our intuition is to explain the constant fraction of 2 between the two energy density components. We139

can work in the Euclidean case and think of the geometric situation of pressure exerted on a surface area Ah = 4πR2 of a140

Euclidean ball with radius R and volume Vh = 4πR3/3. Let us distinguish the interior energy density within the ball, ϵ int
h , and the141

external energy density, ϵext
h . Both densities are equal in the homogeneous situation, but we redistribute the homogeneous energy142

density inside the ball and put all total energy ϵ int
h Vh onto the surface of the bubble with surface tension γ. Note that this does143

not change the expansion law of the bubble according to Newton’s iron sphere theorem that also holds for a general-relativistic144

spherically symmetric redistribution of energy density for spatially vanishing Ricci tensor, as proved in [5]. Hence, we can145

compute γ = (Vh/Ah)ϵ int
h = ϵ

int
h R/3. Since with this redistribution we have a transition from a vacuum bubble to the outside146

homogeneous energy density ϵext
h , we invoke the law of Young-Laplace to compute the pressure difference due to the jump147

across the bubble’s surface. The Laplace pressure is given by pint
h − pext

h = 2γ/R = 2/3ϵ int
h . Thus, the internal pressure is larger148

than the external one leading to expansion, and the pressure ph at the interface of the bubble is calculated to be −pint
h eR = −pheR149

and pext
h eR = pheR, with the unit normal to the bubble, eR, pointing inside towards the higher pressure, i.e. −2ph = (2/3)ϵh. The150

equation of state follows to be ph = −1/3ϵh in both phases (note that ϵ int
h = ϵ

ext
h = ϵh). The equilibrium condition thus forces the151

total pressure of matter and space emission to obey the equation of state of the stationary state.152

3 This behaviour is also shared by the Milne model of FLRW cosmology with negative constant curvature and vanishing cosmological constant.
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The total equation of state, ph = −1/3ϵh is the opposite to the equation of state for a trace-free energy-momentum tensor, i.e.153

radiation with pγ = 1/3ϵγ. The trace of the energy-momentum tensor is commonly called ‘gravitational mass’, which amounts154

to −2ϵ = 6p in our case and to 0 in the radiation case. It is interesting to put into perspective the equations of state in the155

two-component view. Individually, say in the case of absence of one of the components, the mass obeys a ‘stiff’ equation of156

state with pm
h = ϵ

m
h , so that the conservation equation for vanishing second component returns:157

ϵ̇mh + 6
( ȧ
a

)
ϵmh = 0 , (16)

i.e., the energy density of mass decays in proportion to the square of the volume. For the second component with ‘dark energy’158

equation of state, pe
h = −ϵeh, for vanishing first component, we would have:159

ϵ̇eh = 0 , (17)

i.e., the energy density is a constant in time, which represents a fluid model of the cosmological constant.160

Hence, the tight coupling of the two components changes the behavior of the total system drastically, leaving a single entity161

where both energy densities evolve at the same rate.162

Let us compare the scale factor evolution in this model (a) with the evolution in a pure matter model (b), and the standard163

concordance or ΛCDM model (CDM for Cold Dark Matter) (c):164

a(t) =

√
8πGϵh(ti)t2

i

3

(
t
ti

)
= (Hiti)

(
t
ti

)
=

(
t
ti

)
(a) ; (18)

a(t) = (3/2Hiti)2/3
(

t
ti

)2/3

(b) ; (19)

a(t) =
(
Ωm

h (ti)
ΩΛ(ti)

)1/3

sinh2/3
(

3Hiti
2

√
ΩΛ(ti)

(
t
ti

))
(c) . (20)

For the illustration below, Figure 1, we normalize the scale factor such that the numerical value of the constant Hiti is set for165

each model (knowing the Hubble function). For model (a) we have Hiti = 1, for model (b) Hiti = 2/3, and for model (c)166

Hiti = 2/3
√
ΩΛ (For the ratio we have Ωm/ΩΛ = 1/2).167

FIG. 1. The scale factors for the three models as a function of x = (t/ti): the SPM model (a) in green (middle graph), the pure matter model (b)
in red (lower graph), and the standard model with cosmological constant (c) in blue (upper graph). For all models the initial stages of inflation
and radiation-domination are not covered.

We see that we expect more present-day volume V = V(ti)a3 in the standard model compared with the volume of the SPM168

model, both of which produce more space than in a model with pure matter content.169

It is important to remark here that we have made idealizing assumptions for the base-parameters of the model. We did170

not, though, make any effort to optimize the model in order to comply with observational cornerstones, and yet the constant171

fraction 2 between the energy densities complies with present-day observations. However, we notice that our realization of172

SPM is quite robust: introducing a non-vanishing negative curvature would only increase the effective volume production in the173

matter-dominated model, but would not change the expansion history in the SPM case. This can be easily seen by comparing the174

curvature behaviour in a Friedmannian model which has the same dependence ∝ a−2 as the energy density in the SPM model, so175
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that including a curvature component would only change the initial values where the energy density would share the curvature176

contribution. However, including inhomogeneity effects, see section IV, will lead to the emergence of a negative average curva-177

ture, i.e. an additional dark energy-like effect that increases the volume production [6]. Deviations from observation could then178

be attributed to the fact that we are attempting to make conclusions about the inhomogeneous Universe through a homogeneous179

model that does not correspond to its average properties. In other words, the question whether the SPM model is compatible180

with observations must be considered and answered within the inhomogeneous framework.181

182

We are now going to interpret the above solutions within the SPM picture by defining a ‘total matter energy’ Em
h and a ‘total183

space energy’ Ee
h within a homogeneous volume Vh:184

Em
h := ϵmh Vh ; Ee

h := ϵehVh . (21)

We obtain (with Em
h (ti) = ϵmh (ti)Vh(ti) and the same for the e−component):185

Em
h = Em

h (ti) a(t) ; Ee
h = Ee

h(ti) a(t) , (22)

confirming what we expect in the SPM picture: matter energy is permanently converted into space energy at a rate that is exactly186

equal to the Hubble rate H(t) = ȧ(t)/a(t):187

Ėm
h

Em
h
= H(t) =

Ėe
h

Ee
h
. (23)

Equation (23) is the fundamental equation of SPM for homogeneous cosmology.188

D. Mapping SPM to a minimally coupled scalar field189

A natural representative of the SPM matter model is to look at the energy density of ‘only matter’ as to be in the form of a190

fluid model for a free scalar field component—obeying a so-called ‘stiff’ equation of state, pm
h = ϵ

m
h , i.e. an oscillatory character191

of matter represented by a fluid model. The energy density of ‘only space’ is assumed to be directly associated to volume192

production—obeying a so-called ‘dark energy’ equation of state, pe
h := −ϵh, i.e. its energy density manifests itself as a negative193

pressure that augments the volume of space. These assumptions directly motivate invoking a scalar field nature of matter while,194

within the SPM interpretation, ’both’ matter and space are tightly connected. The interesting aspect of the above analogy is that195

we can represent the SPM matter model in terms of a scalar field that evolves in a potential. Explicitly, we can write in terms of196

a scalar field Φ(t):197

ϵmh =
1
2
Φ̇2 ; pm

h =
1
2
Φ̇2 , (24)

and198

ϵeh = V(Φ) ; pe
h = −V(Φ) . (25)

We see that the equation of state for ‘matter’ is pm
h = ϵ

m
h , and that for ‘space’ is pe

h = −ϵeh in accordance with our previous199

two-component view. The total density and pressure are thus written:200

ϵh =
1
2
Φ̇2 + V(Φ) ; ph =

1
2
Φ̇2 − V(Φ) , (26)

with the total equation of state ph = ϵh − 2V(Φ). Using the assumption ϵeh = 2ϵmh , we get the relation V(Φ) = Φ̇2, or directly for201

the equation of state, ph = ϵh − 4ϵmh = ϵh − 4/3ϵh = −1/3ϵh. We remark that the relation V(Φ) = Φ̇2 is reminiscent of the virial202

equilibrium condition, ϵkin + 2ϵpot = 0, (ϵpot = −ϵeh).203

As is well-known, by inserting (26) into the conservation equation, we obtain the Klein-Gordon equation: we calculate ϵ̇h204

from ϵh in (26), ϵ̇h = Φ̇(Φ̈ + V ′(Φ)), where V ′ means derivative of the potential with respect to Φ; we obtain for Φ̇ , 0:205

Φ̈ + 3HΦ̇ + V ′(Φ) = 0 . (27)

This equation describes the dynamics of the scalar field in the given potential. The formal integral of the Klein-Gordon equation206

reads:207

ϵh = ϵh(ti) exp
(
−6

∫ [
1 − 2V
Φ̇2 + 2V

]
da
a

)
. (28)
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The potential itself is given in terms of Φ, but with our assumption it is determined that V(Φ) = Φ̇2. The integral (28) then208

simplifies, and we confirm the law ϵh = ϵh(ti)a−2. Since we have the solution for ϵeh = V(Φ), which is ϵeh =
2
3 ϵh(ti)/a2, we can209

solve the equation for the virial equilibrium to obtain V(Φ); by changing the variable t to a we first have:210 (
dΦ
dt

)2

=

(
dΦ
da

)2

ȧ2 =
C
a2 ; C :=

2ϵh(ti)
3
, (29)

and with the Friedmann equation H2 = 8πG
3

3
2 ϵ

e
h = 4πGϵeh and V = ϵeh = C/a2, we get:211 (

dΦ
da

)2

=
1

4πGa2 . (30)

Solving for Φ(a) we find212

Φ = ± ln(
√

4πG a) , (31)

and with V(a) = C/a2 we can express a in terms of V to be a =
√

C/V , where only the positive sign is taken since we assume213

V > 0. Inserting this expression into Φ(a) above we obtain two solutions for Φ in terms of V:214

Φ1 = ln

√4πG

√
C
V

 ; Φ2 = ln

√4πG

√
C
V

−1

. (32)

Inverting these solutions provides two solutions for the potential, the first for negative Φ and the second for postive Φ:215

V1 = 4πGC
(
eΦ

)−2
; V2 = 4πGC

(
eΦ

)2
. (33)

216

FIG. 2. The two solutions for the potential added to a total potential V(Φ).
217

218

A scalar field source can produce inflation if the kinetic term is subdominant to the potential term. In the case of a virial219

equilibrium both are of the same order and the situation is different. At equilibrium, Φ̇ = 0, the potential has a minimum,220

V(Φ) = 0. The state may oscillate around this minimum up to the “boundaries” in Figure 2, but the state is determined by the221

value of the total density ϵh = 1/2Φ̇2 +V = 3/2V . This suggests that the SPM state may arise from a pre-equilibrium, dynamical222

phase of cosmic evolution that is best described as an exit state after an inflationary phase.223

IV. INHOMOGENEOUS COSMOLOGY224

Our considerations of homogeneous cosmologies gave us an interpretation of the phenomenology of the energy-momentum225

tensor in general relativity: we assign to matter the simultaneous properties of ‘mass’ and ‘space emission’. Both are synonymous226

within the hypothesized SPM paradigm, mass being a function of space emission per unit time. We also learned that the tight227

link of both ‘mass’ and ‘space’ manifestations of a single entity allowed us to map the energy-momentum tensor to a minimally228

coupled scalar field with its ‘energies’ in virial equilibrium as a conserved property in time. We may say that SPM advances a229

scalar field model of matter with the non-dynamical ingredient of a preserved interaction between kinetic and potential energy230
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densities. We speculated here that this ‘equilibrium’ could be the result of a dynamical process at the exit from an epoch of231

inflation. Overall, a simplified description of the Higgs field stands out as a candidate for realizing such a scenario [8, 16, 21].232

The Friedmannian kinematics of this (flat) universe model is the simplest realization of a scale factor that traces the (flat) light233

cone. Arguing from an observational cosmology perspective, this universe model appears to lie in between a matter-dominated234

evolution (only ‘mass’) and a dark energy-dominated evolution (only ‘space’), see figure 1, where we used the wording of235

the standard cosmological model that in its evolution interpolates in time from the matter-dominated era to the dark energy-236

dominated era. As already discussed, it is not the point of the present analysis to optimize this universe model to comply best237

with current observational constraints. We could do so by invoking a nonvanishing cosmological constant also in this model. Or,238

as we showed, allowing for a negative constant curvature in this model would not change the behaviour towards the dark energy-239

dominated era. A further important ingredient comes from inhomogeneous cosmologies that would help in this optimization240

process.241

Inhomogeneous cosmologies will reveal important consequences of SPM that go beyond a mere effective description in the242

world of homogeneous cosmologies. It will be interesting to ask whether manifestations like ‘motion’, ‘inertia’, ‘gravitational243

acceleration’ or ‘curvature’ would also allow for different interpretations.244

A. Newtonian thoughts about SPM in inhomogeneous models245

Recalling our Newtonian motivation leading to stationarity in the homogeneous models, Eq. (5), we may repeat this consider-246

ation in the inhomogeneous case. First, the field equation (5) is also valid for inhomogeneous fields,247

∇ · g = ϵ + 3
c2 p , (34)

as well as the equation of state (setting again c = 1),248

p = −1
3
ϵ . (35)

The stationarity condition dvh/dt = gh = (ä/a)x = 0 for a homogeneous velocity field vh translates into a stationarity condition of249

the inhomogeneous velocity field v, now invoking pressure gradients: Euler’s equation, written in an inertial coordinate system,250

provides for a stationary velocity field an equilibrium relation between the gravitational acceleration and the pressure gradient,251

or energy density gradient, respectively:252

d
dt

v = 0 ⇒ g =
1
ϵ
∇p = −1

3
∇p

p
= −1

3
∇ϵ
ϵ
, (36)

where in the last two equations we have inserted (35). Since energy density is positive and pressure negative, we conclude253

that both for negative (positive) energy density gradient and negative (positive) pressure gradient we have positive (negative)254

gravitational acceleration in this stationary situation. Thus, the same process is occurring in both a homogeneous and an inho-255

mogeneous setting: in a homogeneous environment there is no net gravitational force. However, in an inhomogeneous setting256

there is motion and acceleration.257

B. Interpretation of space emission patterns258

The interpretation within SPM associates to the negative pressure the phenomenology of ‘emission of space’. According to259

this, a fluid element (henceforth called ‘object’) can be said to be moving if it has a non-uniform space emission pattern. SPM260

states that gravitational acceleration can be defined as any change in an object’s space emission pattern and is a consequence261

of the partial inhibition of an object’s space emission due to negative pressure caused by the space emission of surrounding262

matter. If the pressure around an object is not uniform due to matter inhomogeneities surrounding the object, the object will emit263

more space in the direction of the least pressure resulting in an increase in local expansion (acceleration) in the direction of the264

smaller pressure/less matter. If the pressure around an object is uniform, it is still partially inhibiting the object’s emission of265

space but in a uniform manner. In this case, there is no change in the object’s movement. However, if the surrounding uniform266

pressure is equal to the average pressure of the Universe, the result is more space being emitted in all directions. This represents267

global expansion. Based on this, effective space emission represents what in the standard model would be dark energy, but268

here it is not an independent component. Pressure/acceleration resulting from this space emission represents energy associated269

with the overall gravitational manifestations of matter. If there were only mass, the resulting gravitational effect would lead to270

deceleration, while SPM leads to an exact compensation of this gravitational effect through volume production.271
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V. DISCUSSION272

In this paper we have put forward a paradigm that allows us to think differently about the nature of matter and its relation273

to volume expansion, arguing with respect to the interpretation freedom allowed for the energy-momentum source in Einstein’s274

equations. SPM assigns to matter the permanent property of space emission. We have introduced this concept on the level of an275

equation of state that governs the matter model. We abbreviated the actual process of volume production through the presence276

of matter in terms of an already established energetic equilibrium between a ‘stiff’ component (matter) and a ‘dark energy-277

like’ component (volume production). This particular choice was motivated by equilibrium considerations resulting from the278

paradigm. The so-defined equilibrium is best illustrated in the homogeneous situation, but as we showed, can be generalized to279

the inhomogeneous situation. The phenomenological realization of this matter model is furnished through the fluid analogy of a280

scalar field with an equation of state in ‘virial equilibrium’.281

Conservatively speaking, we have in this paper analyzed a scalar field fluid model in ‘virial equilibrium’ that features in-282

teresting aspects in between a matter-dominated and a dark energy-dominated cosmology. Although, taken at face value, the283

resulting expansion law falls short of matching observational cornerstones (it does fit with the energy content, but not with the284

model-dependent age of the Universe), we argued that the corresponding building stones can be translated to an averaged inho-285

mogeneous cosmology that would allow us to optimize the SPM model to achieve a better match to observations by including a286

cosmological constant or cosmological backreaction. This we did not attempt here.287

The presented framework relies on an already established equilibrium between ‘presence of matter’ and ‘volume production’288

which hints to the possibility of a dynamical process that leads to this equilibrium. Hence a link to dynamical pre-phases such289

as an inflationary phase is suggested. The natural candidate for this scalar field may derive from the Higgs boson.290

We do not invoke or discuss microscopic thoughts about such a property of matter. This would be highly speculative, and291

comparative to efforts of explaining ‘dark energy’ from the vacuum energy of space. Possible routes of understanding micro-292

scopic properties will immediately lead to questions about those (quantum or classical) properties of matter that would manifest293

themselves as ‘space-emitting’, cf. [14] and [22]. We leave it to the reader to be inspired by the phenomenological scenario294

that we presented, being guided by the new interpretation possibilities of the Space Production Model without contradicting295

fundamental concepts of general relativity.296

297
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