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1. Introduction

There is a vivid interest in Riemann Hypothesis, and there are no
reasons to doubt Riemann Hypothesis. [2] Still, despite many attempts
to prove the long-standing Millennium Prize problem, none of those
have been published in a reputable journal. The brilliant journal paper
of Frank Vega [1] has not claimed to prove the hypothesis but reveals
some interesting properties of this field. Even though the Clay Institute
Committee has distinctly decided that the primary requirement win the
prize is the publication in a top mathematical journal from the list of
the qualified journals, the main discussion is going on in the Qeios.
Below is my proof of the hypothesis, but more simple proofs from me
are in Ref. [3].

2. Known theorems

Guy Robin gives the following definition:

Definition.
A number y is called “colossally abundant” if, for some ε > 0, one has

(1)
σ(z)

z1+ε
≤ σ(y)

y1+ε

for all values of z [5]. σ(z) denotes the sum-of-divisors function [6]. For
example, if z is a prime number, then σ(z) = 1 + z.

Grönwall’s theorem in Ref. [4] is the following.
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Theorem 1.
For the Grönwall function G(n) = σ(n)/(n log(log n)), one has

(2) lim
n→∞

supG(n) = exp(γE)

where γE = 0.577 . . . is the Euler–Mascheroni constant. The proof is
found in Ref. [4]. I am using Eq. (2) in another shape, namely

(3) G(n→∞) ≤ exp(γE) ,

which reads G(n) ≤ X(n), where X(n) is a function for any n with
a single known property: X(n) = exp(γE) at n → ∞. So, written in
a short form (without the X(n)), I have Eq. (3). Therefore, for all
unlimitedly large values of n, G(n) ≤ exp(γE) holds.

Theorem 2.
There exist infinitely many colossally abundant numbers [7].

Theorem 3.
The Riemann Hypothesis, if false, implies an infinitude of numbers n
of the type G(n) > exp(γE) [5], page 188.

3. Proof of the Riemann Hypothesis

In this part of the proof, I am demonstrating that for any colossally
abundant numbers A and B, holds

(4) G(n) ≤ max(G(A), G(B)) ,

where n is any number from 6 ≤ A ≤ n ≤ B.
Dr. Robin has claimed [5] that A and B have to be consecutive in

addition to A < B, to get

(5)
σ(n)

n1+d
≤ σ(A)

A1+d
=
σ(B)

B1+d

for some d > 0. But I am not seeing any proof of Eq. (5) in his paper.
After this formula, the proof of Dr. Robin’s Proposition 1 continues
on page 192 without references to consecutivity, and the final result
is in Eq. (4). But let me derive the formula (5) without usage of
consecutivity.

(6)
σ(A)

A1+b
≥ σ(B)

B1+b

for some b > 0 because A is colossally abundant number. On the other
hand,

(7)
σ(B)

B1+d
≥ σ(A)

A1+d
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for some d > 0 because B is colossally abundant number.
Then

(8)
σ(A)

A
≥ σ(B)

B
(A/B)b ,

(9)
σ(A)

A
≤ σ(B)

B
(A/B)d .

Holds A < B, then A/B < 1; so, the b and d can be arbitrary
numbers within the ranges b0 ≤ b < ∞, and 0 ≤ d < d0. Here b0 and
d0 are satisfying

(10)
σ(A)

A
=
σ(B)

B
(A/B)b0 ,

(11)
σ(A)

A
=
σ(B)

B
(A/B)d0 .

Latter two equations imply b0 = d0. Hence, b = d situation will be
exploit in the following. Therefore,

(12)
σ(A)

A1+d
=
σ(B)

B1+d
.

Take a look at Eq. (5). The only chance for inequality to become
violated is that n is a superabundant number. So, in the following part
of the proof I assume that n is a superabundant number. Any colossally
abundant number is superabundant. [8] Then from the definition of a
superabundant number B,

(13)
σ(A)

A
≤ σ(n)

n
≤ σ(B)

B
.

Holds

(14)
σ(A)

A1+x
=
σ(n)

n1+x
,

(15)
σ(B)

B1+y
=
σ(n)

n1+y
.

for some x > 0 and y > 0. Then, from Eqs. (12), (13), (14), and (15),
x ≤ d ≤ y has to hold for Eq. (5) to take place. Let me insert the
σ(n)/n from Eq. (14) into Eq. (15),

(16)
σ(A)

A1+x
nx−y =

σ(B)

B1+y
.

Let me insert the σ(B)/B from Eq. (12) into Eq. (16), I get

(17) nx−y Ad−x = Bd−y .
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This can be seen as a function d = d(n), which can vary from d = x
up to d = y. In case d = x, Eq. (17) has n = B as the solution; and
in case d = y, Eq. (17) has n = A as the solution. This coincided with
the domain of n, which was A ≤ n ≤ B.

So, Eq. (5) is proven; and in the following, n is an arbitrary number
again. It means that, it is not necessarily a superabundant number;
and it is not necessarily a colossally abundant number.

Eq. (3) of Theorem 1 implies G(B → ∞) ≤ exp(γE) ≈ 1.78107.
In the following, due to Theorem 2, B will be seen as a very large
colossally abundant number. And, in the following, A = 55440 is
my chosen colossally abundant number [8]. It holds that G(A) =
232128/(55440 log(log 55440)) ≈ 1.75125 < exp(γE). These values of
Grönwall function in the Eq. (4) imply that one has G(n) ≤ exp(γE)
for every value of n within 55440 ≤ n ≤ B. Therefore, Eq. (4) implies
that only a finite amount of numbers are of the type G(n) > exp(γE).
Notably, such numbers are showing n < A. Finally, Theorem 3 implies
that Riemann Hypothesis cannot be false.
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