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1. Introduction

Despite many attempts to prove the long-standing Millennium Prize
problem, none of those is published in a reputable journal. The bril-
liant journal paper of Frank Vega [1] has not claimed to prove the
hypothesis, but reveals some interesting properties of this field. Even
though the Clay Institute Committee has distinctly decided that the
main requirement win the prize is the publication in a top mathemat-
ical journal from the (published) narrow list of the qualified journals,
the main discussion is going on in the archive. For instance David
W. Farmer has reviewed the state of the problem in Ref. [2]. There-
fore, following the example of Grigori Perelman [3], my first attempt
was a publication in the archive.

In the second section I collect a theorem by Thomas Hakon Grön-
wall [4], a definition given by Guy Robin in Ref. [5], and three theorems
from the same reference. These pieces are used in the proof performed
in the third section.

2. Known facts

I start with the oldest piece, namely Grönwall’s theorem in Ref. [4].

2.1. Theorem.
For the Grönwall function G(n) = σ(n)/(n log(log n)), one has

(1) lim supG(n→∞) = exp(γE) ,

where γE = 0.577 . . . is the Euler–Mascheroni constant. σ(n) denotes
the sum-of-divisors function [6]. For example, if n is a prime number,
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then σ(n) = 1 + n. The proof is found in Ref. [4]. I am using Eq. (1)
in another shape, namely

(2) G(n→∞) ≤ exp(γE) ,

which reads G(n) ≤ X(n), where X(n) is a function for any n with a
single known property: X(n) = exp(γE) at n → ∞. So, written in a
short form (without the X(n)), I have Eq. (2).

Guy Robin gives the following definition:

2.2. Definition.
A number y is called “colossally abundant” if, for some ε > 0, one has

(3)
σ(z)

z1+ε
≤ σ(y)

y1+ε

for all values of z [5].

2.3. Theorem.
There exist infinitely many colossally abundant numbers [5].

2.4. Theorem.
If A and B are colossally abundant numbers with 6 ≤ A ≤ B, then

(4) G(n) ≤ max(G(A), G(B)) ,

where A ≤ n ≤ B [5].

2.5. Theorem.
The Riemann Hypothesis, if false, implies an infinitude of colossally
abundant numbers K of the type G(K) > exp(γE) [5].

3. Proof of the Riemann Hypothesis

Eq. (2) of Theorem 2.1 implies G(B → ∞) ≤ exp(γE) ≈ 1.78107.
In the following, due to Theorem 2.3, B will be seen as a very large
colossally abundant number. It holds that

G(A = 55440) = 232128/(55440 log(log 55440)) ≈ 1.75125 < exp(γE).

Theorem 2.4 implies that (for my choice of A and B) one has G(n) ≤
exp(γE) for every value of n within 55440 ≤ n ≤ B. Therefore, Theo-
rem 2.4 implies that only a finite amount of colossally abundant num-
bers are of the type G(K) > exp(γE). Notably, such numbers are
showing K < A. Finally, Theorem 2.5 implies that Riemann Hypoth-
esis cannot be false.



GRÖNWALL’S THEOREM IMPLIES THE RIEMANN HYPOTHESIS 3

References

[1] F. Vega, Robins criterion on divisibility. Ramanujan J 59, 745–755 (2022).
https://doi.org/10.1007/s11139-022-00574-4

[2] David W. Farmer, “Currently there are no reasons to doubt the Riemann Hy-
pothesis,” arXiv:2211.11671 [math.NT], 2022AD.

[3] G. Perelman, Ricci flow with surgery on three-manifolds, arXiv:math/0303109
[math.DG].

[4] T. H. Grönwall, Some Asymptotic Expressions in the Theory of Numbers. Trans-
actions of the Am. Math. Soc. 14(1), 113–122 (1913).
https://doi.org/10.2307/1988773

[5] Guy Robin, “Grandes valeurs de la fonction somme des diviseurs et hypothése
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