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Abstract 

An in-depth description of a forgotten matrix operation, the reversal 
operator, is performed. The properties of such an operation are also given. 
Ancillary descriptions of matrix regions that are not often used, like the anti-
diagonal, are also discussed.  
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1. Introduction 

The author is aware of a large amount of literature in the form of books 
related to structure, manipulation, and solving equations involving matrices 
and vectors (considered here as row or column matrices). Thus, the aim of 
the present study cannot be an exhaustive bibliographic description. 
However, a literature résumé will be given in any way to provide a biased 
point of view, which will be dealt with here. 

Perhaps the readers have in mind the basic definitions of Linear Algebra both 
in teaching volumes [1, 2] and in specialized treatises like the old book of 
Wilkinson [3], a compendium of the Linear Algebra techniques for 
computational purposes, with the two-volume practical treatise [4] mainly 
based on the previous Wilkinson’s book. The exhaustive study of Durand [5] 
is of similar interest, where the most interesting Linear Algebra problems are 
studied and solved. One can obtain more recent information in [6].  
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Surely, the readers will know the words reversal, reverse, and reversing, 
among other meanings and uses, in certain aspects of time description [7,8,9] 
they are often encountered. However, as far as the present author knows, 
such wording is scarcely used enough in mathematics [10], if not at all, as 
some operation to manipulate matrices in a Linear Algebra context. 

This paper describes how a reversal operator acting on matrices and vectors 
might be defined, by what means one can set the reversal of a matrix, 
transform matrix elements upon reversal, the structure of reverse matrices, 
and the relations with other well-known operators and operations acting over 
and belonging to matrix algebra. 

The present paper is structured so that first, one can set the vector reversal 
and its properties and purpose. After this initial setup, one can discuss the 
structure of square matrix elements as a step to define reversal in them. At 
this stage, one will describe the concept of anti-diagonal and the new matrix 
regions that one can add to the already known ones. After this, one discusses 
several aspects of matrix reversal, including the definition of a reversal 
matrix, which reverses a vector via a simple matrix product. This study 
continues with the action of the reversal operator upon the matrix product, 
the determinant of a matrix, and the matrix inverse. 

 

2. Vector Reversal 
 

2.1. Definition and symbols of row and column vectors 

Let’s suppose an N-dimensional vector space 𝑉!(ℚ), where one has chosen 
the field ℚ instead of ℝ, stressing the computational background of vector-
matrix operations developed in this study.  

Choosing to represent a vector, noted by ⟨𝒂|, in the form of a row vector, 
then one can write:  

⟨𝒂| = (𝑎", 𝑎#, 𝑎$, . . . 𝑎!) ∈ 𝑉!(ℚ), 

one selects vectors this way instead of the equivalent column ket symbols 
because this row form is easier to write explicitly than the equivalent column 
dual counterpart. Such consideration becomes easy to accept, taking into 
account that there is a straightforward relation between both representations 
involving the dual vector space 𝑉!∗(ℚ) and the transposition of row into 
column vectors: 

∀⟨𝒂| ∈ 𝑉!(ℚ) → ∃|𝒂⟩ = ⟨𝒂|& ∈ 𝑉!∗(ℚ). 
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2.2. Reversal Operator Definition 

The reverse of any vector belonging to the space 𝑉!(ℚ) is defined and noted 
as: 

∀⟨𝒂| ∈ 𝑉!(ℚ) → ∃⟨𝒂|' = (𝑎!, 𝑎!(", 𝑎!(#, . . . , 𝑎") ∈ 𝑉!(ℚ). 

Therefore, a superscript R on the right side of the vector symbol represents 
the reversal operator. 

Also, if necessary, one can use the following equivalent notations to denote 
the reversed vectors under the reversal operator: ⟨𝒂|' = ⟨𝒂'|. 

 

2.3. Properties 

With this definition above, the reversal of a vector is a linear operation 
similar to the transposition or the conjugation, as one can easily find: 

1)		∀{⟨𝒂|, ⟨𝒃|} ⊂ 𝑉!(ℚ): (⟨𝒂| + ⟨𝒃|)' = ⟨𝒂|' + ⟨𝒃|' 

2)		𝜆 ∈ ℚ ∧ ⟨𝒂| ∈ 𝑉!(ℚ): (𝜆⟨𝒂|)' = 𝜆⟨𝒂|' 

3)		∀⟨𝒂| ∈ 𝑉!(ℚ): (⟨𝒂|')' = ⟨𝒂| 

4)		∀⟨𝒂| ∈ 𝑉!(ℚ): (⟨𝒂|&)' = (⟨𝒂|')& = |𝒂⟩' 

Any vector: ⟨𝒊| ∈ 𝑉!(ℚ), whenever: ⟨𝒊|' = ⟨𝒊|, then one can call it reversal 
invariant. For instance, the unity vector ⟨𝟏| = (1,1,1, . . . ,1) and all its 
homothecies are reversal invariant in any vector space dimension. 

2.4. Reversal and Inward Product of Vectors 

Concerning the inward product [11] of two vectors, defined as: 

∀{⟨𝒂|, ⟨𝒃|} ⊂ 𝑉!(ℚ): ⟨𝒑| = ⟨𝒂| ∗ ⟨𝒃| = {𝑝) = 𝑎)𝑏)|𝐼 = 1, 𝑁} ∈ 𝑉!(ℚ), 

then, the reversal operation acts like an operation distributed within the 
inward product: 

(⟨𝒂| ∗ ⟨𝒃|)' = ⟨𝒂|' ∗ ⟨𝒃|'. 

2.5. Reversal and Scalar Product 

Thus, the scalar product of two vectors is invariant under reversal: 

⟨𝒂|𝒃⟩ = F⟨𝒂| ∗ ⟨𝒃|G =H𝑎)𝑏)

!

)*"

∧	
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⟨𝒂|𝒃⟩' = F⟨𝒂| ∗ ⟨𝒃|G' = ⟨⟨𝒂|' ∗ ⟨𝒃|'⟩ = H𝑎)𝑏)

"

)*!

=H𝑎!()+"𝑏!()+"

!

)*"

⇒	

⟨𝒂|𝒃⟩ = ⟨𝒂|𝒃⟩' 

2.6. Reversal and Euclidean Norms 

Therefore, the Euclidean norm of a vector is invariant upon reversal because: 

⟨𝒂|𝒂⟩ = ∑ 𝑎)#!
)*" = ∑ 𝑎)#"

)*! = ∑ 𝑎!()+"#!
)*" = ⟨𝒂'|𝒂'⟩ = ⟨𝒂|𝒂⟩'. 

2.7. Half-reversal Euclidean Norms 

However, there is the possibility to define the half-reversal Euclidean norm 
of a vector, like: 

⟨𝒂|𝒂'⟩ = ⟨𝒂'|𝒂⟩ = ∑ 𝑎)𝑎(!()+")!
)*" = F⟨𝒂| ∗ ⟨𝒂'|G = F⟨𝒂'| ∗ ⟨𝒂|G. 

An example illustrates this interesting property: 

⟨𝒂| = (1 2 3) ⇒ ⟨𝒂|𝒂⟩ = 14 

⟨𝒂'| = (1 2 3)' = (3 2 1) ⇒ ⟨𝒂'|𝒂⟩ = F⟨𝒂'| ∗ |𝒂⟩G = 10. 

2.8. Invariance of Higher Order Norms 

One might write higher-order norms as complete sums of inward power 
vectors.  

Using the following definition of the inward power of any vector: 

∀⟨𝒂| ∈ 𝑉!(ℚ) ∧ ∀𝑃 ∈ ℚ: ⟨𝒂|[/] = (𝑎"/, 𝑎#/, 𝑎$/, . . . 𝑎!/), 

when the power is attached to a natural number ∀𝑃 ∈ ℕ, then the P-th order 
norm of the vector can be defined as: 

𝑵𝑷[⟨𝒂|] = ∑ P𝒂𝑰𝑷P𝑵
𝑰*𝟏 = FP⟨𝒂|[𝑷]PG. 

Such a definition is invariant by vector reversal, as one can write: 

𝑵𝑷Q⟨𝒂𝑹PR = ∑ P𝒂𝑵(𝑰+𝟏𝑷 P𝑵
𝑰*𝟏 = STU⟨𝒂𝑹P

[𝑷]UVW = 𝑵𝑷[⟨𝒂|]. 

 

3. Restructuration of Square Matrices: Definition of the A-diagonal 
Elements. 

One of the most used structures of square (𝑁 × 𝑁) matrices is defining the 
diagonal and the subdiagonal elements parallel to it. This possibility gives 
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rise to particular matrix types, such as triangular, tridiagonal, and band 
matrices. 

As it is well-known, the diagonal of a matrix corresponds to elements starting 
at the position (1,1) and ending at the position (𝑁, 𝑁); that is, the index set, 
which one can describe as: {(𝐼, 𝐼)|𝐼 = 1, 𝑁}; or it is of interest to define the 
diagonal element set as: 

 𝐷𝑖𝑎𝑔(𝑨) = (𝑎""; 𝑎##; . . . ; 𝑎!!) = (𝑎))|𝐼 = 1, 𝑁). 

Among other possibilities not often employed, alternative structures exist 
within the elements of square (𝑁 × 𝑁) matrices. One can define the anti-
diagonal (or shortly: a-diagonal), corresponding to the elements starting at 
the position (1, 𝑁) and ending at the position (𝑁, 1); that is, in this case, the 
set of elements with indices: {(𝐼, 𝑁 − 𝐼 + 1)|𝐼 = 1, 𝑁}, or using a similar 
definition to the diagonal: 

 𝐴 − 𝐷𝑖𝑎𝑔(𝑨) = `𝑎"!; 𝑎#(!("); . . . ; 𝑎!"a = `𝑎)(!()+")|𝐼 = 1, 𝑁a. 

Following the programming rules of some high-level languages like Python, 
one can construct a better description of a matrix’s a-diagonal with the index 
range {0, 𝑁}. In doing so, one can set the matrix dimension to 
`(𝑁 + 1) × (𝑁 + 1)a. However, using this indexing possibility, one can 
write the a-diagonal set of indices like: {(𝐼, 𝑁 − 𝐼)|𝐼 = 0, 𝑁}. 

Such procedures permit the identification of new matrix regions as anti-
diagonal and sub-anti-diagonals and also identify matrix anti-triangles, 
which will be in the upper and lower regions seen concerning the anti-
diagonal. One can also augment matrix classification because of the presence 
of these matrix regions. Therefore, one can talk about anti-diagonal matrices, 
anti-triangular matrices, etc. 

 

4. The Vector Indices of an A-diagonal of a Square Matrix 

To characterize the role of the a-diagonal of a matrix even better, one can 
transform the a-diagonal row indices into a vector. The a-diagonal column 
indices are contained in the reversal on the row indices vector. That is: 

{(𝐼, 𝑁 − 𝐼)|𝐼 = 0, 𝑁} ≡ {⟨𝒓|, ⟨𝒓|'} →	
⟨𝒓| = (0,1,2, . . . 𝑁) ≡ {𝐼|𝐼 = 0, 𝑁}	
⟨𝒓|' = (𝑁,𝑁 − 1,𝑁 − 2, . . .1,0) ≡ {𝑁 − 𝐼|𝐼 = 0, 𝑁} 
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5. Tensor Sum of Two Vectors Indices 

An interesting numerical subproduct of this set of vector indices {⟨𝒓|, ⟨𝒓|𝑹}, 
which one can use to discuss the Goldbach conjecture [12,13] and the Fermat 
theorem [14], is the structure of what can be called the tensor sum of them.  

One can easily define the tensor sum of two indices as: 

𝑺! = ⟨𝒓| ⊕ ⟨𝒓|' ⇒ ∀𝐼, 𝐽:	
𝑆)6 = 𝐼 + 𝐽 ≡ 𝑟) + 𝑟6' = 𝑟) + 𝑟(6()) = 𝐼 + (𝐽 − 𝐼) = 𝐽, 

whenever the range of both subindexes starts at 0. As a result of this 
construct, the a-diagonal and sub-a-diagonals of an index tensor sum bear 
the column index used as a unique element.   

Therefore, one can say that the sub-a-diagonals of the tensor sum matrices 
𝑺! of arbitrary dimension contain the natural number of the starting column. 
The a-diagonal of 𝑺! contains the associated dimension number 𝑁.  

For example, choosing 𝑁 = 4, then the matrix 𝑺7 will have the form: 

𝑺7 =

⎝

⎜
⎛
0 1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8⎠

⎟
⎞

. 

 

6. Reversal Matrix 

One can define the reversal matrix 𝑹 as a matrix similar to a diagonal matrix 
in the form of an a-diagonal one. It has been previously defined as the 
exchange matrix [15], but the naming using the reversal adjective is better 
within the present paper’s ideas. In this case, the matrix 𝑹 is a null matrix 
with a unit principal a-diagonal. The elements in the a-diagonal consist of 
matrix elements perpendicular to the diagonal and made of 1s. One can 
define this structure as: 

𝑹! = 𝐴 − 𝐷𝑖𝑎𝑔(𝑹!) = t𝑟!;)6 = 𝛿)(!()+")|𝐼 = 1, 𝑁v →	

𝑹9 =

⎝

⎜
⎛
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0⎠

⎟
⎞
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The reversal matrix can be used to reverse arbitrary vectors of the adequate 
dimension. Concerning the row vectors, the transformation acts on the right 
side of the vector. One can write: 

∀⟨𝒂| ∈ 𝑉!(ℚ): ⟨𝒂|' = ⟨𝒂|𝑹!. 

Also, the matrix 𝑹! is involutory, or self-inverse, thus: 

𝑹!# = 𝑰!. 

 

7. Reversal of a Matrix 

Once one knows that matrix elements can be reordered into an isomorphic 
row (or column) vector, one can consider any matrix reversal procedure a 
trivial algorithm. Then, one can reduce matrix reversal to the algorithm of a 
vector reversal. But it is interesting to discuss matrix reversal as an internal 
matrix operation on the same footing as conjugation, transposition, and 
inversion. 

The action of the reversal operator on an arbitrary matrix can be defined 
through an algorithm as follows: first, the reversal operator acts on the set of 
matrix rows or columns, reversing it; second, it reverses every resultant row 
or column.  

For (𝑀 × 𝑁) matrices, one can write using a column decomposition: 

𝑨 = t𝑎)6|𝐼 = 1,𝑀; 𝐽 = 1, 𝑁v ≡ `P𝒂6G|𝐽 = 1, 𝑁a ⇒	

𝑨' = `P𝒂6G|𝐽 = 1, 𝑁a
'
= TP𝒂6G

'|𝐽 = 𝑁, 1V 

One can define the same algorithm for a matrix representation in the row 
form.  

For higher dimensionalities, like in the case of hypermatrices or high-order 
tensors, whose elements can be supposed to contain matrices in turn, the 
reversal operator acts reversing the order of submatrices first, then reversing 
the order of the lower representation submatrices until the above action on 
matrices and vectors is found.  

A simple example can be easily given: 

 

𝑨 = y
1 2 3
4 5 6
7 8 9

{ = yy
1
4
7
{ y

2
5
8
{ y

3
6
9
{{ ⇒	
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𝑨' = yy
3
6
9
{
'

y
2
5
8
{
'

y
1
4
7
{
'

{ = y
9 8 7
6 5 4
3 2 1

{ 

If a row decomposition is chosen for the matrix above, then one can write: 

𝑨 = |
(𝟏 𝟐 𝟑)
(𝟒 𝟓 𝟔)
(𝟕 𝟖 𝟗)

� ⇒ 𝑨𝑹 = |
(𝟕 𝟖 𝟗)𝑹

(𝟒 𝟓 𝟔)𝑹

(𝟏 𝟐 𝟑)𝑹
� = y

𝟗 𝟖 𝟕
𝟔 𝟓 𝟒
𝟑 𝟐 𝟏

{ 

Therefore, the reversal of a matrix leaves the matrix dimension invariant. 

 

8. Reversal of a Matrix Product 

The reversal in the sum and product by a scalar or the inward product of 
matrices behaves like the already discussed formalism in the vectors because 
of the isomorphic reasons already given. However, reversal over matrix 
multiplication shall be studied in detail. 

One can say that: 

𝑷 = 𝑨𝑩 ⇒ 𝑷' = (𝑨𝑩)' ≡ 𝑨'𝑩' 

A simple example provides initial information: 

𝑨 = T𝒂 𝒃
𝒄 𝒅

V ∧ 𝑩 = T𝟏 𝟐
𝟑 𝟒V → 𝑨𝑩 = T𝒂 + 𝟑𝒃 𝟐𝒂 + 𝟒𝒃

𝒄 + 𝟑𝒅 𝟐𝒄 + 𝟒𝒅V → 

𝑨' = T𝑑 𝑐
𝑏 𝑎

V ∧ 𝑩' = T4 3
2 1V ∧

(𝑨𝑩)' = T2𝑐 + 4𝑑 𝑐 + 3𝑑
2𝑎 + 4𝑏 𝑎 + 3𝑏V 

𝑨𝑹𝑩𝑹 = T𝟒𝒅 + 𝟐𝒄 𝟑𝒅 + 𝒄
𝟒𝒃 + 𝟐𝒂 𝟑𝒃 + 𝒂V ⇒

(𝑨𝑩)𝑹 

Thus, the matrix reversal seems to be distributive concerning the matrix 
product.  

However, this characteristic shall be generally demonstrated. To do this, one 
can write: 

[𝑨𝑩])6 = H 𝑎):𝑏:6 →
!

:*"

	

[𝑨𝑩])6' = [𝑨𝑩](!()+")(!(6+") = H 𝑎(!()+")(:)

!

:*"

𝑏(:)(!(6+") =	
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															 H 𝑎(!()+")(!(:+")

!

:*"

𝑏(!(:+")(!(6+") = [𝑨'𝑩'])6 

A less entangled demonstration can be obtained, realizing that in a matrix 
product, between two compatible matrices, each product element is just the 
scalar product of a row of the left side matrix by the right side column. 

That is, one can write: 

[𝑨𝑩])6 = F𝒂)P𝒃6G →	

[𝑨'𝑩'])6 = S⟨𝒂)|' ∗ P𝒃6G
'
W = S`⟨𝒂)| ∗ P𝒃6Ga

'
W = [(𝑨𝑩)'])6 

Thus, a similar demonstration to the previous one is obtained. One can 
deduce that the reversal of a matrix product corresponds to the product of the 
reversed matrices present in the product. 

 

9. Determinant of a Reversed Matrix 

It is easy to deduce that the determinant of a square matrix is invariant 
concerning the reversal operation as defined before. That is: 

𝐷𝑒𝑡|𝑨| = 𝐷𝑒𝑡|𝑨'| 

The reason for this invariance is easy to understand, as a (𝑁 × 𝑁) square 
matrix reversal corresponds to an even number of row-column interchanges 
precisely 2𝑁 of them. Determinants change the sign for every interchange of 
columns or rows; thus, an even number of interchanges leaves the 
determinant invariant. 

 

10. Reversal of the Inverse of a Matrix 

Non-singular (𝑁 × 𝑁) matrices: 𝑨 = t𝑎)6|𝐼, 𝐽 = 1, 𝑁v, possess a non-null 
determinant, that is: 𝐷𝑒𝑡|𝑨| ≠ 0, and in this case, an inverse exists: 𝑨(" =
�𝑎)6

((")|𝐼, 𝐽 = 1, 𝑁�, concerning the matrix product. Moreover, one can write: 

𝑨𝑨(" = 𝑨("𝑨 = 𝑰!, 

being: 𝑰! = t𝛿)6|𝐼, 𝐽 = 1, 𝑁v the unit matrix of dimension (𝑁 × 𝑁). 
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One can describe the reversal of the inverse of a matrix using the reversal 
behavior on matrix multiplication. Taking into account the invariance of the 
unit matrix upon reversal: 𝑰!' = 𝑰!, one can write: 

(𝑨𝑨(")' = (𝑨("𝑨)' = 𝑰! ⇒ 𝑨'𝑨(' = 𝑨('𝑨' = 𝑰!, 

This result implies that the inverse of the reverse of a matrix is the reverse of 
the inverse. 

 

11. Discussion 

The reversal of vectors and matrices of arbitrary dimension has been studied. 
As a result, a new operator can be adopted, acting similarly to the 
conjugation operator but reordering the final elements of the involved 
matrix. Thanks to such a definition of a new internal operator, matrix 
elements, which usually are not mentioned, become relevant. The anti-
diagonal and the sub-anti-diagonals become relevant in this manner, adding 
more information to the study of matrix structure at the same footing as the 
role played by the diagonal and subdiagonals. Application of some aspects 
of this new point of view to number theory is underway. 
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