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Abstract

We introduce Generalizable 3D-Language Feature Fields (g3D-LF), a 3D representation model pre-trained on large-

scale 3D-language dataset for embodied tasks. Our g3D-LF processes posed RGB-D images from agents to encode

feature fields for: 1) Novel view representation predictions from any position in the 3D scene; 2) Generations of BEV

maps centered on the agent; 3) Querying targets using multi-granularity language within the above-mentioned

representations.Our representation can be generalized to unseen environments, enabling real-time construction and

dynamic updates. By volume rendering latent features along sampled rays and integrating semantic and spatial

relationships through multiscale encoders, our g3D-LF produces representations at different scales and perspectives,

aligned with multi-granularity language, via multi-level contrastive learning. Furthermore, we prepare a large-scale 3D-

language dataset to align the representations of the feature fields with language. Extensive experiments on Vision-and-

Language Navigation under both Panorama and Monocular settings, Zero-shot Object Navigation, and Situated

Question Answering tasks highlight the significant advantages and effectiveness of our g3D-LF for embodied tasks.

The code is available at https://github.com/MrZihan/g3D-LF.

1. Introduction

Embodied agents seek to understand 3D environments, enabling interaction with environments and human by performing

tasks such as Question Answering[1][2][3], Navigation[4][5][6][7][8][9], etc. To this end, various 3D scene representation

models tailored for embodied tasks have been proposed, including point cloud-based models[10][11][12], 3D occupancy[13],

hybrid voxel[14], and feature fields[15][16][17][18].

For multimodal embodied tasks in large-scale scenes, 3D representation models typically need: 1) generalization to

unseen scenes, 2) construct and update representations in real time, and 3) open-vocabulary semantic space. The

generalizable 3D feature fields provides the above advantages and has been widely explored across various embodied

tasks. Unlike point cloud-based models that depend on complete and low-noise point clouds which are less robust, the

implicit representations of the feature fields are derived from the 2D foundation model, preserving semantic

Qeios, CC-BY 4.0   ·   Article, December 4, 2024

Qeios ID: 841D1T   ·   https://doi.org/10.32388/841D1T 1/28

https://www.qeios.com/read/841D1T#reviews
https://www.qeios.com/profile/97180
https://www.qeios.com/profile/97181
https://github.com/MrZihan/g3D-LF


expressiveness even with few-shot observations from 3D scenes. As shown in Figure 1, the feature fields model uses

RGB-D images as input to encode and update implicit scene representations, which are then used to predict novel view,

panorama and BEV map representations associated with language through volume rendering. These predicted

representations can assist embodied tasks such as navigation planning[17][19][18], etc.

Figure 1. Our g3D-LF uses posed RGB-D images from the agent to predict novel view and BEV map representations at various scales within the

3D scene, aligned with multi-granularity language through 3D-language pre-training. The representation is applicable to embodied tasks like visual

navigation and embodied question answering, facilitating scene representation, language-guided querying, and navigation planning.

However, several significant drawbacks remain in these feature fields models: 1) The supervision for the predicted

representations comes from 2D foundation models, e.g., CLIP[20] and DINOv2[21] greatly limits the understanding for 3D

spatial relationships; 2) These models are trained without language supervision, resulting in a substantial gap with

language semantics; 3) The large-scale representations, e.g., panorama and BEV map from feature fields is particularly

challenging for long text understanding. These issues severely limit the potential of the feature fields model on language-

guided embodied tasks.
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To circumvent the above-mentioned issues, we introduce Generalizable 3D-Language Feature Fields (g3D-LF), a 3D

representation model pre-trained on large-scale 3D-language dataset for embodied tasks. We first curate and consolidate

a large amount of 3D-language data from previous works[22][23][24] to train our g3D-LF model. These data include 5K

indoor scenes and almost 1M language descriptions of multiple granularities. The text annotations include object

categories, object characteristics, object relationships, and the spatial layout of the entire scene, which are employed to

supervise multiscale encoders of the g3D-LF model. We then design our g3D-LF model to learn generalizable 3D-

language feature fields. To this end, we employ multi-level contrastive learning for multi-scale encoders to align predicted

representations and language across different scales. For the regional representation within the novel view, a contrastive

loss is calculated across 1,883 indoor object categories. For the predicted novel view representation, both the CLIP visual

representations and language are employed for contrastive training to balance generalization ability and language

alignment. For large-scale panorama and BEV representations, we propose the fine-grained contrastive learning based on

the affinity matrix to achieve long text understanding.

The pre-trained g3D-LF model is subsequently evaluated on various embodied tasks, including vision-and-language

navigation (monocular setting[19] and panorama setting[17]), zero-shot object navigation[6], and situated question

answering[1], gains significant performance improvements. In this work, our main contributions include:

We organize a large-scale 3D-language dataset to train the feature fields model.

This work proposes the Generalizable 3D-Language Feature Fields (g3D-LF) with a multi-level contrastive learning

framework to align the multi-scale representations of feature fields with multi-granularity language.

Our proposed g3D-LF model improves multiple baseline methods to state-of-the-art performance across various

embodied tasks, thus validating the potential of our generalizable feature fields for Embodied AI.

2. Related Work

Generalizable 3D Feature Fields.

The neural radiance field (NeRF)[25] has gained significant popularity in various AI tasks, which predicts the RGB image

from an arbitrary viewpoint in a 3D scene. Furthermore, some works leverage NeRF-based methods to predict novel view

representations instead of RGB values, enabling 3D semantic segmentation[26] and 3D language grounding[27]. However,

these methods with implicit MLP networks can only synthesize novel view representations in seen scenes, which makes it

difficult to generalize to unseen large-scale scenes and adapt to many embodied AI tasks (e.g., navigation). To this end,

some works[17][18][28] attempt to encode 2D visual observations into 3D representations (called Generalizable 3D Feature

Fields) via the depth map. Through volume rendering[25], these models decode novel view representations from the

feature fields and align them with open-world features (e.g., CLIP embeddings[20]). The 3D feature fields can generalize to

unseen scenes, enabling real-time construction and dynamic updates. However, the drawback of these models lies in the

fact that the supervision of their predicted representations comes from 2D visual models, which limits their performance in

language-guided embodied tasks. Our work offers a feasible approach to training the 3D feature fields model with large-
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scale 3D-language data.

Vision-and-Language Navigation.

Vision-and-Language Navigation (VLN) [7][8][29][30][31][32][33] requires the agent understand complex natural language

instructions and navigate to the described destination using low-level actions, e.g., turn left 15 degrees, turn right 15

degrees, or move forward 0.25 meters. To address inefficiencies and poor performance in atomic action prediction, some

works[34][35][19] develop waypoint predictors to generate several candidate waypoints around the agent. The navigation

policy model can then select the optimal waypoint as the next sub-goal and execute atomic actions to move, greatly

enhancing planning efficiency. In this context, how to represent waypoints and carry out planning have become critical.

Some works use a topological map[36][37] or BEV map[38][39][40] to represent semantic relationships between waypoints,

while some[17][19] explore feature fields to predict waypoint representations of novel views and improve navigation

planning. Our g3D-LF model further improves the performance of methods using feature fields.

Zero-shot Object Navigation.

In object-goal navigation[4][41][42], an agent is tasked with locating a specified object within indoor environments. Typically,

reinforcement learning[43] is used to train a policy network that predicts actions, while object detection[44][45] or

segmentation models[46][47][48] help identify the object. However, these navigation models are often limited to specific

objects, making open-vocabulary navigation challenging and hindering generalization in real-world applications[49]. To

address this issue, zero-shot navigation methods have emerged[5][50][51][6], leveraging Vision-and-Language Models

(VLMs)[20][52][53] to identify potential directions or areas containing the target, followed by using the pre-trained pointgoal

navigation models[54] to search the potential areas. Considering that general 2D VLMs are not fully suited for indoor 3D

environments and to the best of our knowledge, we are the first to attempt using the indoor 3D feature fields model for

zero-shot object navigation.

Situated Question Answering.

The Embodied Question Answering tasks[2][55][3] require the agent to observe the 3D environment and answer questions

from humans. Furthermore, Situated Question Answering[1] requires advanced 3D spatial understanding of the agent to

answer the question and to interpret and locate the position and orientation of the textual description. Compared to

previous works[11][22][14] using point clouds, we only use RGB-D images to encode feature fields and leverage their multi-

scale representations for localization and question answering.

3. Our Method

3.1. 3D-Language Data

We prepare a large-scale 3D-language dataset to align the representations of the feature fields with language. Our

Qeios, CC-BY 4.0   ·   Article, December 4, 2024

Qeios ID: 841D1T   ·   https://doi.org/10.32388/841D1T 4/28



dataset includes about 5K 3D indoor scenes, mainly sourced from the single-room scans ScanNet[56], multi-room house

scans of the Habitat-Matterport 3D dataset (HM3D)[57][58], and the photo-realistic multi-room scenes of Structured3D[59].

The total number of language annotations is close to one million, which are mainly sourced from the SceneVerse

dataset[22]. SceneVerse uses 3D scene graphs and large language models (LLMs) to automate high-quality object-level

and scene-level descriptions. The annotations also includes the large set of human-annotated object referrals[23].

We organize the dataset as follows to streamline feature fields training: 1) For each 3D scene, the agent can observe

numerous RGB-D images and its corresponding poses as inputs. 2) An instance-level point clouds mark each instance in

the scene with an instance ID which can be used to retrieve associated language descriptions from the database. It is

thuseasy to get instances that are near any given point in the 3D scene and obtain their language descriptions. This

enables thetraining code to efficiently obtain language annotations for specific regions within a novel view or a BEV map.

Figure 2. Overview of our g3D-LF model.  Our model encodes the observed RGB-D images into the feature fields (consists of many feature

points). Through aggregating k-nearest features, the MLP networks predict the latent feature and volume density of sampled points along the

rendered ray. The hierarchical encoders further generate representations of novel view, panorama, and BEV map, then conduct multi-level

contrastive learning with multi-granularity language.

3.2. 3D-Language Feature Fields

Feature Fields Encoding.

As shown in Figure 2, our g3D-LF model follows HNR[17] to take a posed RGB image as input and uses the CLIP image

encoder to extract fine-grained visual features {gt , i ∈ R768}Ii=1. gt , i denotes the i-th feature patch of the CLIP feature map

extracted from t-th frame observed by the agent. We then map gt , i to the corresponding 3D world coordinates {Pt , i}
I
i=1
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 using the depth map and camera parameters.

For each feature gt , i, the observed horizontal orientation θt , i and the regional size st , j are also calculated and stored to

enhance the spatial representation. The set of feature points M can therefore be dynamically updated as:

Mt = Mt−1 ∪ {gt , i, Pt , i, θt , i, st , i}
I
i=1.

Ray-View-Panorama Encoding.

The MLPview network aggregates nearby features within feature fields M and encode their spatial information[17] (ie,

relative positions and relative directions) to predict semantic representations r ∈ R768 and volume density σ ∈ R1 at any

point from any direction in the continuous fields.

For each novel view, our g3D-LF model generates a feature map R ∈ R12×12×768 by predicting subregion features

through volume rendering within feature fields. The model samples N points along the ray from the camera position to

each subregion center to search for the k-nearest features and predicting volume density σn and latent representation rn,

which then are composited into a subregion feature:

R (u,v ) =

N

∑
n=1 τn(1 − exp( − σnΔn))rn,

where τn = exp( −

n−1

∑
i=1 σiΔi).

Here, τn represents volume transmittance and Δn is the distance between sampled points. R (u,v ) denotes the regional

feature at the u-th row and v-th column of the novel view feature map R. We integrate context of the surrounding by

feeding the feature map R together with a learnable view token V ∈ R768 into the transformer-based view encoder to

obtain the encoded R ′ and novel view representation V ′ that represent the entire novel view. Furthermore, to reason

relationships across multiple views within a panorama, our g3D-LF model predicts 12 novel views {V ′
i}

12
i=1 around the

viewpoint at 30-degree intervals and combines them into a transformer-based panorama encoder to obtain {V ″
i }12

i=1.

Ray-BEV Encoding.

The novel view and panorama representations are insufficient for larger-scale scene understanding. To circumvent this

problem, we propose to construct BEV map representation via our g3D-LF as shown in Figure 2. Unlike novel view

prediction where rays are emitted from the viewpoint along the viewing cone, the rendering rays for the BEV map are

rendered vertically from top to bottom. The starting point of the rendered ray is set slightly below the ceiling to avoid being

blocked.

Specifically, the MLPBEV network is used to aggregate the nearest feature points to the sampled point and predict its

semantic representation r̂n and volume density σ̂n in the continuous field. Subsequently, the ray representation 

R̂
(h,w) ∈ R768 can be obtained using the similar volume rendering method of Equation 2, where (h, w) denotes the h-th
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row and w-th column of the BEV map R̂ ∈ R168×168×768. To cover the large scene, the BEV map R̂ encompasses a 

16.8m × 16.8m area centered on the agent. After downsampling the BEV map to R̂conv ∈ R24×24×768 through a non-

overlapping 7 × 7 convolution layer, the transformer-based BEV map encoder captures semantic relationships between

different regions to get the encoded BEV map representations R̂ ′ ∈ R24×24×768.

3.3. Multi-level Contrastive Learning

Balanced Object-level Alignment.

We apply contrastive supervision using an object vocabulary O ∈ R1883×768 that spans 1,883 indoor object categories for

supervision of the MLPview and MLPBEV networks to predict latent features in feature fields. For ray representations R

obtained via volume rendering, the cosine similarities {CosSim(R, Oi)}
1883
i=1  are computed with each vocabulary embedding.

The training objective is to maximize and minimize similarity for the correct and other object category, respectively, i.e.:

Lobject = CrossEntropy({CosSim(R, Oi)/τ}
1883
i=1 , Ogt),

where Ogt denotes the ground-truth category and τ is the temperature coefficient for contrastive learning. Similarly, the

object alignment loss for the ray representations R̂ of the BEV map denoted as L̂object can also be calculated.

We notice the network struggles to recognize smaller objects such as the lamp due to the dominance of some objects

(e.g., floor and walls) leading to long-tailed distribution in the indoor scenes. To address this issue, we implement a

balanced loss that emphasizes harder-to-recognize objects. Specifically, the weight of loss for the rays of top 10% cross

entropy aresignificantly increased using a scaling factor α for ray representations within the novel view or BEV map. In

short, rays with higher cross entropy indicate harder-to-recognize objects and therefore have a higher loss weight.

Fine-grained Contrastive for Long Text

To enable our g3D-LF model to understand object relationships and spatial layouts, we propose a fine-grained contrastive

learning method for long text alignment. As shown in Figure 2, our g3D-LF aligns the BEV features in a window (e.g., 

5 × 5) with the long text features to enhance the representation of the BEV map for spatial semantics. Specifically,

centered on an instance, the BEV features {R̂
′
i}

25

i=1
 within the window are associated with L word features {Wl}

L
l=1

 from the

CLIP text encoder through an affinity matrix A:

A (i , l) = CosSim(R̂
′
i, Wl)/τ.

The highest L similarity scores (equal to the number of words) are extracted from the affinity matrix A, and their average is

used as the fine-grained similarity score between the BEV window and the long text features:

FineSim({R̂
′
i}

25

i=1
, {Wl}

L
l=1

) = Avg(Topk(A, L)).
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Denoting the BEV features within the i-th window as Bi and the j-th text features as Tj, the fine-grained contrastive learning

loss can be calculated as:

L̂
long_text =

1
J

J
∑
j=1CrossEntropy FineSim Bi, Tj

I
i=1

, j

+

1
I

I
∑
i=1CrossEntropy FineSim Tj, Bi

J
j=1

, i .

Similarly, our g3D-LF model performs fine-grained contrastive learning between encoded panoramic representations 

{V
′′

i}
12

i=1
 and long-text features {Wl}

L
l=1

 to compute the fine-grained contrastive loss Llong_text.

CLIP Knowledge Distillation

Since the 3D-language data is orders of magnitude smaller than image-language data (millions vs. billions[20]), our g3D-

LF model still distills visual features from CLIP model[20] to ensure robust generalization. Specifically, our g3D-LF uses

CLIP features extracted from the ground-truth novel view or corresponding region image for contrastive supervision on the

predicted new view representation V
′
, the panorama representation V

′′

i, and the BEV map representation 

^
Ri

′
, ie:

Lview_clip =

1
I

I

∑
i=1 CrossEntropy CosSim V′

i, Vgt
j /τ

J

j=1
, i ,

where Vgt
j  denotes the ground truth CLIP feature for j-th novel view representation V′

j. Similarly, the contrastive loss 

Lpano_clip for the panoramic representation and Lbev_clip for the BEV map can also be computed.

3.4. Embodied Tasks

To verify the effectiveness of our g3D-LF model for embodied tasks, we integrate the predicted representations from our

model into existing baseline methods and evaluates performance on Vision-and-Language Navigation, Zero-shot Object

Navigation, and Situated Question Answering tasks.

Vision-and-Language Navigation.

We evaluate the g3D-LF model on VLN tasks with two settings. The first setting is with the monocular camera, which only

allows the agent to observe the forward-facing view. As shown in Figure 3, the VLN-3DFF[19] is a monocular VLN model

that predicts candidate waypoints around the agent using a semantic map, and predicts each candidate’s representation

with generalizable feature fields[17] and then selects the optimal waypoint to move through a cross-modal graph

encoder[36][37]. Based on this baseline method, we incorporate novel view representations from our g3D-LF model and

input the BEV map into the cross-modal graph encoder following GridMM[39] to enhance spatial layout understanding. The

({ ( )} )

({ ( )} )

({ ( ) } )
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second setting is with the panorama camera, in which the agent can observe 12 RGB-D view images within the

panorama. Following HNR[17], a waypoint predictor[35] is used to predict candidate waypoints, and our g3D-LF model

generates panorama representations of these waypoints for navigation planning.

Figure 3. Monocular VLN framework based on VLN-3DFF [19].

Zero-shot Object Navigation.

As shown in Figure 4, unlike the baseline method VLFM[6] that uses the 2D foundation model BLIP-2[53] to calculate the

similarity between the target object and visual observations to construct the value map, we use our g3D-LF to predict the

value of potential regions. Although the monocular agent can only observe the forward view, our g3D-LF predicts 12 novel

view feature maps surrounding the agent within panorama based on historical observations, and calculates max similarity

in feature map with the target object. The text features of the target object are also used to calculate the similarity with

each region representation on the BEV map to obtain a larger-scale value map. Combining these two value maps, the

navigation agent prioritizes traveling to the candidate waypoint with the highest similarity score.
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Figure 4. Zero-shot object navigation framework based on VLFM [6].

Situated Question Answering.

A three-stage framework is shown in Figure 5, where we use our g3D-LF to train three transformer-based decoders for

position, orientation and answer predictions. First, the Localization Decoder predicts the heatmap for location of the

textual description based on the BEV map. Our g3D-LF model generates the panorama representations around the

predicted location, which are then processed by the Orientation Decoder to predict the orientation. Finally, the textual

description, question, BEV map, and panorama representations are fed into the Answer Decoder to generate the final

answer.
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Figure 5. The framework of situated question answering [1].

4. Experiments

4.1. Experiment Setup and Metrics

g3D-LF Pre-training.

We pre-train our g3D-LF model shown in Figure 2 on 5K 3D scenes. During training, 30 frames are uniformly sampled

from the RGB-D video of each scene in the ScanNet[56] dataset to construct the feature fields, with an additional frame

randomly selected as the novel view for prediction. The g3D-LF then predicts the panorama representation and BEV map

centered on the camera of this novel view. For each ray in the novel view or BEV map, the corresponding instance ID can

be searched by calculating the nearest instance point to the rendered surface within the annotated instance point cloud.

The language annotations of the novel view, panorama, and BEV map can thus be obtained by retrieving language

annotations with their instance IDs from the database for training. Due to the limited number of images per scene (fewer

than 20), we use all available images from the Structured3D[59] dataset for training. We follow HNR[17] for the

HM3D[57][58] dataset using the Habitat simulator[60] to randomly sample navigation trajectories and the observed RGB-D

images to predict the novel views and panoramas around candidate waypoints, and construct the BEV map centered on

the agent. The multi-level contrastive losses described in Section 3.3 are utilized to optimize the g3D-LF model.

Finally, we combine scenes from all datasets and pretrain our g3D-LF model for 50K episodes (about 10 days) on two
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RTX 6000 Ada GPUs. To ensure fair comparisons on downstream tasks, all training data only includes the train

split, the val and test splits are removed.

Vision-and-Language Navigation.

We evaluate the VLN model on the VLN-CE dataset[8] in both monocular[19] and panorama[17] settings. R2R-CE is

collected based on the Matterport3D[61] scenes with the Habitat simulator[60]. The R2R-CE dataset includes 5,611

trajectories divided into train, validation seen, validation unseen, and test unseen splits. Each trajectory has three English

instructions with an average path length of 9.89 meters and an average instruction length of 32 words. Several standard

metrics[7] are used to evaluate VLN performance: Navigation Error (NE), Success Rate (SR), SR given the Oracle stop

policy (OSR), Success Rate weighted by normalized inverse Path Length (SPL).

Zero-shot Object Navigation.

For object navigation, we evaluate our approach using the Habitat simulator[60] on the validation splits of two different

datasets HM3D[57] and MP3D[61]. The HM3D validation split contains 2,000 episodes across 20 scenes and 6 object

categories. The MP3D validation split contains 2,195 episodes across 11 scenes and 21 object categories. The main

metrics[7] include Success Rate (SR) and Success Rate weighted by normalized inverse Path Length (SPL).

Situated Question Answering.

Following ScanNet[56], the SQA3D dataset comprises 20.4k descriptions and 33.4k diverse questions, which is splited into

train, val, and test sets. The main metric is the Exact Match (EM@1) of the answer. Additionally, for localization

evaluation, Acc@0.5m and Acc@1.0m metric means the prediction is counted as correct when the predicted position is

within 0.5 meter and 1.0 meter range to the ground truth position. The Acc@15° and Acc@30° metric means the

prediction is counted as correct when the prediction orientation is within 15° and 30° range to the ground truth orientation.

4.2. Comparison with SOTA Methods

As shown in Table 1 and Table 2, we evaluate the VLN performance of our g3D-LF model on the R2R-CE dataset in both

monocular and panorama settings, respectively. Table 1 shows that our g3D-LF significantly outperforms previous

monocular VLN methods on the Success Rate (SR) metric, even compared to LLM-based methods such as NaVid[62] and

InstructNav[63]. Compared to the panorama setting, monocular VLN has the advantage of beingcompatible with a broader

range of real-world monocular robots. Our g3D-LF model overcomes the limitations of monocular cameras, enhancing the

multi-view and BEV perception capabilities of the agent for monocular VLN.

Table 1. Evaluation of VLN on R2R-CE with monocular setting. ∗

 denotes zero-shot method.
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aMethods LLM Val Unseen Test Unseen

  NE↓ OSR↑ SR↑ SPL↑ NE↓ OSR↑ SR↑ SPL↑

CM2 [64] × 7.02 41.5 34.3 27.6 7.7 39 31 24

WS-MGMap[65] × 6.28 47.6 38.9 34.3 7.11 45 35 28

NaVid[62] ✓ 5.47 49.1 37.4 35.9 - - - -

InstructNav∗[63] ✓ 6.89 - 31 24 - - - -

VLN-3DFF[19] × 5.95 55.8 44.9 30.4 6.24 54.4 43.7 28.9

g3D-LF (Ours) × 5.70 59.5 47.2 34.6 6.00 57.5 46.3 32.2

We follow HNR[17] to perform lookahead exploration through predicted candidate waypoint representations for the

panorama setting in Table 2. Although the results show minor performance gains and the advanatges are not as

pronounced as its monocular counterpart in Table 1, our g3D-LF model still achieves SOTA performance on the SPL

metric and demonstrated competitive results on the SR metric.

Methods LLM
Val Unseen Test Unseen

NE↓ OSR↑ SR↑ SPL↑ NE↓ OSR↑ SR↑ SPL↑

Sim2Sim[34] × 6.07 52 43 36 6.17 52 44 37

VLN-BERT[35] × 5.74 53 44 39 5.89 51 42 36

GridMM[39] × 5.11 61 49 41 5.64 56 46 39

Ego2-Map[66] × 4.94 - 52 46 5.54 56 47 41

DREAM[67] × 5.53 59 49 44 5.48 57 49 44

ScaleVLN[68] × 4.80 - 55 51 5.11 - 55 50

ETPNav[37] × 4.71 65 57 49 5.12 63 55 48

BEVBert[38] × 4.57 67 59 50 4.70 67 59 50

HNR[17] × 4.42 67 61 51 4.81 67 58 50

Energy[69] × 4.69 65 58 50 5.08 64 56 48

g3D-LF (Ours) × 4.53 68 61 52 4.78 68 58 51

Table 2. Evaluation of VLN on R2R-CE with panorama setting.

In Table 3 for the Zero-shot Object Navigation, our g3D-LF achieves SOTA performance in the SPL metric and achieves

competitive results in the SR metric. Notably, our g3D-LF is the only method that queries targets using feature fields

instead of VLM. Replacement of BLIP-2[53] in VLFM[6] with g3D-LF improves the navigation success rate (SR) by nearly

3%. Although the MP3D benchmark includes some targets outside the g3D-LF object vocabulary, our model still performs

well, demonstrating strong generalization. Compared to methods using LLM: InstructNav[63] and SG-Nav[70], our g3D-LF

also offers significant advantages in response time and computational cost.
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Methods LLM VLM Feature Fields
HM3D MP3D

SR↑ SPL↑ SR↑ SPL↑

ZSON[5] × ✓ × 25.5 12.6 15.3 4.8

ESC[50] ✓ ✓ × 39.2 22.3 28.7 14.2

VLFM[6] × ✓ × 52.5 30.4 36.4 17.5

InstructNav[63] ✓ ✓ × 58.0 20.9 - -

GAMap[71] ✓ ✓ × 53.1 26.0 - -

SG-Nav[70] ✓ ✓ × 54.0 24.9 40.2 16.0

g3D-LF (Ours) × × ✓ 55.6 31.8 39.0 18.8

Table 3. Evaluation of Zero-shot Object Navigation on the HM3D

and MP3D benchmarks.

In Table 4 for the Situated Question Answering task, our g3D-LF achieves good localization performance in metrics of

Acc@0.5m, Acc@1m, Acc@15° and Acc@30°. Although our performance on the answering accuracy (EM@1) is

significantly lower than that of LLM-based methods: LEO[11] and Scene-LLM[14], it is worth noting that our g3D-LF only

uses images as input without low-noise 3D point clouds. This actually offers a significant advantage in agent-centered

embodied tasks since it is more adaptable to unseen dynamic real-world environments, where the low-noise point clouds

are difficult to collect.

Methods LLM PCD Image
Position Orientation Answer

0.5m 1.0m 15° 30° EM@1

ClipBERT[72] × × ✓ - - - - 43.3

ScanQA[2] × ✓ × - - - - 46.6

SQA3D[1] × ✓ × 14.6 34.2 22.4 42.3 47.2

3D-VisTA[10] × ✓ × - - - - 48.5

SceneVerse[22] × ✓ × - - - - 49.9

LEO[11] ✓ ✓ × - - - - 52.4

Scene-LLM[14] ✓ ✓ ✓ - - - - 54.2

g3D-LF (Ours) × × ✓ 23.4 45.7 29.8 54.7 47.7

Table 4. Evaluation of Situated Question Answering (SQA3D) task.

PCD denotes methods that use point clouds as input, while Image

represents methods that use images as input.

4.3. Ablation Study

Perfromance impact of g3D-LF on embodied tasks.

In row 1 of Table 5, the performance of monocular VLN and object navigation drops significantly without representations
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from g3D-LF. In this setting, the VLN model only uses the CLIP features from the forward-facing view with features of all

other directions set to zero. The object navigation model uses BLIP-2[53] instead of g3D-LF to construct the value map.

Examining rows 2 and 3 shows that removing either the novel view or the BEV map reduces the performance of both two

tasks, highlighting the role of each g3D-LF module.

Novel views are crucial for monocular VLN.

As shown in row 1 and row 2 of Table 5, the novel view representations significantly boost VLN performance by

overcoming the narrow perception of the monocular camera[19], enabling the monocular agent to have panoramic

perception capabilities. To some extent, this confirms that novel view prediction is a very important and valuable capability

for monocular agents. Based on this capability, the g3D-LF model predicts the novel view representations of candidate

waypoints around the agent to construct the topological map for better navigation planning.

Object navigation requires balancing local and global targets.

As shown in row 3 of Table 5, we observe that relying solely on BEV representation significantly reduces object navigation

performance. This decline occurs because the global value map from the BEV map fails to select optimal nearby

waypoints if the target is far from these waypoints. In this case, a local value map constructed from novel views is also

essential to identify the optimal short-term goal, i.e., nearby waypoints around the agent.

View &
Pano

BEV
Monocular VLN

Object
Nav.

NE↓ OSR↑ SR↑ SPL↑ SR↑ SPL↑

× × 6.54 44.6 33.1 23.4 52.5 30.4

✓ × 5.78 58.3 46.9 32.7 53.9 30.8

× ✓ 6.02 53.1 42.8 26.5 50.2 27.1

✓ ✓ 5.70 59.5 47.2 34.6 55.6 31.8

Table 5. Ablation study for the modules of g3D-LF.

Table 6. Ablation study for the multi-level contrastive pre-training.

OBJ-CL: object-level contrastive learning. CLIP-CL: knowledge

distillation using CLIP visual features from ground-truth view. FG-

CL: fine-grained contrastive learning for long text understanding.
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OBJ-CL CLIP-CL FG-CL
Monocular VLN

Object
Nav.

NE↓ OSR↑ SR↑ SPL↑ SR↑ SPL↑

× × × 6.21 50.2 40.7 24.9 34.2 13.9

× ✓ × 5.84 56.1 44.6 31.1 47.6 27.8

✓ × ✓ 6.01 53.5 42.4 26.7 55.8 31.6

unbalanced ✓ ✓ 5.73 58.3 46.6 33.0 51.7 28.8

✓ ✓ coarse 5.81 57.1 45.7 33.2 55.5 31.2

✓ ✓ ✓ 5.70 59.5 47.2 34.6 55.6 31.8

Pre-training is essential for generalizable feature fields model.

Table 6 analyzes the impact of multi-level contrastive pre-training on downstream embodied tasks. As shown in row 1 of

Table 6, the performance on VLN and object navigation drops significantly when the model is optimized solely by the

navigation loss[37] without pre-training.

Both CLIP distillation and language supervision are indispensable.

For row 3 of Table 6 without supervision from the CLIP visual features, the VLN performance lags behind the model

distilled by CLIP. This suggests that millions of language annotations are still far from sufficient for g3D-LF pre-training,

and distilling representations from 2D foundation models to enhance semantic generalization remains necessary.

However, in Table 6, we can also see that language supervision significantly improves g3D-LF performance on embodied

tasks , the model performs poorly in row 2 when using only CLIP distillation.

Long-tail distribution limits object-level semantic learning.

As shown in row 4 of Table 6, the performance of object navigation decreases drastically without the balanced loss

mentioned in Section 3.3. The long-tail distribution of object categories in indoor environments leads models to overlook of

rare or small objects such as towels and cups, significantly limiting the ability of our g3D-LF model to query target objects.

Fortunately, row 6 of Table 6 shows that the balanced object alignment works well by balancing the weight for loss of

hard-to-recognize objects.

Fine-grained contrastive benefits long text understanding.

In the row 5 of Table 6, we use the [SEP] feature (single vector) from the CLIP text encoder to supervise panorama and

BEV representations. However, compared to the fine-grained contrastive learning in row 6, compressing long text into a

coarse vector significantly limits g3D-LF’s performance on long-text understanding tasks such as VLN. As shown in

Figure 2, fine-grained contrastive learning between long texts and windows within the BEV map helps g3D-LF understand

spatial layouts, overcoming the limitations of semantic representation in large-scale scenes.

Qeios, CC-BY 4.0   ·   Article, December 4, 2024

Qeios ID: 841D1T   ·   https://doi.org/10.32388/841D1T 16/28



Rays for
View

View Panorama Rays for BEV BEV

73.6 FPS
71.1
FPS

5.9 FPS 6.3 FPS
6.1
FPS

Table 7. Runtime analysis measured on one RTX 4090

GPU. FPS denotes Frames Per Second.

 

g3D-LF enables real-time inference. As shown in Table 7, we calculate the inference time of our g3D-LF model on the

val unseen split of the R2R-CE dataset in the VLN task. Our g3D-LF achieves novel view volume rendering at 73.6 FPS,

which slightly drops to 71.1 FPS when rays are further encoded by the View Encoder. For a panorama containing 12

views, the inference speed is 5.9 FPS. Due to the large rendered range, our g3D-LF renders BEV maps at 6.3 FPS, which

drops slightly to 6.1 FPS with the BEV Map Encoder. Our g3D-LF model adopts the same sparse sampling strategy as in

HNR[17], where the MLP network is only used to render sampled regions containing feature points nearby, while skipping

empty regions. This reduces rendering time by over 10 times, enabling real-time embodied tasks.

5. Conclusion

In this work, we propose Generalizable 3D-Language Feature Fields (g3D-LF), a 3D representation model pre-trained on

large-scale 3D-language data for embodied tasks. We organize the first large-scale 3D-language dataset for feature fields

training, demonstrating the feasibility of using generalizable feature fields for large-scale scene understanding, i.e.,

panorama and BEV. Our proposed g3D-LF leverages multi-level contrastive learning strategies such as balanced object

semantic alignment, fine-grained text alignment, and CLIP knowledge distillation to optimize generalized feature fields.

More importantly, the value of g3D-LF has been widely evaluated in multiple embodied tasks. We believe that our g3D-LF

can provide sufficient inspiration for subsequent research on feature fields and embodied AI.

Limitations and future works.

Our g3D-LF still has some limitations with significant potential for future research: 1) g3D-LF cannot be adapted to

dynamic environments, where objects or people are moving in real time. This requires better update strategies for implicit

representations. 2) g3D-LF has not been evaluated on dynamic tasks such as object manipulation. 3) The scale and

quality of 3D-language data used for training g3D-LF remain limited, which essentially restricts the ability of generalizable

feature field models. 4) The 3D feature fields combined with LLM can enable better text generation. These may become

the guiding directions for the next phase of generalizable feature fields.

Supplementary Material
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Appendix A. More Details of the g3D-LF Model

Model structure.

Figure 6 illustrates the structure of main modules in the g3D-LF model. Compared to HNR[17], g3D-LF improve the MLP

network for volume rendering by adding residual connections and replacing ReLU with LeakyReLU, which helps alleviate

gradient explosion and neuron death issues during HNR training. Since the number of k-nearest features is set to 4 and

the dimension of each aggregated feature is 768, the input dimension of both MLPview and MLPBEV networks is 3072. As

shown in Figure 6, all transformer-based encoders consist of four-layer transformers.

Settings of novel view prediction.

For each sampled point in the rendered ray, we set the search radius for k-nearest features as 0.5 meter. Using sparse

sampling[17], if no nearby feature points are found within a sampled point’s search radius, the latent feature and volume

density are set to zero. The rendered ray is uniformly sampled from 0 to 10 meters, and the number of sampled points is

set as 501. After volume rendering, the number of rays within a novel view is set as 12 × 12.

Settings of BEV map prediction.

The search radius for k-nearest features is set as 0.4 meter. The rendered ray is uniformly sampled from 0 to 1.6 meters

(i.e., vertically from the camera’s position to bottom), and the number of sampled points is set as 17. After volume

rendering, the number of rays within a BEV map is set as 168 × 168.
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Figure 6. Architecture of modules in the g3D-LF model. FC denotes a fully connected layer, LN denotes layer normalization and LeakyReLU [73] is

the activation function.

Loss functions.

As illustrated in Figure 7 and 8, we present the code for the primary loss functions used in g3D-LF pre-training to provide

further details. During training, we apply constant coefficients to balance the contributions of each loss, ensuring they

remain within the same order of magnitude.
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Figure 7. PyTorch implementation of loss functions for the balanced object semantic alignment and the CLIP knowledge

distillation.

Figure 8. PyTorch implementation of loss function for the fine-grained contrastive learning.

B. Visualization of the Training Data

As shown in Figure 9, we present a 3D scene from our dataset along with some associated language annotations (scene

00800-TEEsavR23oF from HM3D[57]). The instance-level point cloud precisely annotates instances within the 3D scene,

allowing retrieval of language annotations for any position by calculating its neighboring instance points and using the

Qeios, CC-BY 4.0   ·   Article, December 4, 2024

Qeios ID: 841D1T   ·   https://doi.org/10.32388/841D1T 20/28



instance IDs.

Figure 9. Demonstration of a 3D scene in the training data. Instance-level point clouds mark all instances with object categories, and some

instances enriched with language descriptions.

C. Visualization of the g3D-LF model

As shown in Figure 10 and 11, the g3D-LF model query targets with language on the BEV map. In Figure 10, the left side

of each example shows the position of the ground-truth target, while the right side displays the result of querying objects

on rays of the BEV map during navigation. The BEV map accurately recognizes both large objects, like window and sofa,

and smaller objects, like table lamp and tap, by calculating the cosine similarity between ray representations and target

text features.

In Figure 11, the left side of each example shows the position of the objects, the middle is the ground-truth position of the

long text that contains the target object, while the right side displays the result of querying the long text on the BEV map

during navigation. In the 3D scene, multiple objects of the same category often appear. With the excellent ability to

understand long texts, our g3D-LF model can achieve more fine-grained long-text queries, distinguishing different

instances of the same object category.
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Figure 10. Visualization of querying objects on rays of the g3D-LF’s BEV map. The left side of each example is GT, and the right side is the query

result. Please zoom in for a better view.
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Figure 11. Visualization of querying long texts on the BEV map of our g3D-LF. Each example has the object’s GT on the left, the long text GT in

the middle, and the query result of the long text on the right. Please zoom in for a better view.
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