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Abstract

Based on the SEIR COVID-19 epidemic model of susceptible people with basic medical histories, this paper introduces

time delay, establishes a class of COVID-19 time-delay transmission model, obtains the basic reproduction number of

its transmission, and determines the existence of the equilibrium point of the model. The global stability of the

equilibrium point is proved by constructing the Lyapunov function and using the LaSalle invariance principle. The

theoretical results are verified by numerical simulation, and the impact of different time delays on the spread of COVID-

19 is discussed.
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1. Introduction

In early December 2019, there was a rapid global spread of Corona Virus Disease 2019 (COVID-19), a highly contagious

respiratory infection caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Typical symptoms

include fever, coughing, and shortness of breath, and in severe cases, the infection can lead to pneumonia, acute

respiratory syndrome, renal failure, and death[1][2]. The outbreak of COVID-19 has had a huge impact on countries around

the world, with countless lives and property losses [3].

Mathematical models and computer simulations, despite their limitations and shortcomings, remain one of the best

methods for analyzing the spread of diseases and controlling their epidemics. Modeling is very important in epidemiology
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because, in most cases, we cannot conduct biological experiments, nor do we have pharmaceutical solutions, and

mathematical modeling must be used to develop and understand epidemiological phenomena in relevant ways, as well as

to quantitatively simulate the likely effects of different intervention strategies [4]. Therefore, during the disease

transmission phase, It is of great significance to use appropriate mathematical models to simulate, analyze, and predict

the epidemic situation of COVID-19 and put forward prevention and control suggestions.

Since 2020, modeling and analysis of COVID-19 have become a hot issue and have received wide attention from

scholars. Li Qian et al. [5] constructed a time-delayed COVID-19 non-autonomous infectious disease model driven by

confirmed cases, and detailed numerical studies revealed the important impact of delayed reporting on the epidemic. Fan

Ruguo et al. [6] established the SEIR dynamic model of the COVID-19 epidemic with an incubation period based on

complex network theory and predicted the inflection point of the COVID-19 epidemic under three different incubation

periods. Yan Yue et al. [7] proposed a time-delay dynamic model of infectious disease dynamics, introduced time-delay

processes into the model to describe the virus incubation period and treatment cycle, accurately inverted the model

parameters, effectively simulated the development of the epidemic situation, and predicted the epidemic situation's future

trend. Based on the classical SEIR model, Zhang Liying et al. [8] established a discrete-time multi-stage dynamic time-

delay model based on comprehensive consideration of epidemic development characteristics, intervention impact,

medical conditions, experience transmission, and other factors and divided the transmission cycle of the virus into six

stages. Zhai Yijiang et al. [9] considered that the infection probability of the group with basic disease was higher than that

of the group without basic disease, they modified the classic SEIR model, divided the susceptible group into the group

with basic disease and the group without basic disease, and established the SEIR model with the susceptible group of

basic disease. Yu Zhenhua et al. [10] proposed a new nonlinear dynamic model of COVID-19 transmission, the SLEIR

model, taking into account the low-risk population that took protective measures during the epidemic, and analyzed the

model to reveal the transmission mechanism of COVID-19. Jin Wei et al. [11] established a SIR Model for the parallel

transmission of two novel coronaviruses with time delay, carried out dynamic analysis of the model, and verified the

conclusion by numerical simulation. Based on the fractional order model, Wei Qingdong et al. [12] proposed a fractional

order population-delayed COVID-19 transmission model by introducing time delay parameters and proved the guiding

significance of this model for epidemic prevention and control and the importance of the index of basic regeneration

through simulation.

Although the epidemic has become normalized, the use of mathematical models to describe the transmission law of the

epidemic can still accumulate relevant experience for future public health management [12]. According to the transmission

characteristics of COVID-19, in order to be more in line with the actual situation, this paper proposes a COVID-19

transmission model with a time delay. Based on the established model, the basic reproduction number of the model is

calculated, the disease-free equilibrium point and endemic equilibrium point of the model are analyzed, and the stability of

the model equilibrium point under the condition of considering time delay is analyzed. The correctness of the theory is

verified by simulation, and the influence of time delay on the spread of the epidemic is analyzed. Choosing the appropriate

incubation period can predict the development of the epidemic more accurately, and shortening the incubation period of

the virus can effectively control the spread of the epidemic.
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2. Model with basic reproduction number

In 2021, Zhai Yijiang et al. [9] proposed the following SEIR (susceptible-exposure-infectious-recovered) COVID-19

transmission model, including susceptible infection of underlying diseases:

S′
1 = A − β1S1I − θS1 − dS1,

S′
2 = θS1 − β2S2I − dS2,

E′ = β1S1I + β2S2I − (d + σ)E,

I′ = σE − (γ + d + α)I,

R′ = γI − dR,

(1)

On the basis of model (1), this paper introduces the latent state to the incubation period of infectious force to study the

following SEIR COVID-19 model with time delay, and the corresponding transmission mechanism is shown in Figure 1:

Figure 1. Mechanism of transmission

S′
1 = A − β1S1I − θS1 − dS1,

S′
2 = θS1 − β2S2I − dS2,

E′ = β1S1I + β2S2I − e−dτI(t − τ) β1S1(t − τ) + β2S2(t − τ) − dE,

I′ = e−dτI(t − τ) β1S1(t − τ) + β2S2(t − τ) − (γ + d + α)I,

R′ = γI − dR,

(2)

Where S1 = S1(t) , S2 = S2(t), E = E(t), I = I(t)and R = R(t) represent the number of persons susceptible to no underlying

disease, susceptible to underlying disease, exposure, infected and recovered at time t, respectively, Ais the input rate,

{

{ [ ]
[ ]
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and β1 is the transmission rate coefficient of susceptible persons without underlying diseases after effective contact with

infected persons, β2is the transmission rate coefficient after effective contact between susceptible persons and infected

persons; θis the rate coefficient of healthy individuals to acquire the underlying disease; dis the natural mortality

coefficient; αis the mortality coefficient of infected persons due to the disease; γis the recovery rate coefficient of infected

individuals; and τ is the incubation period, that is, the time from exposure to the onset of the disease.

Obviously, in model (2), the states of E and R are not included in equations 1, 2, and 4, so for convenience, only the

following subsystems are considered below:

S′
1 = A − β1S1I − θS1 − dS1

S′
2 = θS1 − β2S2I − dS2

I′ = e−dτI(t − τ) β1S1(t − τ) + β2S2(t − τ) − mI

(3)

m = γ + d + α.

Considering the biological significance, let the initial conditions of system (3) be as follows:

S1(t), S2(t), I(t) = ϕ1(t), ϕ2(t), ϕ3(t) ∈ C [ − τ, 0], R+
3 , ϕ1(t) > 0, ϕ2(t) ≥ 0, ϕ3(t) ≥ 0.

Lemma 2.1 The solution S1(t), S2(t), I(t)  of system (3) satisfying the above initial conditions is positive for all t ≥ 0 .

Let Ω = S1, S2, I :S1 ≥ 0, S2 ≥ 0, I ≥ 0, S1 + S2 + I ≤

A
d .  Obviously Ω is the positive invariant set of system (3).

Easy to know system (3) always has a disease-free equilibrium point

E0

A
θ + d ,

θA
d(θ + d) , 0 .

Let x = I, S1, S2
T , then the original system can be rewritten as follows:

dx
dt = F(x) − V(x),

here

F(x) =

e−dτI(t − τ) β1S1(t − τ) + β2S2(t − τ)

0
0

, V(x) =

mI
β1S1I + θS1 + dS1 − A

β2S2I + dS2 − θS1

After linearization at the disease-free equilibrium point E0

A
θ+d ,

θA
d(θ+d) , 0  :

{ [ ]

( ) ( ) ( )
( )

{ ( ) }

( )
( )

( [ ] ) ( )
( )
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F = e−dτ

β1A
d + θ +

β2θA
d(d + θ) ,  V = (m)

the calculated regeneration matrix is:

FV−1 =

1
me−dτ

β1A
d + θ +

β2θA
d(d + θ) =

Ae−dτ dβ1 + θβ2

md(d + θ) ,

and its spectral radius is as follows:

ρ FV−1 =

Ae−dτ dβ1 + θβ2

md(d + θ) .

Therefore, according to Theorem 2 of reference [13], the basic reproduction number of system (3) is:

R0 =

Ae−dτ dβ1 + θβ2

md(d + θ) .

3. Existence of equilibrium point

When R0 ≤ 1 , the system has a disease-free equilibrium point E0

A
θ+d ,

θA
d(θ+d) , 0  ; When R0 > 1 , the system has an

endemic equilibrium E∗ S1
∗, S2

∗, I∗  in addition to E0 , which is a positive solution of the following system:

A − β1S1I − θS1 − dS1 = 0,

θS1 − β2S2I − dS2 = 0,

e−dτI β1S1 + β2S2 − mI = 0,
(4)

from the first equation of system (4), the following can be obtained:

S1 =

A
β1I + θ + d

,

the second equation can be transformed as follows:

S2 =

θA

β1I + θ + d β2I + d
,

and the third equation can be transformed into:

( ( ))

( ( ))
( )

( )
( )

( )

( )
( )

{ ( )

( ) ( )
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e−dτ β1S1 + β2S2 − m I = 0,

Substitute S1 and S2 into the above equation:

β1A
β1I + θ + d

+

β2θA

β1I + θ + d β2I + d
− medτ = 0,

Put f(I) =

β1

β1I+θ+d
+

β2θ

β1I+θ+d β2I+d
−

medτ

A ,  then

f(0) =

β1
θ + d +

β2θ
(θ + d)d −

medτ

A = R0 − 1

medτ

A > 0,

f

A
d =

dβ1

β1A + θd + d2
+

β2θd2

β1A + θd + d2 β2A + d2

−

medτ

A

=

d
β1A + θd + d2

β1 +

β2θd

β2A + d2
−

medτ

A

≤

d
β1A + θd + d2

β1 +

θd
A −

medτ

A

≤

A
d −

medτ

A

=

1
A d − medτ < 0,

It follows that the function f(I) is monotonically decreasing with respect to I , so if and only if R0 > 1 , there exists a unique

root of the equation f(I) = 0 in the interval 0,

A
d .

By f(I) = 0 , we get:

β1
β1I + θ + d

+

β2θ

β1I + θ + d β2I + d
−

medτ

A = 0,

that is

A β1β2I + β1d + β2θ − medτ β1I + θ + d β2I + d

A β1I + θ + d β2I + d
= 0,

[ ( ) ]

( ) ( )

( ) ( )

( )

( ) ( )( )

( )
( )

( )

( )

( ) ( )

( ) ( ) ( )
( ) ( )
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therefore, the quadratic equation with respect to I is obtained:

A β1β2I + β1d + β2θ − medτ β1I + θ + d β2I + d

= − medτβ1β2I2 + Aβ1β2 − medτ β1d + β2θ + β2d I + Aβ1d + Aβ2θ − medτd(θ + d)

= 0

the equation can be deformed into:

medτβ1β2I2 − Aβ1β2 − medτ β1d + β2θ + β2d I − Aβ1d + Aβ2θ − medτd(θ + d) = 0,

the positive solution can be obtained as follows:

I∗ =

b + b2 + 4medτβ1β2 md(d + θ)edτ R0 − 1

2medτβ1β2 ,

where b = Aβ1β2 − medτ β1d + β2θ + β2d .

From the previous derivation, we can see that:

S∗
1 =

A
β1I∗ + θ + d

, S∗
2 =

θA

β1I∗ + θ + d β2I∗ + d
.

In conclusion, the existence theorem of the equilibrium point of endemic diseases can be obtained.

Theorem 1. When R0 > 1, a unique endemic equilibrium E∗ S1
∗, S2

∗, I∗  exists in the system.

4. The stability of the equilibrium

4.1. τ = 0 , the local stability of the equilibrium point

Theorem 2. When R0 < 1 , the equilibrium point is locally asymptotically stable; When R0 > 1 , the equilibrium point is

unstable.

Proof. The Jacobian of the system at E0

A
θ+d ,

θA
d(θ+d) , 0  :

J E0 =

−(θ + d) 0 −β1S10

θ −d −β2S20

0 0 β1S10 + β2S20 − m
,

clearly −(d + θ),  and −d are the two eigenvalues of the matrix J E0  , and the third eigenvalue of the matrix is:

( ) ( ) ( )
( ( ))

( ( )) [ ]

√ [ ( )]

[ ( )]

( )( )

( )

( )

( ) ( )
( )
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β1S10 + β2S20 − m =

β1A
θ + d +

β2θA
d(θ + d) − m = R0 − 1,

thus�when R0 < 1, the equilibrium point E0 is locally asymptotically stable; when R0 > 1, the equilibrium point is unstable.

Theorem 3. When R0 > 1 , the endemic equilibrium point E∗ S1
∗, S2

∗, I∗  of the model is locally asymptotically

stable.

Proof. The equilibrium point E∗ satisfies

β1S1
∗ + β2S2

∗ I∗ − mI∗ = 0,

so

β1S1
∗ + β2S2

∗ = m.

The characteristic equation of the system at E∗ is as follows.:

λ + β1I∗ + θ + d 0 β1S1
∗

−θ λ + β2I∗ + d β2S2
∗

−β1I∗ −β2I∗ λ
= λ3 + c1λ2 + c2λ + c3 = 0.

where

c1 = I∗ β1 + β2 + 2d + θ,

c2 = β1β2I∗2 + β1
2S1

∗ + β2
2S2

∗ + β1 + β2 d + β2θ I + d2 + dθ,

c3 = I∗ β1I∗ + d + θ β2
2S2

∗ + β1I∗ + θ β1β2S1
∗ + β1

2dS1
∗ ,

The calculation shows that

c1 > 0,  c1 ⋅ c2 − c3 > 0,  c3 > 0.

Therefore, according to the Rough-Hurwitz criterion, the endemic equilibrium E∗ of the model is locally asymptotically

stable when R0 > 1.

4.2. τ > 0 , the stability of the equilibrium

In order to discuss the stability of the equilibrium point, the system is linearized at the equilibrium point 

E∗ S1
∗, S2

∗, I∗  as follows:

Let

( )

( )

| |
( )

( ( ) )
[( ) ( ) ]

( )
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U = S1 − S1
∗, V = S2 − S2

∗, W = I − I∗,

then:

U′ = A − β1 UW + I∗U + S1
∗W + S1

∗I∗ − (θ + d)U − (θ + d)S1
∗,

V′ = θ S1
∗ + U − β2 V + S2

∗ W + I∗ − d V + S2
∗ ,

W′ = e−dτ W(t − τ) + I∗ β1 U(t − τ) + S1
∗ + β2 V(t − τ) + S2

∗ − m W + I∗ ,

Take the linear term:

U′ = − β1I∗ + θ + d U − β1S∗
1 W,

V′ = θU − β2I∗ + d V − β2S∗
2 W,

W′ = e−dτβ1I∗U(t − τ) + e−dτβ2I∗V(t − τ) + e−dτ β1S∗
1 + β2S∗

2 W(t − τ) − mW,

Substituting 

U
V
W

=

c1

c2

c3

eλτ and eliminating ci leads to the following characteristic matrix�

λ + β1I + θ + d 0 β1S1

−θ λ + β2I + d β2S2

−e−dτ−λτβ1I −e−dτ−λτβ2I λ − e−dτ−λτ β1S1 + β2S2 + m

Theorem 4 When R0 ≤ 1 , the equilibrium point E0

A
θ+d ,

θA
d(θ+d) , 0  is locally asymptotically stable.

Proof. τ > 0 , the characteristic equation of the system at is as follows.

λ + (θ + d) 0

β1A
θ+d

−θ λ + d

β2θA
d(θ+d)

0 0 λ − e−dτ−λτ

β1A
θ+d +

β2θA
d(θ+d) + m

( )
( ) ( )( ) ( )

( )[ ( ) ( )] ( )

{ ( )
( )

[ ( )]

( ) ( )
( ( )

( ) )
( )

| ( ) |
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= (λ + d)(λ + θ + d) λ − e−dτ−λτ

β1A
θ + d +

β2θA
d(θ + d) + m

= 0

Clearly the above equation has two negative roots λ = − d and λ = − θ − d,  and the remaining roots are determined by

the following equation:

λ + m − e−dτ−λτ

β1A
θ + d +

β2θA
d(θ + d) = 0,

Put f(λ) = λ + m − e−dτ−λτ

β1A
θ+d +

β2θA
d(θ+d) = 0,

Suppose that there exists a root (μ > 0) in the above equation, substitute it in to obtain:

μ + iω + m − e−dτ− (μ+ iω)τ

β1A
θ + d +

β2θA
d(θ + d) = 0,

that is

μ + iω + m − e− (d+μ)τ

β1A
θ + d +

β2θA
d(θ + d) (cosωτ + isinωτ) = 0,

comparing the real parts of both sides of the equation gives:

μ + m − e− (d+μ)τ

β1d + β2θ A

d(θ + d) cosωτ = 0,

since μ > 0,  e− (d+μ)τis decreasing in [0, + ∞] , meanwhile 0 < e− (d+μ)τ < 1,

0 < |cosωτ| ≤ 1,

so

μ + m − e− (d+μ)τ

β1d + β2θ A

d(θ + d) cosωτ

≥ μ + m − e−dτ

β1d + β2θ A

d(θ + d)

= μ + m 1 − R0 ,

( ( ) )

( )
( )

( )

( )

( )

( )

( )

( )
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therefore when R0 ≤ 1 and μ ≥ 0 , there is μ + m − e− (d+μ)τ

β1d+β2θ A

d(θ+d) cosωτ ≥ 0 . So the roots of the characteristic

equation cannot have nonnegative real parts, that is, only negative real roots.

In summary, When R0 ≤ 1 , the equilibrium point E0 is locally asymptotically stable.

Theorem 5. When R0 < 1 , the equilibrium point E0 = S10, S20,0 =

A
θ+d ,

θA
d(θ+d) , 0  is globally asymptotically stable.

Proof. Since A = (θ + d)S10 , the first two equations of the model can be rewritten as follows:

S1
′ = θ + d + β1I S10 − S1 − β1S10I,

S2
′ = θ S1 − S10 − d + β2I S2 − S20 − β2S20I,

then we take the Lyapunov function:

L1 =

1
2 S1 − S10

2 +

1
2x S2 − S20

2 + yI + ye−dτ∫t
t− τ S1(θ)I(θ) + S2(θ)I(θ) dθ,

the direct calculation has the total derivative of the solution of the function L1 along the system (3):

L′
1 (3)

= S1 − S10 S′
1 + x S2 − S20 S′

2 + yI′

+ ye−dτ β1S1I + β2S2I − β1S1(t − τ)I(t − τ) + β2S2(t − τ)I(t − τ)

= − θ + d + β1I S1 − S10
2 − β1S10I S1 − S10 + xθ S1 − S10 S2 − S20

− x d + β2I S2 − S20
2 − xβ2S20I S2 − S20 + ye−dτ β1S1I + β2S2I − ymI

≤ − (θ + d) S1 − S10
2 + xθ S1 − S10 S2 − S20 − xd S2 − S20

2

− xβ2S20I S2 − S20 − β1S10I S1 − S10 + ye−dτ β1S1I + β2S2I − ymI

= − (θ + d) S1 − S10
2 + xθ S1 − S10 S2 − S20 − xd S2 − S20

2

− S10 − ye−dτ β1S1I − xS20 − ye−dτ β2S2I + β1S10
2 + xβ2S20

2 − ym I,

In order to cancel out the S1I and S2I terms, set x =

S10

S20 =

d
θ  and y = S10edτ,  so

L′
1 (3)

≤ − (θ + d) S1 − S10
2 + d S1 − S10 S2 − S20 −

d2

θ S2 − S20
2

+ β1S2
10 + xβ2S2

20 − ym I

while for the quadratic polynomial in the above equation

( )

( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) [ ]

| ( ) ( )
[ ]

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

| ( ) ( ) ( ) ( )
( )
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−(θ + d) S1 − S10
2 + d S1 − S10 S2 − S20 −

d2

θ S2 − S20
2,

because

Δ = d2 − 4

d2

θ (d + θ) = − 3d2 − 4

1
θ d3 < 0,

thus this polynomial is negative definite with respect to S10 and S20 .

Also, note that when R0 < 1 , the coefficient of the I term

β1S2
10 + xβ2S2

20 − ym

= β1S10
2 + β2S10S20 − mS10edτ

= S10 β1S10 + β2S20 − medτ

= S10 R0 − 1 < 0,

so

L′
1 (3)

≤ − (θ + d) S1 − S10
2 + d S1 − S10 S2 − S20 −

d2

θ S2 − S20
2

+ β1S10
2 + xβ2S20

2 − ym I

≤ 0,

It is also easy to know that the largest invariant set of L1
′|(3) = 0 on Ω is E0  . Therefore, according to LaSalle's

invariance principle [14], when R0 < 1 , the equilibrium point E0 = S10, S20,0  is globally asymptotically stable.

Theorem 6. When R0 > 1 , the endemic equilibrium point E∗ S1
∗, S2

∗, I∗  of the model is locally asymptotically

stable.

Proof. The characteristic equation of system (3) at e0 is as follows�

λ + β1I∗ + θ + d 0 β1S1
∗

−θ λ + β2I∗ + d β2S2
∗

−β1e−dτ−λτI∗ −β2e−dτ−λτI∗ λ − e−dτ−λτ β1S1
∗ + β2S2

∗ + m
= 0,

Clearly the above equation is equivalent to

λ3 + a1λ2 + b1λ + c1 + a2λ2 + b2λ + c2 e−λτ = 0, (5)

where

( ) ( ) ( ) ( )

( )
( )

| ( ) ( ) ( ) ( )
( )

{ }
( )

( )

| ( ) |
( )
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a1 = β1I∗ + β2I∗ + 2d + θ + m,

b1 = β1β2I∗2 + (m + d) β1 + β2 + θβ2 I∗ + d(d + 2m + θ) + mθ

c1 = mβ1β2I∗2 + m β1d + β2d + β2θ I∗ + dm(d + θ),

a2 = − β1S1
∗ + β2S2

∗ e−dτ,

b2 = − β1β2I∗ S1
∗ + S2

∗ + β1S1
∗ + β2S2

∗ (θ + 2d) e−dτ,

c2 = − d β1β2I∗ S1
∗ + S2

∗ + β1S1
∗ + β2S2

∗ (θ + d) e−dτ�

Let λ = iω be the root of the above equation, then substitute in and obtain�

b2ωsin(τω) + c2 − a2ω2 cos(τω) = a1ω2 − c1,

b2ωcos(τω) + c2 − a2ω2 sin(τω) = ω3 − b1ω,
(6)

and then

ω6 + a3ω4 + b3ω2 + c3 = 0.

 Let ω2 = z , then

h(z) = z3 + a3z2 + b3z + c3 = 0.

 where: a3 = a1
2 − 2b1 − a2

2, b3 = b1
2 − b2

2 − 2a1c1 + 2a2c2, c3 = c1
2 − c2

2.

If the coefficients in h(z) satisfy the Routh-Hurwitz condition, then there is no positive real root in Equation (8), that is,

there may be no positive ω satisfying the transcendental equation (6). On the other hand, considering that the values of

the coefficients in Equation (8) do not satisfy the Routh-Hurwitz condition, we may wish to assume condition P2: c3 < 0,

that is  c1 − c2 > 0 , then there exists at least one positive real root in Equation (8), in which case there exists ω0 > 0 such

that there exists a pair of pure imaginary roots λ = ± iω0 of equation (5).

If condition P2 holds, that is c1 + c2 < 0,  c1 − c2 > 0, at this point c1 − c2 > 0 is clearly true, by calculation

c1 + c2 = mβ1β2I∗2 + m β1d + β2d + β2θ I∗ + dm(θ + d)

− d β1β2I∗ S∗
1 + S∗

2 + β1S∗
1 + β2S∗

2 (θ + d) e−dτ

= I∗ mβ1β2I∗ + m β1d + β2d + β2θ − e−dτdβ1β2 S∗
1 + S∗

2

= I∗ e−dτβ1β2 S∗
1 β1I∗ − d + S∗

2 β2I∗ − d + m β1d + β2d + β2θ

> 0.

Therefore, there is no positive real root in Equation (8), so when τ > 0 and R0 > 1 , the endemic equilibrium point E∗ is

[ ( ) ]
[ ]

( )
[ ( ) ( ) ]
[ ( ) ( ) ]

{ ( )
( )

[ ]
[ ( ) ( ) ]

[ ( ) ( )]
[ [ ( ) ( )] ( )]
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locally asymptotically stable.

The global stability of the endemic disease equilibrium point is proved below:

Theorem 7. When R0 > 1 , the endemic equilibrium point E∗ S1
∗, S2

∗, I∗  of the model is globally asymptotically

stable.

Proof. Take the Lyapunov function

L21 = S1
∗g

S1

S1
∗

+ S2
∗g

S2

S2
∗

+ xI∗g

I
I∗ ,

where g(u) = u − 1 − lnu .

Then the total derivative of the solution of function L21 along system (3) is:

L′
21 (3)

= 1 −

S∗
1

S1 A − β1S1I − θS1 − dS1 + 1 −

S∗
2

S2 θS1 − β2S2I − dS2

+ x 1 −

I∗

I e−dτI(t − τ) β1S1(t − τ) + β2S2(t − τ) − mI ,

let U =

S1

S1
∗

, V =

S2

S2
∗

, W =

I
I∗

,  then

L′
21 (3)

= 1 −

1
U A − β1S∗

1 I∗UW − θS∗
1 U − dS∗

1 U + 1 −

1
V θS∗

1 U − β2S∗
2 I∗VW − dS∗

2 V

+ x 1 −

1
W e−dτI∗W(t − τ) β1S∗

1 U(t − τ) + β2S∗
2 V(t − τ) − mI∗W

= A + (θ + d)S∗
1 + dS∗

2 + xmI∗ − dS∗
1 U −

A
U − dS∗

2 V − θS∗
1

U
V

+ β1S∗
1 + β2S∗

2 − xm I∗W − β1S∗
1 I∗UW − β2S∗

2 I∗VW

+ xe−dτI∗W(t − τ) β1S∗
1 U(t − τ) −

U(t − τ)
W + β2S∗

2 V(t − τ) −

V(t − τ)
W

To get rid of the W term, we can take x =

1
m β1S1

∗ + β2S2
∗ ,  In addition 

A = β1S1
∗I∗ + θS1

∗ + dS1
∗, θS1

∗ = β2S2
∗I∗ + dS2

∗,  substitute them into the above equation:

( )

( ) ( ) ( )

| ( ) [ ] ( ) [ ]

( )[ ( ) ]

| ( )[ ] ( )[ ]

( )[ ( ) ]

( )

[ ( ) ( )]
( )
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L′
21 (3)

= dS∗
1 2 − U −

1
U + dS∗

2 3 − V −

1
U −

U
V

+ β1S∗
1 I∗ 2 −

1
U − UW + U(t − τ)W(t − τ) −

U(t − τ)W(t − τ)
W

+ β2S∗
2 I∗ 3 −

1
U −

U
V − VW + V(t − τ)W(t − τ) −

V(t − τ)W(t − τ)
W .

take  L22 = ∫tt− τ[U(θ)W(θ) − 1 − ln(U(θ)W(θ))]dθ, L23 = ∫tt− τ[V(θ)W(θ) − 1 − ln(V(θ)W(θ))]dθ,

let

L2 = L21 + β1S1
∗I∗L22 + β2S2

∗I∗L23,

then the total derivative of the solution of function L2 along system (3) is:

L′
2 (3)

= dS∗
1 2 − U −

1
U + dS∗

2 3 − V −

1
U −

U
V

+ β1S∗
1 I∗ 2 −

1
U −

U(t − τ)W(t − τ)
W + ln

U(t − τ)W(t − τ)
UW

+ β2S∗
2 I∗ 3 −

1
U −

U
V −

V(t − τ)W(t − τ)
W + ln

V(t − τ)W(t − τ)
VW

≤ 0.

It is also easy to know that the largest invariant set of L2
′|(3) = 0 on Ω is E∗  . Therefore, according to LaSalle's

invariance principle [14], when R0 > 1 , the endemic disease equilibrium point E∗ = S1
∗, S2

∗, I∗  is globally

asymptotically stable.

5. Numerical simulation

According to the biological significance of the system and some parameter values and initial values in the

literature [9][15][16], MATLAB software was used for numerical simulation. The following parameters and initial values that

meet the conditions are taken to simulate the existence of the endemic equilibrium point and analyze the influence of time

delay on the changing trend of the epidemic situation. In order to combine with reality, the initial value here will be taken to

be the size equivalent to the population of a large city:

A = 60000,  β1 = 2.1011 × 10−7,  β2 = 7.1443 × 10−7,  θ = 0.1,  d = 0.045,  γ = 0.33029,  α = 1.7826 × 10−5,  τ = 5.3,  

S1(0) = 1000000,  S2(0) = 100000,  I(0) = 1000.

| ( ) ( )
( )
( )

| ( ) ( )
( )
( )

{ }
( )
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Figure 2. Epidemic spread

Figure 3. Effects of different time delays on epidemic transmission
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The basic reproduction number R0 = 1.56 > 1 was calculated, and the final simulation result is shown in Figure 2. It was

observed that all variables tend to stabilize after a period of time, which proved the existence of a non-negative endemic

equilibrium point. According to Theorem 7, the endemic equilibrium point is globally asymptotically stable at this point, and

clearly the numerical simulation results are in agreement with the theory.

The incubation period of COVID-19 is generally 3-7 days, and the maximum is 14 days, so the other parameters are

unchanged and the time delay is set to, respectively. The numerical simulation results are shown in Figure 3. We can

observe that the larger the time delay, the slower the increase in the cumulative number of infected people. However, the

final stability level corresponding to different time delays is not much different. In contrast, the results of considering time

lag (such as an inflection point) would be more consistent with the actual situation.

The change in time delay makes the solution (such as I(t) ) of the time delay system (3) shake, which may lead to multiple

outbreaks of the epidemic. For example, when τ > 7 , the number of infected persons appears to have reached a second

peak immediately after the first peak, a large time-delay may lead to a second outbreak of the epidemic.

6. Conclusion

In this paper, the existence and stability of the equilibrium point are discussed separately according to the constructed

SEIR-based time-delay model. The basic reproduction number R0 is calculated. First, it is proved that when τ = 0 , the

disease-free equilibrium is locally asymptotically-stable when R0 < 1 , while the endemic equilibrium is locally

asymptotically-stable when R0 > 1 . Then we mainly analyze the stability of the system when τ > 0 . The following

conclusions are drawn: when R0 < 1 , the disease-free equilibrium is globally asymptotically stable; when R0 > 1 , the

endemic equilibrium is globally asymptotically stable. Finally, the results of simulations show that the previously derived

conclusions about the stability of the equilibrium point are correct. Therefore, in order to better prevent and control the

epidemic, we should take measures to keep R0 below 1. In addition, the influence of different time delays on the epidemic

was observed through numerical simulation, indicating the importance of selecting appropriate time delays for the

prediction of epidemic development.

Although the conclusions obtained from the model established in this paper can well reflect the changes in the spread of

COVID-19, the epidemic modeling needs to consider many factors. This paper is relatively simple and has limitations. For

example, only a discrete time delay is assumed in the model, and the impact of quarantine, vaccination, and other

measures on the spread of the epidemic is not considered.
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