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Abstract: Based on the SEIR COVID-19 epidemic model of susceptible people with basic medical 

histories, this paper introduces time delay, establishes a class of COVID-19 time-delay 

transmission model, obtains the basic reproduction number of its transmission, and determines the 

existence of the equilibrium point of the model. The global stability of the equilibrium point is 

proved by constructing the Lyapunov function and using the LaSalle invariance principle. The 

theoretical results are verified by numerical simulation, and the impact of different time delays on 

the spread of COVID-19 is discussed.  
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1. Introduction  

In early December 2019, there was a rapid global spread of Corona Virus Disease 2019 

(COVID-19), a highly contagious respiratory infection caused by Severe Acute Respiratory 

Syndrome Coronavirus 2 (SARS-CoV-2). Typical symptoms include fever, coughing, and 

shortness of breath, and in severe cases, the infection can lead to pneumonia, acute respiratory 

syndrome, renal failure, and death[1-2]. The outbreak of COVID-19 has had a huge impact on 

countries around the world, with countless lives and property losses [3]. 

Mathematical models and computer simulations, despite their limitations and shortcomings, 

remain one of the best methods for analyzing the spread of diseases and controlling their epidemics. 

Modeling is very important in epidemiology because, in most cases, we cannot conduct biological 

experiments, nor do we have pharmaceutical solutions, and mathematical modeling must be used 

to develop and understand epidemiological phenomena in relevant ways, as well as to 

quantitatively simulate the likely effects of different intervention strategies [4]. Therefore, during 

the disease transmission phase, It is of great significance to use appropriate mathematical models 

to simulate, analyze, and predict the epidemic situation of COVID-19 and put forward prevention 

and control suggestions. 
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Since 2020, modeling and analysis of COVID-19 have become a hot issue and have received 

wide attention from scholars. Li Qian et al. [5] constructed a time-delayed COVID-19 non-

autonomous infectious disease model driven by confirmed cases, and detailed numerical studies 

revealed the important impact of delayed reporting on the epidemic. Fan Ruguo et al. [6] 

established the SEIR dynamic model of the COVID-19 epidemic with an incubation period based 

on complex network theory and predicted the inflection point of the COVID-19 epidemic under 

three different incubation periods. Yan Yue et al. [7] proposed a time-delay dynamic model of 

infectious disease dynamics, introduced time-delay processes into the model to describe the virus 

incubation period and treatment cycle, accurately inverted the model parameters, effectively 

simulated the development of the epidemic situation, and predicted the epidemic situation's future 

trend. Based on the classical SEIR model, Zhang Liying et al. [8] established a discrete-time multi-

stage dynamic time-delay model based on comprehensive consideration of epidemic development 

characteristics, intervention impact, medical conditions, experience transmission, and other factors 

and divided the transmission cycle of the virus into six stages. Zhai Yijiang et al. [9] considered 

that the infection probability of the group with basic disease was higher than that of the group 

without basic disease, they modified the classic SEIR model, divided the susceptible group into the 

group with basic disease and the group without basic disease, and established the SEIR model with 

the susceptible group of basic disease. Yu Zhenhua et al. [10] proposed a new nonlinear dynamic 

model of COVID-19 transmission, the SLEIR model, taking into account the low-risk population 

that took protective measures during the epidemic, and analyzed the model to reveal the 

transmission mechanism of COVID-19. Jin Wei et al. [11] established a SIR Model for the parallel 

transmission of two novel coronaviruses with time delay, carried out dynamic analysis of the model, 

and verified the conclusion by numerical simulation. Based on the fractional order model, Wei 

Qingdong et al. [12] proposed a fractional order population-delayed COVID-19 transmission 

model by introducing time delay parameters and proved the guiding significance of this model for 

epidemic prevention and control and the importance of the index of basic regeneration through 

simulation.  

Although the epidemic has become normalized, the use of mathematical models to describe 

the transmission law of the epidemic can still accumulate relevant experience for future public 

health management [12]. According to the transmission characteristics of COVID-19, in order to 
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be more in line with the actual situation, this paper proposes a COVID-19 transmission model with 

a time delay. Based on the established model, the basic reproduction number of the model is 

calculated, the disease-free equilibrium point and endemic equilibrium point of the model are 

analyzed, and the stability of the model equilibrium point under the condition of considering time 

delay is analyzed. The correctness of the theory is verified by simulation, and the influence of time 

delay on the spread of the epidemic is analyzed. Choosing the appropriate incubation period can 

predict the development of the epidemic more accurately, and shortening the incubation period of 

the virus can effectively control the spread of the epidemic. 

2. Model with basic reproduction number 

In 2021, Zhai Yijiang et al. [9] proposed the following SEIR (susceptible-exposure-infectious-

recovered) COVID-19 transmission model, including susceptible infection of underlying diseases:  
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On the basis of model (1), this paper introduces the latent state to the incubation period of infectious 

force to study the following SEIR COVID-19 model with time delay, and the corresponding 

transmission mechanism is shown in Figure 1: 

 

Figure 1.  Mechanism of transmission 
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Where 1 1( )S S t= 、
2 2 ( )S S t= 、 ( )E E t= 、 ( )I I t=   and ( )R R t=

  
represent the number of 

persons susceptible to no underlying disease, susceptible to underlying disease, exposure, infected 

and recovered at time t, respectively, A   is the input rate, and 1   is the transmission rate 

coefficient of susceptible persons without underlying diseases after effective contact with infected 

persons, 2  is the transmission rate coefficient after effective contact between susceptible persons 

and infected persons;   is the rate coefficient of healthy individuals to acquire the underlying 

disease; d  is the natural mortality coefficient;   is the mortality coefficient of infected persons 

due to the disease;    is the recovery rate coefficient of infected individuals; and    is the 

incubation period, that is, the time from exposure to the onset of the disease. 

Obviously, in model (2), the states of E and R are not included in equations 1, 2, and 4, so for 

convenience, only the following subsystems are considered below:  

 

( ) ( ) ( )
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 (3) 

.m d = + +  

Considering the biological significance, let the initial conditions of system (3) be as follows:

( ) ( ) ( )( ) ( ) ( ) ( )( )  ( ) ( ) ( ) ( )3

1 2 1 2 3 1 2 3, , , , ,0 , , 0, 0, 0.S t S t I t t t t C R t t t      +=  −     

Lemma 2.1 The solution ( ) ( ) ( )( )1 2, ,S t S t I t  of system (3) satisfying the above initial conditions 

is positive for all 0t  . 

Let ( )1 2 1 2 1 2, , : 0, 0, 0, .
A

S S I S S I S S I
d

 
 =    + +  

 
 Obviously    is the positive invariant 

set of system (3).  
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Easy to know system (3) always has a disease-free equilibrium point  

( )
0 , ,0

A A
E

d d d



 

 
  + + 

. 

Let ( )1 2, ,
T

x I S S= , then the original system can be rewritten as follows:  

( ) ( ) ,
dx

x x
dt

= −F V  

here 
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V= , 

After linearization at the disease-free equilibrium point 
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d d d



 

 
  + + 
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, ( )V m= ,  

the calculated regeneration matrix is: 
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and its spectral radius is as follows: 
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−

−
+

=
+

. 

Therefore, according to Theorem 2 of reference [13], the basic reproduction number of system (3) 

is: 

( )

( )
1 2

0

dAe d

md d

  



− +
=

+
R . 

3. Existence of equilibrium point 

When 0 1R , the system has a disease-free equilibrium point
( )

0 , ,0
A A

E
d d d



 

 
  + + 

; When 

0 1R  , the system has an endemic equilibrium ( )* * * *

1 2, ,E S S I   in addition to 0E  , which is a 

positive solution of the following system: 
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 (4) 

from the first equation of system (4), the following can be obtained: 

1
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the second equation can be transformed as follows:  
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I d I d
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and the third equation can be transformed into: 

( )1 1 2 2 0,de S S m I  − + − =   

Substitute 1S  and 2S  into the above equation: 
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It follows that the function ( )f I  is monotonically decreasing with respect to I , so if and only 

if 0 1R  , there exists a unique root of the equation ( ) 0f I =  in the interval 0,
A

d

 
 
 

. 
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By ( ) 0f I = , we get: 

( )( )
1 2

1 1 2
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dme

I d I d I d A

  

    
+ − =

+ + + + +
 

that is 

( ) ( )( )

( )( )
1 2 1 2 1 2

1 2
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A I d I d

       

  

+ + − + + +
=

+ + +
 

therefore, the quadratic equation with respect to I  is obtained: 
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the equation can be deformed into: 

( )( ) ( )2

1 2 1 2 1 2 2 1 2 0,d d dme I A me d d I A d A me d d              − − + + − + − + =   

the positive solution can be obtained as follows: 

( ) ( )2

1 2 0*
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4 1
,

2

d d

d

b b me md d e R
I
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 + + + − 
=  

where ( )1 2 1 2 2 .db A me d d      = − + +   

From the previous derivation, we can see that: 

*

1 *

1

,
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S
I d 

=
+ + ( )( )

*

2 * *

1 2

.
A

S
I d I d



  
=

+ + +
 

In conclusion, the existence theorem of the equilibrium point of endemic diseases can be obtained. 

Theorem 1  When 0 1R  , a unique endemic equilibrium ( )* * * *

1 2, ,E S S I  exists in the 

system. 

4 The stability of the equilibrium 

4.1 0 = , the local stability of the equilibrium point 

Theorem 2 When 0 1R  , the equilibrium point is locally asymptotically stable; When 

0 1R , the equilibrium point is unstable. 

Proof  The Jacobian of the system at 
( )

0 , ,0
A A

E
d d d



 

 
  + + 

: 
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( )

( ) 1 10

0 2 20

1 10 2 20

0

0 0

d S

J E d S

S S m

 

 

 

− + − 
 

= − − 
 + − 

, 

clearly ( ) ,d − +   and d−   are the two eigenvalues of the matrix ( )0J E  , and the third 

eigenvalue of the matrix is: 

( )
1 2

1 10 2 20 0 1,
A A

S S m m R
d d d

  
 

 
+ − = + − = −

+ +
 

thus，when 0 1R , the equilibrium point 0E  is locally asymptotically stable; when 0 1R , the 

equilibrium point is unstable. 

Theorem 3  When 0 1R , the endemic equilibrium point ( )* * * *

1 2, ,E S S I  of the model is 

locally asymptotically stable. 

Proof  The equilibrium point 
*E  satisfies 

( )* * * *

1 1 2 2 0S S I mI + − = , 

so  

* *

1 1 2 2 .S S m + =  

The characteristic equation of the system at 
*E  is as follows.:  

* *

1 1 1
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0

0.

I d S

I d S c c c

I I
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− −

 

where 

( )*

1 1 2 2 ,c I d  = + + +  

( )( )*2 2 * 2 * 2

2 1 2 1 1 2 2 1 2 2 ,c I S S d I d d        = + + + + + + +  

( ) ( )* * 2 * * * 2 *

3 1 2 2 1 1 2 1 1 1 ,c I I d S I S dS        = + + + + +
 

 

The calculation shows that  

1 0,c   1 2 3 0,c c c −   3 0.c   

Therefore, according to the Rough-Hurwitz criterion, the endemic equilibrium 
*E of the model is 

locally asymptotically stable when 0 1R . 
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4.2 0  , the stability of the equilibrium  

In order to discuss the stability of the equilibrium point, the system is linearized at the 

equilibrium point ( )* * * *

1 2, ,E S S I  as follows: 

Let  

*

1 1 ,U S S= − *

2 2 ,V S S= − *,W I I= −  

then:  

( ) ( ) ( )* * * * *

1 1 1 1 ,U A UW I U S W S I d U d S   = − + + + − + − +  

( ) ( )( ) ( )* * * *
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Take the linear term:  
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      − − −

  = − + + −
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Substituting 

1

2

3

cU

V c e

W c



  
  

=   
   
   

and eliminating ic  leads to the following characteristic matrix： 

( )

( )

1 1 1

2 2 2

1 2 1 1 2 2

0

d d d

I d S

I d S

e I e I e S S m     

   

   

    − − − − − −

+ + + 
 

− + + 
 − − − + + 

 

Theorem 4 When 0 1R  , the equilibrium point 
( )

0 , ,0
A A

E
d d d



 

 
  + + 

  is locally 

asymptotically stable. 

Proof  0  , the characteristic equation of the system at is as follows.  



10 

 

( )

( )
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d d e m

d d d
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Clearly the above equation has two negative roots d = −  and ,d = − −  and the remaining 

roots are determined by the following equation: 

( )
1 2 0,d A A

m e
d d d

    


 

− −
 

+ − + =  + + 
 

Put ( )
( )

1 2 0,d A A
f m e

d d d

    
 

 

− −
 

= + − + =  + + 
 

Suppose that there exists a root i  = + ( )0   in the above equation, substitute it in to obtain:   

( )

( )
1 2 0,

d i A A
i m e

d d d

      
 

 

− − +
 

+ + − + =  + + 
 

that is  

( )

( )
( )1 2 cos sin 0,

d A A
i m e i

d d d

    
   

 

− +
 

+ + − + + =  + + 
 

comparing the real parts of both sides of the equation gives: 

( ) ( )

( )
1 2

cos 0,
d d A

m e
d d

    
 



− + +
+ − =

+
 

since 0,    
( )d

e
 − +

is decreasing in  0,+ , meanwhile 
( )

0 1,
d

e
 − +

   0 cos 1,   

so 

( ) ( )

( )

( )

( )

( )

1 2
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0

cos

1 ,

d

d

d A
m e

d d

d A
m e

d d

m R

 



  
 



  






− +

−

+
+ −

+

+
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+
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therefore when 
0 1R    and 0   , there is ( ) ( )

( )
1 2

cos 0
d d A

m e
d d

    
 



− + +
+ − 

+
 .  So the 

roots of the characteristic equation cannot have nonnegative real parts, that is, only negative real 

roots. 

In summary, When 
0 1R , the equilibrium point 

0E  is locally asymptotically stable. 

Theorem 5  When 
0 1R  , the equilibrium point ( )

( )
0 10 20,0, , ,0

A A
E S S

d d d



 

 
= =   + + 

 

is globally asymptotically stable. 

Proof  Since ( ) 10A d S= + , the first two equations of the model can be rewritten as follows:  

( )( )1 1 10 1 1 10 ,S d I S S S I   = + + − −  

( ) ( )( )2 1 10 2 2 20 2 20 ,S S S d I S S S I   = − − + − −  

then we take the Lyapunov function: 

( ) ( ) ( ) ( ) ( ) ( )
2 2

1 1 10 2 20 1 2

1 1
,

2 2

t
d

t
L S S x S S yI ye S I S I d


    −

−
= − + − + + +    

the direct calculation has the total derivative of the solution of the function 1L  along the system 

(3): 

( ) ( )

( ) ( ) ( ) ( )

( )( ) ( ) ( )( )

( )( ) ( ) ( )

( )( ) ( )( )

1 (3) 1 10 1 2 20 2

1 1 2 2 1 1 2 2

2

1 1 10 1 10 1 10 1 10 2 20

2

2 2 20 2 20 2 20 1 1 2 2

2

1 10 1 10 2 20

d

d

L S S S x S S S yI

ye S I S I S t I t S t I t

d I S S S I S S x S S S S

x d I S S x S I S S ye S I S I ymI

d S S x S S S S xd S





       

   

   

 

−

−

   = − + − +

+ + − − − + − −  

= − + + − − − + − −

− + − − − + + −

 − + − + − − − ( )

( ) ( ) ( )

( )( ) ( )( ) ( )

( ) ( ) ( )

2

2 20

2 20 2 20 1 10 1 10 1 1 2 2

2 2

1 10 1 10 2 20 2 20

2 2

10 1 1 20 2 2 1 10 2 20 ,

d

d d

S

x S I S S S I S S ye S I S I ymI

d S S x S S S S xd S S

S ye S I xS ye S I S x S ym I



 

   

 

   

−

− −

−

− − − − + + −

= − + − + − − − −

− − − − + + −

 

In order to cancel out the 1S I  and 2S I  terms, set 10

20

S d
x

S 
= =  and 10 ,dy S e =  so 

( )( ) ( )( ) ( )

( )

2
2 2

1 (3) 1 10 1 10 2 20 2 20

2 2

1 10 2 20              ,

d
L d S S d S S S S S S

S x S ym I




 

  − + − + − − − −

+ + −

 

while for the quadratic polynomial in the above equation  
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( )( ) ( )( ) ( )
2

2 2

1 10 1 10 2 20 2 20 ,
d

d S S d S S S S S S


− + − + − − − −  

because 

( )
2

2 2 31
4 3 4 0,

d
d d d d

 
 = − + = − −   

thus this polynomial is negative definite with respect to 
10S  and 

20S . 

Also, note that when 0 1R  , the coefficient of the I term 

( )
( )

2 2

1 10 2 20

2

1 10 2 10 20 10

10 1 10 2 20

10 0 1 0,

d

d

S x S ym

S S S mS e

S S S me

S R





 

 

 

+ −

= + −

= + −

= − 

 

so 

( )( ) ( )( ) ( )

( )

2
2 2

1 (3) 1 10 1 10 2 20 2 20

2 2

1 10 2 20              

            0,

d
L d S S d S S S S S S

S x S ym I




 

  − + − + − − − −

+ + −



 

It is also easy to know that the largest invariant set of 1 (3) 0L  =  on Ω is 0E . Therefore, 

according to LaSalle's invariance principle [14], when 0 1R  , the equilibrium point 

( )0 10 20,0,E S S=  is globally asymptotically stable. 

Theorem 6  When 0 1R , the endemic equilibrium point ( )* * * *

1 2, ,E S S I  of the model is 

locally asymptotically stable. 

Proof  The characteristic equation of system (3) at e0 is as follows：  

( )

* *

1 1 1

* *

2 2 2

* * * *

1 2 1 1 2 2

0

0,

d d d

I d S

I d S

e I e I e S S m     

   

   

    − − − − − −

+ + +

− + + =

− − − + +

 

Clearly the above equation is equivalent to 

 ( )3 2 2

1 1 1 2 2 2 0,a b c a b c e      −+ + + + + + =  (5) 

where  
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* *

1 1 2 2a I I d m  = + + + + ,  

( )( ) ( )*2 *

1 1 2 1 2 2 2b I m d I d d m m      = + + + + + + + +   ,  

  ( )*2 *

1 1 2 1 2 2 ,c m I m d d I dm d      = + + + + +   

( )* *

2 1 1 2 2

da S S e   −= − + , 

( ) ( )( )* * * * *

2 1 2 1 2 1 1 2 2 2 db I S S S S d e      − = − + + + +
 

, 

( ) ( )( )* * * * *

2 1 2 1 2 1 1 2 2

dc d I S S S S d e      − = − + + + +
 

， 

Let i =  be the root of the above equation, then substitute in and obtain： 

 
( ) ( ) ( )

( ) ( ) ( )

2 2

2 2 2 1 1

2 3

2 2 2 1

sin cos ,

cos sin ,

b c a a c

b c a b

    

     

 + − = −


+ − = −

 (6) 

and then 

 6 4 2

3 3 3 0.a b c  + + + =  (7) 

Let 
2 =z , then 

 ( ) 3 2

3 3 3 0.h z z a z b z c= + + + =  (8) 

where:  2 2

3 1 1 22a a b a= − − , 2 2

3 1 2 1 1 2 22 2b b b a c a c= − − + , 2 2

3 1 2 .c c c= −  

If the coefficients in h(z) satisfy the Routh-Hurwitz condition, then there is no positive real 

root in Equation (8), that is, there may be no positive ω satisfying the transcendental equation (6). 

On the other hand, considering that the values of the coefficients in Equation (8) do not satisfy 

the Routh-Hurwitz condition, we may wish to assume condition P2: 
3 0,c  that is 

1 2 0,c c+ 

1 2 0c c−  , then there exists at least one positive real root in Equation (8), in which case there 

exists 
0 0   such that there exists a pair of pure imaginary roots 

0i =   of equation (5). 

If condition P2 holds, that is 
1 2 0,c c+   

1 2 0c c−  , at this point 
1 2 0c c−   is clearly true, by 

calculation 
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 *2 *

1 2 1 2 1 2 2

* * * * *

1 2 1 2 1 1 2 2

* * * *

1 2 1 2 2 1 2 1 2

* * * * *

1 2 1 1 2 2

( )

              ( ) ( )( )

           = ( ) ( )

           = ( ) ( )

d

d

d

c c m I m d d I dm d

d I S S S S d e

I m I m d d e d S S

I e S I d S I d







      

    

       

   

−

−

−

+ = + + + + +

 − + + + + 

 + + + − + 

 − + − 1 2 2( )

          0.

m d d     + + +  



 

Therefore, there is no positive real root in Equation (8), so when 0   and 
0 1R , the endemic 

equilibrium point *E  is locally asymptotically stable. 

The global stability of the endemic disease equilibrium point is proved below: 

Theorem 7  When 0 1R , the endemic equilibrium point ( )* * * *

1 2, ,E S S I  of the model is 

globally asymptotically stable. 

Proof  Take the Lyapunov function 

* * *1 2
21 1 2* * *

1 2

,
S S I

L S g S g xI g
S S I

     
= + +     

    
 

where ( ) 1 lng u u u= − − . 

Then the total derivative of the solution of function 21L  along system (3) is: 

   

( )( )

* *

1 2
21 1 1 1 1 1 2 2 2

1 2

*

1 1 2 2

1 1

        1 ( ) ( ) ,d

S S
L A S I S dS S S I dS

S S

I
x e I t S t S t mI

I



   

    −

   
 = − − − − + − − −   

   

 
 + − − − + − −   

 

( 3)

 

let 1

*

1

,
S

U
S

= 2

*

2

,
S

V
S

=
*

,
I

W
I

= then 

( )

( )

* * * * * * * *

21 1 1 1 1 1 2 2 2
(3)

* * * *

1 1 2 2

* * * * * *

1 2 1 2 1

1 1
1 1

1
        1 ( ) ( ) ( )

      

        

d

L A S I UW S U dS U S U S I VW dS V
U V

x e I W t S U t S V t mI W
W

A U
A d S dS xmI dS U dS V S

U V



   

    

 

−

       = − − − − + − − −      
   

   + − − − + − −    

= + + + + − − − −

( )* * * * * * *

1 1 2 2 1 1 2 2

* * *

1 1 2 2

  +

( ) ( )
          + ( ) ( ) ( ) .d

S S xm I W S I UW S I VW

U t V t
xe I W t S U t S V t

W W



   

 
    −

+ − − −

 − −    
− − − + − −    

    

 

To get rid of the W term, we can take ( )* *

1 1 2 2

1
,x S S

m
 = +  In addition * * * *

1 1 1 1+ ,A S I S dS = +
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* * * *

1 2 2 2 ,S S I dS = +  substitute them into the above equation:  

* *

21 1 2
(3)

* *

1 1

* *

2 2

1 1
2 3

1 ( ) ( )
       2 ( ) ( )

1 ( ) ( )
       3 ( ) ( ) .

U
L dS U dS V

U U V

U t W t
S I UW U t W t

U W

U V t W t
S I VW V t W t

U V W

 
  

 
  

    = − − + − − −   
   

− − 
+ − − + − − − 

 

− − 
+ − − − + − − − 

 

 

take  22 ( ) ( ) 1 ln( ( ) ( )) ,
t

t
L U W U W d


    

−
= − −  23 ( ) ( ) 1 ln( ( ) ( )) ,

t

t
L V W V W d


    

−
= − −  

let 

* * * *

2 21 1 1 22 2 2 23L L S I L S I L = + + , 

then the total derivative of the solution of function 2L  along system (3) is: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* *

2 1 2
(3)

* *

1 1

* *

2 2

1 1
2 3

1
       2 ln

1
       3 ln

    0.

U
L dS U dS V

U U V

U t W t U t W t
S I

U W UW

V t W t V t W tU
S I

U V W VW

   


   


    = − − + − − −   
   

− − − − 
+ − − + 

 

− − − − 
+ − − − + 

 



 

It is also easy to know that the largest invariant set of 2 (3) 0L  =  on Ω is  *E . Therefore, 

according to LaSalle's invariance principle [14], when 0 1R , the endemic disease equilibrium 

point ( )* * * *

1 2, ,E S S I=  is globally asymptotically stable. 

5. Numerical simulation 

According to the biological significance of the system and some parameter values and initial 

values in the literature [9, 15-16], MATLAB software was used for numerical simulation. The 

following parameters and initial values that meet the conditions are taken to simulate the existence 

of the endemic equilibrium point and analyze the influence of time delay on the changing trend of 

the epidemic situation. In order to combine with reality, the initial value here will be taken to be 

the size equivalent to the population of a large city: 

60000,A = 7

1 2.1011 10 , −=  7

2 7.1443 10 , −=  0.1, = 0.045,d = 0.33029, =  

51.7826 10 , −=  5.3, = ( )1 0 1000000,S = ( )2 0 100000,S = ( )0 1000.I =  
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            Figure 2.  Epidemic spread               Figure 3. Effects of different time delays on epidemic transmission 

The basic reproduction number 0 1.56 1= R  was calculated, and the final simulation result 

is shown in Figure 2. It was observed that all variables tend to stabilize after a period of time, which 

proved the existence of a non-negative endemic equilibrium point. According to Theorem 7, the 

endemic equilibrium point is globally asymptotically stable at this point, and clearly the numerical 

simulation results are in agreement with the theory. 

The incubation period of COVID-19 is generally 3-7 days, and the maximum is 14 days, so 

the other parameters are unchanged and the time delay is set to, respectively. The numerical 

simulation results are shown in Figure 3. We can observe that the larger the time delay, the slower 

the increase in the cumulative number of infected people. However, the final stability level 

corresponding to different time delays is not much different. In contrast, the results of considering 

time lag (such as an inflection point) would be more consistent with the actual situation. 

The change in time delay makes the solution (such as ( )I t ) of the time delay system (3) 

shake, which may lead to multiple outbreaks of the epidemic. For example, when 7   , the 

number of infected persons appears to have reached a second peak immediately after the first peak, 

a large time-delay may lead to a second outbreak of the epidemic. 

6. Conclusion 

In this paper, the existence and stability of the equilibrium point are discussed separately 

according to the constructed SEIR-based time-delay model. The basic reproduction number 0R  

is calculated. First, it is proved that when 0 =  , the disease-free equilibrium is locally 

asymptotically-stable when 0 1R , while the endemic equilibrium is locally asymptotically-stable 

when 0 1R  . Then we mainly analyze the stability of the system when 0   . The following 
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conclusions are drawn: when 
0 1R , the disease-free equilibrium is globally asymptotically stable; 

when 
0 1R , the endemic equilibrium is globally asymptotically stable. Finally, the results of 

simulations show that the previously derived conclusions about the stability of the equilibrium 

point are correct. Therefore, in order to better prevent and control the epidemic, we should take 

measures to keep 
0R  below 1. In addition, the influence of different time delays on the epidemic 

was observed through numerical simulation, indicating the importance of selecting appropriate 

time delays for the prediction of epidemic development. 

Although the conclusions obtained from the model established in this paper can well reflect 

the changes in the spread of COVID-19, the epidemic modeling needs to consider many factors. 

This paper is relatively simple and has limitations. For example, only a discrete time delay is 

assumed in the model, and the impact of quarantine, vaccination, and other measures on the spread 

of the epidemic is not considered. 
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