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Abstract 

The efficient deployment of weapons in military operations is critical for mission success, and the flow of air within the 

weapon bay of an autonomous fighter drone plays a vital role in achieving this objective. In this paper, we present a comprehensive 

numerical simulation and computational fluid dynamics (CFD) analysis of the three-dimensional lid-driven cavity flow within the 

weapon bay of an autonomous fighter drone. To address this challenging problem, we employ CFD analysis and a multigrid 

approach to solve the Navier-Stokes equations for the aerodynamic problem. Our simulations include high Reynolds numbers of 

up to 10,000, which demonstrates the potential of CFD analysis in optimizing the design of autonomous fighter drones for military 

operations. We evaluate the effectiveness of the linked strongly implicit multigrid technique in estimating high-Re fine-mesh flow 

solutions using the vorticity-stream function formulation of the two-dimensional incompressible Navier-Stokes equations. The 

model issue is the driven flow in a square cavity, and we consider meshes up to 1024 x 1024 points and combinations with Reynolds 

numbers as high as 1000. To further improve the accuracy of our simulations, we employ one-dimensional grid clustering 

coordinate transformations instead of uniform mesh refinement, as the flow field exhibits one or more secondary vortices. Our 

findings demonstrate that CFD analysis can provide valuable insights into the complex flow dynamics within the weapon bay of 

autonomous fighter drones, which can lead to the optimization of their design for enhanced mission capabilities. Overall, our study 

highlights the significance of numerical simulations and CFD analysis in the design and optimization of autonomous fighter drones 

 
 



 

for military applications. Our results can serve as a basis for future research in the field of UAV aerodynamics and contribute to 

the development of more efficient and effective military operations.  

Keywords: Aerial Drones, Robotics, Computational Fluid Dynamics, Unmanned Aerial Vehicles

1. Introduction 

Computational fluid dynamics has made significant 

strides over the past decade, particularly in aerodynamics for 

both commercial and military applications. One significant 

application of aerodynamics is the flow of air at high velocity 

in the missile chamber of fighter jets, where the design of the 

chamber is critical to ensure that missiles are ready to be 

deployed as soon as possible [1]. This presents both a challenge 

and an opportunity for aero designers, especially when dealing 

with high-speed and high-Reynolds number flows that put a lot 

of stress on the missile holder. Autonomous Systems (AS), 

which include robots, fighter drones, fighter planes, self-driving 

cars, delivery drones, and spray drones, have become 

increasingly prevalent in military applications [2]. Autonomous 

drones (UAVs) are capable of executing missions without the 

need for human intervention, flying to a specific location, 

selecting their own targets, and carrying out attacks. However, 

the use of "killer robots" has raised ethical concerns, and while 

most people may view "autonomous drones" as "smart 

technology," these drones are actually programmed with a wide 

range of possible solutions to the many challenges they can 

encounter while carrying out their duties [3]. If the coupling 

between the several governing differential equations is not 

properly respected, either inside the solution domain or at its 

frontiers, the pace of convergence of the solution might be 

significantly impacted. Additionally, the rate of convergence is 

typically highly sensitive to the Reynolds number, mesh size, 

and overall number of computational points [4]. 

In recent years, the field of computational fluid 

dynamics (CFD) has undergone significant advancements, 

especially in the realm of aerodynamics [5]. One of the most 

critical applications of aerodynamics is the flow of air in the 

missile chambers of fighter jet aircraft, which presents both 

challenges and opportunities for aerodynamic designers [6]. 

The missile chamber's design is of utmost importance in 

modern warfare since the missiles must be ready to be 

deployed as soon as possible. However, the high speed and 

Reynolds number of the approaching airflow create a 

significant amount of stress on the missile holder, requiring 

careful design and optimization [7]. At the same time, there 

has been a rapid development of autonomous systems (AS) in 

recent years. These machines are capable of performing 

desired activities without human intervention and can learn 

from experience, making them increasingly important in a 

range of applications, including military operations [8]. 

Autonomous drones, such as fighter drones, have the ability 

to fly to a specific location, identify targets, and execute them 

without human intervention, raising concerns over the use of 

"killer robots" in warfare. However, autonomous systems 

have a wide range of potential applications, including the 

development of drones programmed to operate under 

different conditions and solve a variety of challenges they 

may encounter while carrying out their missions [9]. One of 

the challenges faced in the development of autonomous 

drones is the need to optimize the flow of air in the missile 

chamber. The high speed and Reynolds number of the airflow 

put a lot of stress on the missile holder, requiring careful 

design and optimization [10]. To address this challenge, 

computational fluid dynamics (CFD) has become an essential 

tool in aerodynamic design, providing a means to model and 

analyze the flow dynamics in the missile chamber. With the 

help of CFD analysis, aerodynamic designers can optimize 

the design of the missile chamber for efficient and effective 

deployment of weapons in military applications [4]. In the 

field of CFD, the multigrid approach has proven to be a 

powerful tool for solving aerodynamic problems. While the 

potential of the multigrid technique has been demonstrated for 

single differential equations, there are still many issues to be 

resolved before the technique can be used to solve a system 

of coupled nonlinear differential equations [11]. The purpose 

of the current work is to apply the multigrid approach to solve 

the Navier-Stokes equations for a jet aerodynamic problem, 

achieving solutions with high Reynolds numbers, high 

speeds, and mesh refinements. In this study, we present a 

numerical simulation and computational fluid dynamics 

(CFD) analysis of three-dimensional lid-driven cavity flow 

within the weapon bay of an autonomous fighter drone [12]. 

We apply CFD analysis to model the flow dynamics and use 

a multigrid approach to solve the Navier-Stokes equations for 

the aerodynamic problem. The results obtained for the shear-

driven flow in the missile chamber in a square cavity at 

Reynolds numbers as high as 400 and 1000 are then reported, 

together with the specific details that have to be studied in 

order to arrive at these answers. We employ two-dimensional 

grid clustering coordinate transformations instead of uniform 

mesh refinement since the flow field appears to have one or 

more secondary vortices. The results of our study demonstrate 

the potential of CFD analysis and the multigrid approach to 

optimize the design of autonomous fighter drones for military 

operations. Our findings have important implications for the 

development of autonomous systems, including drones and 

other machines, which must operate under different 

conditions and perform a wide range of activities without 

human intervention. In conclusion, we believe that our study 

provides valuable insights into the use of CFD analysis and 

the multigrid approach to address the challenges faced in the 

Figure 1. Multiple semi-coarsened grids in 2D with Coarse to Fine Grid 



 

development of autonomous systems for military 

applications. 

2. Multigrid Techniques and Structures  

Large systems created by computational fluid 

dynamics (CFD) call for effective solution techniques. 

Unsurprisingly, multigrid quickly found uses in CFD. In 1999, 

the compressible potential equation and shortly after, the 

incompressible Navier-Stokes equations, were solved using 

multigrid. Multigrid has developed a tight relationship with 

CFD over time and is now a component of several important 

CFD codes [13], [14]. Now that multigrid solutions are 

available, it is possible to calculate the viscous flow around a 

whole aircraft configuration. A system of l partial differential 

equations is used to represent the continuous differential 

problem under consideration (1).   

𝐿𝑗�̅�(�̅�) = 𝐹𝑗(�̅�),   𝑗 = 1,2, … . , 𝑙, 𝑥 ̅𝜖 𝐷          (1)  

with the m boundary conditions, 

 

 𝐵𝑖�̅�(�̅�) = 𝐺𝑖(�̅�),   𝑖 = 1,2, … . , 𝑚, 𝑥 ̅𝜖 𝜕𝐷        (2) 

where x = (x1, x2, xd) are the d independent variables 

of the d-dimensional problem, Fj and Gi are known functions 

on domain D and its boundary ∂D, respectively, and Lj and Bi 

are general differential equations. The issue outlined by Eqs. 

(1) and (2) call for a finite-difference solution in a 

computational domain with grid spacing h. The linear system 

of algebraic equations resulting from a chosen difference 

scheme can be written as, using a superscript h to signify the 

finite-difference approximation. 

𝐿𝑗
ℎ𝑈𝑥̅̅ ̅̅ (𝑥ℎ̅̅ ̅) = 𝐹𝑗

ℎ (𝑥ℎ̅̅ ̅)          (3) 
         

Brandt has calculated the size of the smoothing rate 

μ, which is the ratio by which each error component is reduced 

across a Gauss-Seidel relaxation sweep. The smoothing rate 

of the Fourier components of the error with more slowly 

increasing wavelengths is relatively poor, it is noticed that 

Gauss-Seidel relaxation produces a decent smoothing rate for 

those error components whose wavelength is comparable to 

the size of the mesh. This feature serves as the cornerstone of 

the multigrid approach. It understands that a wavelength that 

is short in relation to a fine mesh is longer in relation to a 

coarse mesh. Consequently, following the initial two or three 

iterations on a certain fine mesh. The first step's calculated 

fine-grid solution must then be adjusted to accurately 

represent the error's removal of the 2h wavelength content. 

The multigrid method's fundamental concept is the repeated 

application of this technique over a series of grids. 

 

Accordingly, the multigrid method makes use of a hierarchy 

of computational grids Dk with the corresponding grid 

functions, k = 1, 2..., M. The step size on Dk is h, and hk, and 

hk+1, so that as k decreases, Dk becomes coarser. On the kth 

grid, Eq. (1) has the discretized approximate form. 

 
𝐿𝑗

𝑘𝑈𝑘̅̅ ̅̅ (𝑥ℎ̅̅ ̅) = 𝐹𝑗
𝑘          (4)  

    

Wesseling [15] referred to this restriction as a "9-point 

restriction" because it uses that many points, i.e. 

 
(𝑅𝑘

𝑘−1𝑢𝑘)
𝑖+1,𝑗+1

=
1

4
𝑢2𝑖+1,2𝑗+1

𝑘

                       (5) 

The choice of Rk as defined suggests that the 

prolongation operator Pi also involves nine points so that the 

value at the cell center is obtained as the arithmetic mean of 

the four corner points. This leads to the 9-point prolongation 

operator defined by Wesseling [15] as, 

(𝑷𝒌−𝟏
𝒌 𝒖𝒌−𝟏)

𝒂
= [𝒖𝒊+𝟏,𝒋+𝟏

𝒌−𝟏 + 𝒖𝒊+𝟐,𝒋+𝟏
𝒌−𝟏 + 𝒖𝒊+𝟏,𝒋+𝟐

𝒌−𝟏 ]       (6) 

      

3. Numerical Methodology 

3.1 Governing Differential Equations 

ANSYS Fluent for computational fluid dynamics 

(CFD) permits the simulation of fluid flow and heat transfer 

phenomena. It models the behaviour of fluid flows using the 

Navier-Stokes equations, which are the fundamental 

equations of fluid dynamics. These equations are necessary 

for an accurate simulation of fluid behaviour because they 

describe the conservation of mass, momentum, and energy 

[16]. Additionally, ANSYS Fluent makes use of the Gauss 

divergence theorem and the Reynolds transport theorem to 

enable accurate mathematical modelling of complicated fluid 

events. Numerous fluid flow issues, including turbulent, 

multiphase, and reactive flows, can be simulated using the 

software thanks to its sophisticated numerical algorithms and 

grid generation capabilities [17]. Additionally, it provides 

support for a number of physical models, including 

turbulence, heat transfer, and combustion models, allowing 

the simulation of intricate physical processes. 

  

The momentum conservation equations in the x,y and z 

directions [18], 
   

𝜌 (
∂𝑢

∂𝑡
+ 𝑢

∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂𝑦
+ 𝑤

∂𝑢

∂𝑧
) = −

∂𝑝

∂𝑥
+ 𝜇 (

∂2𝑢

∂𝑥2 +
∂2𝑢

∂𝑦2 +
∂2𝑢

∂𝑧2) + 𝜌𝑔𝑥

𝜌 (
∂𝑣

∂𝑡
+ 𝑢

∂𝑣

∂𝑥
+ 𝑣

∂𝑣

∂𝑦
+ 𝑤

∂𝑣

∂𝑧
) = −

∂𝑝

∂𝑦
+ 𝜇 (

∂2𝑣

∂𝑥2 +
∂2𝑣

∂𝑦2 +
∂2𝑣

∂𝑧2) + 𝜌𝑔𝑦

𝜌 (
∂𝑤

∂𝑡
+ 𝑢

∂𝑤

∂𝑥
+ 𝑣

∂𝑤

∂𝑦
+ 𝑤

∂𝑤

∂𝑧
) = −

∂𝑝

∂𝑧
+ 𝜇 (

∂2𝑤

∂𝑥2 +
∂2𝑤

∂𝑦2 +
∂2𝑤

∂𝑧2 ) + 𝜌𝑔𝑧

 

       
             (7) 

The two-dimensional flow in the cavity can be 

represented mathematically in terms of the stream function 

and the vorticity as follows, with the advective terms 

expressed in conservation form: 

Stream Function Equation: 

𝜓𝑥𝑥 + 𝜓𝑦𝑦 +  𝜔 = 0              (8) 



 

Vorticity Transport Equation: 

𝜓2𝜔 𝜔𝑥𝑥 + 𝜔𝑦𝑦 − 𝑅𝑒 [(𝜓𝑦𝜔)
𝑥

−  (𝜓𝑥𝜔)𝑦] = 𝑅𝑒 𝜔𝑡                (9)  

The stream function and vorticity are used to 

express the two-dimensional flow in the cavity 

mathematically. To capture the complex dynamics of the 

flow, the stream function equation and the vorticity transfer 

equation are used. The conservation form of the advective 

components in these equations ensures an accurate depiction 

of the fluid flow phenomena. A thorough exploration of the 

lid-driven cavity flow within the armament bay of an 

autonomous fighter drone is made possible by these 

mathematical formulations, which offer a formal foundation 

for carrying out numerical simulations and computational 

fluid dynamics analyses. To evaluate the flow behaviour 

inside a certain grid arrangement, a thorough computational 

fluid dynamics (CFD) analysis was carried out. The 

importation of the grid, which served as the computing 

environment for the flow solver issue, is shown in Figure 2. 

The density and viscosity of the fluid, among other fluid 

parameters, were precisely specified to reflect the behaviour 

of the fluid under investigation. The governing equations were 

discretized using a suitable discretization scheme, as shown in 

Figure 3, ensuring accurate and effective numerical 

calculations. By establishing suitable boundary conditions, 

taking into account inlet, exit, and wall conditions, real-world 

situations were replicated. Convergence monitors were built 

to track the convergence of the numerical solution. The 

simulations were then run to address the flow issue, and 

thorough findings were produced. The flow behaviour of these 

results was then thoroughly analyzed in order to derive 

insightful conclusions. As shown in Figure 3, the combined 

outcomes of the grid import and flow solver issue design 

considerably aided in the thorough analysis of the flow 

behaviour. 

 

3.2   Boundary Conditions 

In fluid dynamics, it is well-established that the 

zero-slip requirement for nonporous walls leads to the 

vanishing of w and its normal derivatives at all boundaries. 

However, this does not provide a direct condition for the 

tangential velocity component, o, at the walls, as is widely 

recognized in the field. This poses a challenge in the 

numerical solution of the Navier-Stokes equations, as a 

consistent treatment of boundary conditions is essential for 

accurate and reliable results [19]. One possible approach to 

overcome this challenge is to solve the equations for u and v 

simultaneously and apply all boundary conditions implicitly. 

This method has shown promising results in certain scenarios, 

but it may not be sufficient for all cases. Further research is 

needed to explore alternative techniques that can effectively 

address the boundary condition issue in numerical simulations 

of fluid dynamics. Ultimately, the development of robust and 

efficient computational methods will enable more accurate 

predictions of complex fluid flows and enhance our 

understanding of fundamental physical phenomena [10]. 

 

The cavity flow structure, along with the related coordinates, 

nomenclature, and boundary conditions, are shown in the 

accompanying diagram (Fig 4). In the high-tech research 

report, the experimental setup or computing domain is 

represented visually by this figure. The term "cavity flow 

configuration" describes a particular pattern of fluid flow that 

takes place inside an enclosed space called a cavity. 

Depending on the experimental or computational setup, the 

cavity in this scenario could have any shape, including a 

square, rectangle, or an irregular shape. The research report is 

particularly interested in the fluid movement inside the 

hollow. Defining the spatial location of distinct places within 

the cavity requires the use of coordinates. The x-axis and the 

y-axis in the illustration represent the coordinate system in a 

typical way. These axes give researchers the ability to 

pinpoint precise locations inside the hollow and gauge lengths 

or widths. Axes should be scaled and measured in exact 

accordance with the standards used in the study report. The 

labelling or naming of various elements, factors, or 

parameters inside the cavity flow configuration is referred to 

as nomenclature. There may be comments or labels on the 

graphic designating certain areas, flow variables, or physical 

quantities pertinent to the study. These labels are essential for 

clearly conveying the details to readers and assuring their 

understanding. The behaviour of the fluid flow near the 

cavity's edges or borders is defined by boundary conditions. 

The picture depicts the precise boundary conditions that were 

enforced throughout the research investigation. These 

requirements could be velocity profiles, pressure gradients, 

temperature distributions, or any other pertinent restrictions. 

To accurately simulate or analyse the fluid flow behaviour 

inside the hollow, certain conditions are necessary. 

3.3 Discretization 

The numerical error (E) can be defined as the difference 

Figure 2. Expressions for vorticity at other boundaries 



 

between the exact analytical solution (Φ) of a variable of 

interest and its numerical solution (𝜙), i.e.,  

E(ϕ) = Φ – 𝜙               (10)  

In the context of numerical methods for solving 

partial differential equations, the choice of mesh or grid on 

which the equations are discretized can have a significant 

impact on the accuracy and efficiency of the solution. In many 

cases, a uniform mesh may be sufficient for obtaining a 

reasonable approximation to the solution. However, in 

situations where the solution exhibits localized features or 

sharp gradients, a non-uniform mesh may be necessary to 

capture these details accurately [20]. One approach to 

handling non-uniform meshes is to use grid-clustering 

coordinate transformations. This involves mapping the 

physical domain to a transformed computational domain 

where the mesh is uniform, and then applying a clustering 

transformation to obtain a non-uniform mesh in the physical 

domain. While effective, this approach can be 

computationally expensive and may introduce additional 

errors in the solution [21]. An alternative approach is to use a 

multigrid solution technique, which can handle local mesh 

refinement without the need for coordinate transformations. 

In this method, progressively finer grids are constructed in 

designated subdomains of the computational space, allowing 

for local refinement where necessary. This can lead to 

significant improvements in both the accuracy and efficiency 

of the solution, particularly in cases where the solution 

exhibits localized features or sharp gradients [22], [23]. All 

second-order derivatives in Eqs. (12) are approximated by 

second-order accurate central finite-difference methods. 

According to a formal suggestion made by Khosla and Rubin 

[24], the convective terms in Eq. (11) are represented by a 

first-order accurate upwind difference scheme that includes its 

second-order accurate term as a postponed correction [25]. In 

theory [18], [26], it is expected that pE (effective order) and pU 

(apparent order) → pL for h → 0. In other words, it is expected 

that the practical orders (pE and pU), which are calculated with 

the numerical solution of this work u solutions of each 

variable of interest, tend toward the asymptotic order (pL), 

foreseen a priori, when the size of the control volumes (h) 

tends toward zero. The effective order (pE) of the true error is 

defined by [18],  

𝑝𝐸 = 𝑙𝑜𝑔[𝐸(𝜙2)/𝐸(𝜙1)]                 (11) 

where E(𝜙1) and E(𝜙2) are true discretization 

errors of the numerical solutions 𝜙1 and 𝜙2 obtained, 

respectively, with fine (h1 ) and coarse (h2) grids; h = size of 

the control volumes (in this work, h = ∆x = ∆y); and r = h2 

/h1 (grid refinement ratio). According to Eq. (12), the 

effective order (pE) is a function of the true discretization error 

of a variable of interest. Thus, for problems for which an 

analytical solution is known, it can be used to verify a 

posteriori if, as h → 0, one obtains pL. When E is unknown, 

(pE) cannot be calculated. In this case, one can use the concept 

of observed or apparent order (pU) defined by [27][28], 

𝑝𝑈 = 𝑙𝑜𝑔(𝜙2 − 𝜙3)/(𝜙1 − 𝜙2)            (12) 
       

where ϕ1, ϕ2 and ϕ3 = numerical solutions obtained, 

respectively, with fine (h1), coarse (h2) and super coarse (h3) 

grids, and r = h3 /h2 = h2 /h1. Several studies [13], [14], [29]–

[31] achieved excellent results when employing multiple 

Richardson extrapolations (MRE) to reduce the discretization 

error of ψmin. These authors, however, only applied this 

procedure to the finest of four grids, yielding up to three 

Figure 4. Workflow for Computational Fluid Dynamics (CFD) study 
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extrapolations. In the current study, this method was applied 

to practically all variables of interest with up to ten grids, 

producing up to nine extrapolations for the best grid employed 

(1024 x 1024). Using, 

 

𝜙1,𝑚∞
= 𝜙1,(𝑚−1)∞

+
𝜙1,(𝑚−1)∞− 𝜙2,(𝑚−1)∞

𝑟𝑝𝑣(𝑚)−1
                        (12) 

       
where 𝜙1,m∞ is the numerical solution of the variable of 

interest (𝜙) with m extrapolations on the fine grid (h1 ); 𝜙1,(m-

1)∞ and 𝜙2,(m-1)∞ are numerical solutions with (m-1) 

extrapolations on the fine (h1 ) and coarse (h2 ) grids; r = h2 /h1 

(grid refinement ratio); m = number of Richardson 

extrapolations, with m = 0 being the numerical solution 

obtained in grid h without any extrapolation. Different grids 

with numerical solutions of 𝜙 without any extrapolation; 

pV(m) = true orders [32]–[34] of the discretization error, with 

pV(1) = pL. For the numerical model used in this work, pV = 2, 

4, 6 ... for all variables of interest, except for x and y 

coordinates of ψmin, umin, vmin and vmax, of which values of pV 

are unknown. In practical situations, a numerical solution is 

obtained because the analytical solution is unknown. Hence, 

the true value of the numerical error is also unknown. 

Therefore, the numerical error must be estimated. The 

estimated discretization error (U) of 𝜙1, (nm-1)∞, i.e., of the 

numerical solution with the highest possible number of 

extrapolations in the finest grid, will be considered equal to, 

 
𝑈(𝜙1,(𝑛𝑚−1)∞

) = |𝜙1,(𝑛𝑚−2)∞
− 𝜙2,(𝑛𝑚−2)∞

|             (13)

     
 which is the module of the difference with the 

highest number of extrapolations that can be calculated 

between the two finest grids. In the case of the x and y 

coordinates of ψmin, umin, vmin and vmax,  

 
𝑈(𝑥, 𝑦) = |𝜙1024𝑥1024 − 𝜙512𝑥512|                (14) 

     
 where 𝜙1024𝑥1024 and 𝜙512𝑥512 are the numerical 

solutions obtained without extrapolation on 1024 x 1024 and 

512 x 512 nodes grids. The resulting algebraic equations are 

guaranteed to have diagonal dominance, which gives the 

evolving solutions the requisite stability quality while 

regaining second-order accuracy at convergence. 

 

3.4 Multigrid Procedure 

Instead of using a corrective strategy, the full 

approximation scheme (FAS) was used for the current 

nonlinear situation. Additionally, the CSI process employed 

for relaxation typically yields a convergent coarse-grid 

solution, hence the full multigrid (FMG) algorithm was 

chosen over the cycle algorithm. The cycling algorithm might 

also be employed for the higher-Re cases computed, with the 

answer of an earlier calculation with a lower value of Re 

serving as the first approximation of the finest-grid solution 

[34]–[38]. Finally, the "accommodative" form of the multigrid 

approach was employed to manage the computational process 

by monitoring convergence as well as convergence rate during 

the process of relaxing on a particular grid [39]. There is a 

variant of the classical problem of which an analytical solution 

is known and is given by [40], [41]. The analytical solution of 

u and v is, 

 
𝑢(𝑥, 𝑦) = 8(𝑥4 − 2𝑥3 + 𝑥2)(4𝑦3 − 2𝑦)                           (15) 

 

𝑣(𝑥, 𝑦) = −8(4𝑥3 − 6𝑥2 + 2𝑥)(𝑦4 − 𝑦2)             (16)

     
 All numerical solutions in this work were obtained 

with ten different grids: 2 x 2, 4 x 4, 8 x 8 and so on up to 1024 

x 1024 real control volumes. All simulations of this study 

were made in a Dell G4 12-Gen Intel i9-12900H 5 GHz Turbo 

16 GB DDR5 with NVIDIA® GeForce RTX™ 3070 Ti, 8 GB 

GDDR6 with 1024 x 1024 nodes grid. 

4. Results 

In the classical problem [23], [32], [35], [42]–[44] of laminar 

flow inside a square cavity, the lid velocity (UT) is constant 

and has a unitary value. The other boundary conditions are 

shown in Fig. 1. At lid corners, u = 0 on one side and u = 1 on 

the other. The Reynolds number (Re) is defined by, 
 

𝑅𝑒 = 𝜌𝑈𝑇
𝐿

𝜇
                (17)

  

where L = 1 m, dimension of the side of the square 

cavity; ρ = 1 kg/m3, density; and µ is the viscosity in Pa.s, 

obtained from Eq. (19) for a given Re. Numerical solutions 

were obtained for Re = 0.01, 10, 100, 400 and 1000. The initial 

estimate used was u = v = p = 0. The following maximum 

values were produced by the stream function value (psi) in y 

= 1, which ought to be null for each of the 1024 control 

volumes at the cavity lid: For Re = 0.01, 10, 100, 400, and 

1000, the corresponding values are 5.9 x 10-16, 1.7 x 10-15, 5.4 

x 10-16, 1.0 x 10-15, and 2.3 x 10-15. These numbers, which are 

at the level of double precision used in this work, are quite 

near to the null one. 

Figure 4 displays the velocity profiles in the two directions at 

the cavity centre. The numerical solution of this work utilising 

the 1024 x 1024 grid is extremely consistent with the 

numerical solutions of [20], [30], [23], [26], [35], [42]–[46] 

The streamline patterns seen in the cavity flow are represented 

by the contours of the vorticity in Fig 6 and Fig 7. 

concentrated vorticity contours show the formation of 

numerous high-vorticity gradient zones as the Reynolds 

number (Re) rises. It's interesting to note that these areas don't 

line up with the cavity's physical borders. In the current study, 

we used uniform mesh refinement to accurately represent 

these complicated flow phenomena. Alternative strategies 

should be taken into account, such as using a modified non-

Cartesian coordinate system or a solution-adaptive local mesh 

refining method. The vorticity near the middle of the moving 

wall or the minimum value of vorticity, In the cavity, 

boundary is an often compared quantity for cavity flows. It is 

commonly known that at Re = 100, the primary vortex's centre 

is first displaced towards the upper right corner. The main 

vortex eventually travels in the direction of the cavity's 

geometric centre as Re rises. It's interesting to note that for Re 

> 5000, the major vortex's location nearly becomes invariant. 



 

For secondary vortices, they first manifest themselves close to 

the corners (or close to the wall for the vortex TL). The centres 

of these secondary vortices gradually gravitate towards the 

cavity's centre as Re increases. Notably, for greater levels of 

Re, the secondary eddies' convection becomes visible as 

shown by the direction in which their centres travel. This 

sentence justifies the observations stated in the study article in 

Figure 6 and offers an explanation. The development of strong 

vorticity gradients, the misalignment of vorticity regions with 

geometric boundaries, the consideration of uniform mesh 

refinement, the investigation of alternative coordinate systems 

and mesh refinement methods, and the behaviour of primary 

and secondary vortices with different Reynolds numbers are 

all highlighted. 

 

5. Conclusion 

In conclusion, this research study aimed to generate fine-mesh 

solutions for the lid-driven cavity problem with a Reynolds 

number (Re) up to 1000 with the objective of assessing the 

accuracy and efficacy of the analysis, as well as the efficiency 

of the computer programs. The convergence requirement was 

used to quantify the relative change between iterations and 

functioned as a precision indicator for the computational 

method. The velocity profiles derived from the CFD 

simulations showed strong agreement with the validated data, 

confirming the accuracy of the simulation results. The two-

dimensional flow field and variations in drag coefficients 

around vertical cylinders were examined using the SIMPLE 

model and the ANSYS Pressure-based Solver. Notably, 

vortex shedding, and the wake flow were considerably 

influenced by the shape of the cylinders. It was also noted that 

using a triangular mesh yielded slightly different results from 

using a quad mesh, indicating the need for additional research 

into the influence of mesh types on simulation outcomes. 

Despite shedding light on certain crucial features of the lid-

driven cavity problem, complicated flow systems still have 

more mysteries to be solved. Future studies should 

concentrate on pinpointing and comprehending the precise 

unknowns and complexities connected to such systems in 

order to facilitate more thorough and precise modelling. 

Additionally, the development of unmanned aerial vehicles 

(UAVs) has completely changed a number of industries 

thanks to their cutting-edge hardware, which includes 

physical models, Ground Control Stations (GCS), modern 

sensors, and improved communication systems. UAVs have a 

wide variety of uses, including search and rescue, climate 

monitoring, surveillance, weather forecasting, and mapping. 

These uses span both military and civilian missions. The 

strength of the internet and these technical breakthroughs have 

revolutionized emergency evacuations during natural 

catastrophes like storms, floods, and bushfires. However, it is 

crucial to address problems and issues including legal 

Figure 6. Contour Pattern of solution when Mesh 1024 X 1024 and Re=10, 100, 400, and 1000 

Figure 5. u at x = ½ and v at y = ½ for the classical problems 



 

frameworks, privacy concerns, and safety precautions that 

may come up with the increased use of UAVs. We can fully 

utilise the capabilities of UAVs and progress their use by 

proactively resolving these problems. Overall, this research 

study demonstrates the accuracy of CFD models and offers 

helpful insights into the lid-driven cavity problem. 

Additionally, it highlights how UAVs are transforming 

numerous businesses and demonstrates how they have the 

potential to disrupt a number of other fields, including 

emergency response. The future of fluid dynamics and UAV 

technology looks bright with continuing research and 

development, opening doors to new opportunities and 

breakthroughs yet to be discovered. 

6.  Conflict of Interest 

The authors declare that they have no conflict of interest with 

respect to this research study. They have not received any 

financial or non-financial benefits or support that may have 

influenced the design, execution, or reporting of this research. 

Additionally, they have no personal, professional, or 

academic affiliations that could be perceived as having a 

potential influence on this study. 

7.   Funding 

This research was conducted without any external funding. 

The authors solely bear the responsibility for the study design, 

data collection, analysis, interpretation, and manuscript 

preparation. 

8.   Ethical Approval 

Ethical approval was not required for this study, as it does not 

involve any studies of human participants or animals 

performed by any of the authors. 

10.  Acknowledgements 

We would like to express our sincere gratitude to the 

Department of Mechanical Engineering at the National 

University of Science and Technology (NUST) and the 

Quantum Commutating Lab (NUST) for their support in this 

research by providing computational facilities. We are 

grateful to Dr. Imran Akhtar PhD. for his valuable insights and 

assistance with the Computational Fluid Dynamics (CFD) 

simulations, Muhammad Moazzam Ali from the University of 

Engineering and Technology (UET), Taxila and Hasnain Zia 

from the National University of Science and Technology 

(NUST) their expertise and guidance were instrumental in the 

success of this study. 

 

Reference 

 

[1] K. (Kimon) Valavanis, “Advances in unmanned 

aerial vehicles : state of the art and the road to autonomy,” p. 

543, 2007. 

[2] A. North, R. Siegwart, and W. Engel, “Autonomous 

Solar UAV for Sustainable Flights,” Advances in Unmanned 

Aerial Vehicles, pp. 377–405, Feb. 2008, doi: 10.1007/978-1-

4020-6114-1_12. 

[3] B. Ludington, E. N. Johnson, and G. J. 

Vachtsevanos, “Vision Based Navigation and Target 

Tracking for Unmanned Aerial Vehicles,” Advances in 

Unmanned Aerial Vehicles, pp. 245–266, Feb. 2008, doi: 

10.1007/978-1-4020-6114-1_8. 

[4] P. Wesseling and C. W. Oosterlee, “Geometric 

multigrid with applications to computational fluid dynamics,” 

J Comput Appl Math, vol. 128, no. 1–2, pp. 311–334, Mar. 

2001, doi: 10.1016/S0377-0427(00)00517-3. 

[5] A. Bhuvaneswari, V. K. Chandrasekar, M. 

Senthilvelan, and M. Lakshmanan, “On the complete 

integrability of a nonlinear oscillator from group theoretical 

perspective,” J Math Phys, vol. 53, no. 7, Jul. 2012, doi: 

10.1063/1.4731238. 

[6] M. Holubčík, G. Koman, and W. Sroka, 

“MANAGING THE DEPLOYMENT OF UAV SYSTEMS 

IN SLOVAKIA,” Polish Journal of Management Studies, vol. 

26, no. 2, pp. 172–188, Dec. 2022, doi: 

10.17512/PJMS.2022.26.2.11. 

[7] R. C. Arkin, “The case for ethical autonomy in 

unmanned systems,” Journal of Military Ethics, vol. 9, no. 4, 

pp. 332–341, Dec. 2010, doi: 

10.1080/15027570.2010.536402. 

[8] K. Puchała, G. Moneta, E. Szymczyk, and V. 

Hutsaylyuk, “The Concept and Preliminary Design of a New 

Drone Destined for Military Rescue/Medical Missions,” 

Challenges to National Defence in Contemporary 

Geopolitical Situation, vol. 2022, no. 1, pp. 248–253, Oct. 

2022, doi: 10.47459/CNDCGS.2022.32. 

[9] A. Konert and T. Balcerzak, “Military autonomous 

drones (UAVs) - from fantasy to reality. Legal and Ethical 

implications.,” Transportation Research Procedia, vol. 59, pp. 

292–299, Jan. 2021, doi: 10.1016/J.TRPRO.2021.11.121. 

[10] J. de Gier, J. Bergmans, and H. Hildmann, 

“Hierarchical Plan Execution for Cooperative UxV 

Missions,” Robotics, vol. 12, no. 1, Feb. 2023, doi: 

10.3390/ROBOTICS12010024. 

[11] S. Thabet and T. H. Thabit, “Computational Fluid 

Dynamics: Science of the Future,” International Journal of 

Research and Engineering, vol. 5, no. 6, pp. 430–433, 2018, 

doi: 10.21276/IJRE.2018.5.6.2. 

[12] A. Sheeba, P. Mathew, and P. M. Jose, “Numerical 

investigations on the heat transfer characteristics of tube in 

tube helical coil heat exchanger,” J Phys Conf Ser, vol. 1355, 

no. 1, Nov. 2019, doi: 10.1088/1742-6596/1355/1/012005. 

[13] M. M. Butt and Y. Yuan, “A Full Multigrid Method 

for Distributed Control Problems Constrained by Stokes 

Equations,” Numerical Mathematics, vol. 10, no. 3, pp. 639–



 

655, Aug. 2017, doi: 10.4208/NMTMA.2017.M1637. 

[14] M. M. Butt and A. Borzì, “Formulation and 

multigrid solution of Cauchy-Riemann optimal control 

problems,” Comput Vis Sci, vol. 14, no. 2, pp. 79–90, Feb. 

2011, doi: 10.1007/S00791-011-0161-9. 

[15] P. Wesseling, “Principles of Computational Fluid 

Dynamics,” vol. 29, 2001, doi: 10.1007/978-3-642-05146. 

[16] J. Keogh, G. Doig, T. J. Barber, and S. Diasinos, 

“The Aerodynamics of a Cornering Inverted Wing in Ground 

Effect,” Applied Mechanics and Materials, vol. 553, pp. 205–

210, 2014, doi: 10.4028/www.scientific.net/amm.553.205. 

[17] R. L.S., C. J., F. M.V., and K. K., “Investigation of 

forcing boundary layer transition on a single-element inverted 

wing in ground effect,” The International Vehicle 

Aerodynamics Conference. Elsevier, pp. 199–211, 2014. doi: 

10.1533/9780081002452.6.199. 

[18] C. H. Marchi, R. Suero, and L. K. Araki, “The lid-

driven square cavity flow: numerical solution with a 1024 x 

1024 grid,” Journal of the Brazilian Society of Mechanical 

Sciences and Engineering, vol. 31, no. 3, pp. 186–198, 2009, 

doi: 10.1590/S1678-58782009000300004. 

[19] M. R. Ahmed and S. D. Sharma, “An Investigation 

on the Aerodynamics of a Symmetrical Airfoil in Ground 

Effect,” Exp Therm Fluid Sci, vol. 29, no. 6, pp. 633–647, Jul. 

2005, doi: 10.1016/j.expthermflusci.2004.09.001. 

[20] C. Y. Wu, R. Girshick, K. He, C. Feichtenhofer, and 

P. Krähenbühl, “A Multigrid Method for Efficiently Training 

Video Models,” Proceedings of the IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, pp. 

150–159, Dec. 2019, doi: 10.1109/CVPR42600.2020.00023. 

[21] F. Lv, X. Zhang, C. Ji, and Z. Rao, “Theoretical and 

experimental investigation on local turbulence effect on 

mixed-lubrication journal bearing during speeding up,” 

Physics of Fluids, vol. 34, no. 11, Nov. 2022, doi: 

10.1063/5.0122039. 

[22] A. Brandt and O. E. Livne, “Multigrid Techniques,” 

Multigrid Techniques, Jan. 2011, doi: 

10.1137/1.9781611970753. 

[23] Y. Cao, Z. Chen, and M. Gunzburger, “Error 

analysis of finite element approximations of the stochastic 

Stokes equations,” Adv Comput Math, vol. 33, no. 2, pp. 215–

230, Aug. 2010, doi: 10.1007/S10444-009-9127-6. 

[24] S. G. Rubin and P. K. Khosla, “Polynomial 

interpolation methods for viscous flow calculations,” J 

Comput Phys, vol. 24, no. 3, pp. 217–244, Jul. 1977, doi: 

10.1016/0021-9991(77)90036-5. 

[25] Z. Zaheer, K. E. Reby Roy, G. S. Nair, V. Ragipathi, 

and U. V. Niranjan, “CFD analysis of the performance of 

different airfoils in ground effect,” J Phys Conf Ser, vol. 1355, 

no. 1, p. 012006, Nov. 2019, doi: 10.1088/1742-

6596/1355/1/012006. 

[26] M. D. Gunzburger, H. C. Lee, and J. Lee, “Error 

estimates of stochastic optimal Neumann boundary control 

problems,” SIAM J Numer Anal, vol. 49, no. 4, pp. 1532–

1552, 2011, doi: 10.1137/100801731. 

[27] G. De Vahl Davis, “Natural convection of air in a 

square cavity: A bench mark numerical solution,” Int J Numer 

Methods Fluids, vol. 3, no. 3, pp. 249–264, May 1983, doi: 

10.1002/FLD.1650030305. 

[28] C. H. Marchi and A. F. Carvalho da Silva, 

“UNIDIMENSIONAL NUMERICAL SOLUTION ERROR 

ESTIMATION FOR CONVERGENT APPARENT 

ORDER,” http://dx.doi.org/10.1080/10407790190053888, 

vol. 42, no. 2, pp. 167–188, Aug. 2010, doi: 

10.1080/10407790190053888. 

[29] E. Erturk, T. C. Corke, and C. Gökçöl, “Numerical 

solutions of 2-D steady incompressible driven cavity flow at 

high Reynolds numbers,” Int J Numer Methods Fluids, vol. 

48, no. 7, pp. 747–774, Jul. 2005, doi: 10.1002/FLD.953. 

[30] M. M. Butt, “Multigrid Method for Optimal Control 

Problem Constrained by Stochastic Stokes Equations with 

Noise,” Mathematics 2021, Vol. 9, Page 738, vol. 9, no. 7, p. 

738, Mar. 2021, doi: 10.3390/MATH9070738. 

[31] P. Chen, A. Quarteroni, and G. Rozza, “Multilevel 

and weighted reduced basis method for stochastic optimal 

control problems constrained by Stokes equations,” Numer 

Math (Heidelb), vol. 133, no. 1, pp. 67–102, May 2016, doi: 

10.1007/S00211-015-0743-4. 

[32] C. H. Marchi and A. F. Carvalho da Silva, 

“UNIDIMENSIONAL NUMERICAL SOLUTION ERROR 

ESTIMATION FOR CONVERGENT APPARENT 

ORDER,” http://dx.doi.org/10.1080/10407790190053888, 

vol. 42, no. 2, pp. 167–188, Aug. 2010, doi: 

10.1080/10407790190053888. 

[33] H. C. Lee and M. D. Gunzburger, “Comparison of 

approaches for random PDE optimization problems based on 

different matching functionals,” Computers and Mathematics 

with Applications, vol. 73, no. 8, pp. 1657–1672, Apr. 2017, 

doi: 10.1016/J.CAMWA.2017.02.002. 

[34] I. Babuŝka, R. Tempone, and G. E. Zouraris, 

“Solving elliptic boundary value problems with uncertain 

coefficients by the finite element method: The stochastic 

formulation,” Comput Methods Appl Mech Eng, vol. 194, no. 

12–16, pp. 1251–1294, Apr. 2005, doi: 

10.1016/J.CMA.2004.02.026. 

[35] C. Feng, S. Shu, J. Xu, and C. S. Zhang, “Numerical 

study of geometric multigrid methods on CPU-GPU 

heterogeneous computers,” Adv Appl Math Mech, vol. 6, no. 

1, pp. 1–23, 2014, doi: 10.4208/AAMM.2013.M87. 

[36] M. M. Butt, “A multigrid solver for Stokes control 

problems,” Int J Comput Math, vol. 94, no. 12, pp. 2297–

2314, Dec. 2017, doi: 10.1080/00207160.2017.1283022. 



 

[37] T. Rees and A. J. Wathen, “Preconditioning 

iterative methods for the optimal control of the Stokes 

equations,” SIAM Journal on Scientific Computing, vol. 33, 

no. 5, pp. 2903–2926, 2011, doi: 10.1137/100798491. 

[38] C. W. Oosterlee and F. J. G. Lorenz, “Multigrid 

methods for the Stokes system,” Comput Sci Eng, vol. 8, no. 

6, pp. 34–43, Nov. 2006, doi: 10.1109/MCSE.2006.115. 

[39] M. Mohebbi and M. A. Rezvani, “Numerical 

analysis of aerodynamic performance of regional passenger 

train under crosswind conditions,” International Journal of 

Vehicle Structures and Systems, vol. 5, no. 2, pp. 68–74, 

2013, doi: 10.4273/IJVSS.5.2.05. 

[40] L. S. Hou, J. Lee, and H. Manouzi, “Finite element 

approximations of stochastic optimal control problems 

constrained by stochastic elliptic PDEs,” J Math Anal Appl, 

vol. 384, no. 1, pp. 87–103, Dec. 2011, doi: 

10.1016/J.JMAA.2010.07.036. 

[41] M. Wang and L. Chen, “Multigrid methods for the 

Stokes equations using distributive gauss-seidel relaxations 

based on the least squares commutator,” J Sci Comput, vol. 

56, no. 2, pp. 409–431, doi: 10.1007/S10915-013-9684-1. 

[42] M. M. Butt, “Multigrid Method for Optimal Control 

Problem Constrained by Stochastic Stokes Equations with 

Noise,” Mathematics 2021, Vol. 9, Page 738, vol. 9, no. 7, p. 

738, Mar. 2021, doi: 10.3390/MATH9070738. 

[43] I. Babuška, R. Temponet, and G. E. Zouraris, 

“Galerkin finite element approximations of stochastic elliptic 

partial differential equations,” SIAM J Numer Anal, vol. 42, 

no. 2, pp. 800–825, 2004, doi: 10.1137/S0036142902418680. 

[44] W. Zulehner, “Nonstandard norms and robust 

estimates for saddle point problems,” SIAM Journal on Matrix 

Analysis and Applications, vol. 32, no. 2, pp. 536–560, 2011, 

doi: 10.1137/100814767. 

[45] S. Takacs, “A robust all-at-once multigrid method 

for the Stokes control problem,” Numer Math (Heidelb), vol. 

130, no. 3, pp. 517–540, Jul. 2015, doi: 10.1007/S00211-014-

0674-5. 

[46] Doi: 10.1016/J.APNUM.2018.03.002. 


