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Abstract

Fractional statistics (FS) is a generalization of the spin-statistics theorem and mixes bosons
and fermions in a non-trivial way. Mixing is controlled by a continuous parameter
0< g <1 and the ordinary statistics is recovered in the limit q =1. We have argued some
time ago that the onset of FS occurs in a spacetime endowed with minimal fractality,
whose ground state is the Cantor Dust, an early Universe phase created by topological
condensation of continuous dimensions. Recent studies on q- bosons reinforce the
hypothesis that Dark Matter is the relic of Cantor Dust left over from the early stages of
cosmological evolution. The take-away point of this brief note is the growing support for

the minimal fractality of spacetime and its ramifications in foundational physics.
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Cautionary Remark:

We caution from the outset that the sole intent of this report is to lay the groundwork
for further exploration of the topic. Exclusively presented in a draft form, our
analysis is far from completion and far from meeting the quality standards of a
formal research project. The style and presentation do not comply with traditional
academic standards. Independent work is needed to develop, validate, or reject the
ideas presented here. Readers unfamiliar with the topic are encouraged to carefully

review the enclosed references prior to drawing premature conclusions.

The spin-statistics theorem is a fundamental principle of quantum physics and
reflects the contrasting behavior of bosons and fermions in three-
dimensional space. There are various extensions of the theorem enabling
bosons and fermions to overlap and they are referred to as fractional
statistics, anyon statistics and quantum groups [4]. These extensions have

found a broad range of applications from deformed algebras of g-bosons and
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g-fermions to non-commutative field theory, cosmic strings, and Black
Holes, to fractional quantum Hall effect and anyonic states of matter [1, 4-6].
The algebra of g - particles is specified by the following set of commutation

relationships for the ladder operators a,a’ and the number operator N [2]

aa’'—qg*a'a=qg*" (1)
[N,a'|=a (2a)
[N,a|=-a (2b)

By (1) and (2), the Fock eigenstates |n) are built as in

0), a|0)=0 (3)

my=24
Jn]!

where the g-basic number and factorial are defined as, respectively,

_9-q
[X]_ q_q—l (4)

[n]t=[n][n-1]..[1] (5)

Ordinary numbers x correspond to the limit q —1, that is,
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lim[ x]=x (6)

g—1

The action of the operators on the state |n) is given by

a'ln)=[n +1]%|n+1> (7a)
aln)=[n] %|n-1 (7b)
N|n)=n|n) (7¢)

The Hamiltonian operator of a g-deformed harmonic oscillator is shown to

take the form
_ho i o
H—7(aa +a'a) (8a)
leading to the following spectrum of eigenvalues on the basis |n)
17
E(n):Tw([n]+[n+1]) (8b)

A close relationship exists between fractional differential operators and g-

deformed algebras [2]. To fix ideas, consider the power function

f(x,a) = X" 9)
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in which « is the index of fractional differentiation. Setting

a=1-¢,|n e =f(ne)=x"? (10)

yields the following expression of the Caputo fractional derivative of (10)

_I'fl+n@-¢)]
T[n@-¢)+¢]

D;[n,€) x“*ng); n>0 (11)

which, in turn, leads to

[n],_.|ne&)=Dy*n,g)x** (12)
and
im ], = 13

It follows from (6) and (13) that the direct dentification

q=1-¢, 0<q<1 (14)

connects fractional statistics to field theory built on fractional differential
operators (called fractional field theory [7]). Moreover, minimal fractal manifold

(MFM) describes a scale-dependent spacetime equipped with low-level
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fractality, where the continuous deviation from integer dimensionality

assumes the form [Appendix, 13]

() =4-d() =0 "1 <1 (15)

uv

Here, u,m, A, denote the running scale, mass parameter and ultraviolet
cutoff, respectively. At the far ultraviolet end of the energy scale m=0(A,,,)
both g and spacetime dimensionality drop to zero, a condition akin to the

Planckian regime of spacetime singularities.

Remarkably, recent modeling [3] shows that g-bosons offer an intriguing
picture of Dark Matter (DM), as g-bosons freeze in a condensed phase,
regardless of temperature. We have suggested some time ago that the onset
of fractional statistics naturally develops on the minimal fractal manifold
(MFM), whose ground state is the Cantor Dust, an early Universe phase
generated by topological condensation of continuous dimensions. These findings
reinforce the conjecture that DM represents an exotic relic of Cantor Dust left
over from the early stages of cosmological evolution [7-9, 12]. It is also

instructive to note that the concept of Cantor Dust may enable an unforeseen

6lPage



unification of DM and Dark Energy [10], as well as a platform for reconciling

the particle physics and gravitational interpretations of DM [11].

APPENDIX

Relation (15) reflects a regime that 1) develops somewhere near or far above
the Fermi scale of electroweak interactions and 2), it is manifestly
nonintegrable and prone to transition to chaos. It is only natural to posit that
the two sides of (15) converge to the same behavior in the low-energy limit
of particle physics, in a way consistent with the Decoupling Theorem. In a
nutshell, (15) states that the low-energy limit of a fractal spacetime defined
by a vanishing dimensional deviation &(x)—0 corresponds to the

continuum spacetime of classical physics (A, = ). A relation similar to

(15) exists in the ®* model of Statistical Physics and it corresponds to the
nontrivial fixed point of the Renormalization Group flow (the so-called Wilson

— Fisher point) [13].
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