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Medical image understanding requires meticulous examination of �ne visual details, with particular regions requiring additional attention. While

radiologists build such expertise over years of experience, it is challenging for AI models to learn where to look with limited amounts of training data.

This limitation results in unsatisfying robustness in medical image understanding. To address this issue, we propose Di�usion-based Feature

Augmentation (DAug), a portable method that improves a perception model’s performance with a generative model’s output. Speci�cally, we extend a

radiology image to multiple channels, with the additional channels being the heatmaps of regions where diseases tend to develop. A di�usion-based

image-to-image translation model was used to generate such heatmaps conditioned on selected disease classes. Our method is motivated by the fact

that generative models learn the distribution of normal and abnormal images, and such knowledge is complementary to image understanding tasks. In

addition, we propose the Image-Text-Class Hybrid Contrastive learning to utilize both text and class labels. With two novel approaches combined, our

method surpasses baseline models without changing the model architecture, and achieves state-of-the-art performance on both medical image

retrieval and classi�cation tasks.

1. Introduction

Shortages and burnout of radiologists are signi�cant problems worldwide and leave risks to patient care[1][2]. Training a radiologist takes thirteen to

�fteen years[3], making AI models assisting in diagnostics a scalable solution. Notably, Chest X-ray (CXR) classi�cation and retrieval are fundamental

problems that have solid clinical values, as classi�cation can cross-check with doctors, and retrieval allows comparison with historical cases for more

accurate diagnoses.

In recent years, the performance of various image understanding tasks are meaningfully improved by leveraging pretrained vision models. Contrastive

models like CLIP[4]  provide a strong baseline for understanding the common, scenic images. However, when transferred to medical images, their

pretrained capabilities are under-explored for two reasons. First, medical images require meticulous examination of �ne details, which di�ers from scenic

images where salient objects are large and have clear boundaries. Second, radiology images like Chest X-rays are monochrome, preventing full utilization

of the pretrained model’s capability to utilize all three color channels. Consequently, vision models trained on limited radiology images may not attend to

the correct regions for accurate understanding. Previous work[5] has shown that drawing visual marks on the input image improves model performance on

tasks related to visual grounding. Therefore, we are motivated to explore highlighting potential disease areas in medical images to improve the

performance of medical imaging tasks. In this study, we propose a new method to achieve this goal by adding visual grounding hints as additional image

channels. Speci�cally, we augment the image feature with abnormality heatmaps as additional channels alongside the original monochrome medical

image. The augmented feature provides additional information to the model on areas requiring extra attention, mimicking the routine of experienced

radiologists. This method, dubbed Di�usion-based Feature Augmentation (DAug), is portable onto a wide range of model architectures and leverages their

native compatibility with multi-channel (RGB) images. An example of such heatmaps (e.g., for the disease of cardiomegaly) can be found in Figure 2.

Concretely, we train an image-to-image translation model to convert an input image to heatmaps of selected disease classes. Each heatmap highlights the

region where the disease could potentially occur. The heatmap, as an additional feature channel, explicitly directs the model’s attention to clinically

signi�cant areas, a skill di�cult to acquire through conventional model training methods. The image-to-image translation model is implemented by

repurposing a classi�er-guided di�usion model[6]. First, we add Gaussian noise into a Chest X-ray image, making a noised version of the original image as

the model input. Second, the di�usion model, guided by a disease classi�er, removes the noise toward a direction where a disease is mitigated or

exacerbated. In Figure 2, we show an example where cardiomegaly is worsened in the di�usion output. The di�erence between the original image and the

output yields an attention heatmap that highlights the potential disease area (e.g., the boundaries of the heart for cardiomegaly). Through this generative

learning process, the model acquires knowledge beyond what is typically learned by directly training a classi�cation or retrieval model, and enhances the

performance of these tasks. Utilizing generative learning as the mechanism, our method produces heatmaps in a self-supervised manner, eliminating the
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need for human-annotated heatmaps. Our di�usion-based heatmap generation is inspired by[7], and we extensively improved the method to handle the

co-occurrence of multiple diseases and to generate cleaner and more accurate outputs.

In addition, di�erent from existing work which trains retrieval and classi�cation models separately, we are motivated by the synergy of learning two tasks

together. Particularly, the text labels for retrieval provide richer textual context whereas the class labels have a well-de�ned discrete format. Note that the

text labels often omit negative medical �ndings (i.e., diseases that are not found won’t be mentioned) but the class labels always state these explicitly.

Therefore, we design an Image-Text-Class Hybrid Contrastive learning criterion which contrasts both image-text and image-class pairs during training.

This method not only improves the performance on each task as it leverages both text and class labels, but also results in a single model that supports both

classi�cation and retrieval tasks, making real-world deployment at ease.

To validate the proposed two methods, we combine both DAug and the Image-Text-Class Hybrid Contrastive loss and evaluate on the largest Chest X-ray

dataset, MIMIC-CXR[8]. Our model outperforms existing state of the arts on both retrieval and classi�cation tasks.

To sum up, the contribution of this paper is three-fold:

We propose DAug, a portable feature augmentation method which improves medical image understanding performance by adding abnormality

heatmaps as additional image channels.

We introduce Image-Text-Class Hybrid Contrastive learning which leverages both image-text and image-class labels to improve performance on both

retrieval and classi�cation tasks.

We deliver a single model which is capable of both retrieval and classi�cation tasks with state-of-the-art performance. The proposed methods can be

applied to standard pretrained models (such as CLIP ViT[4]), making real-world deployment at ease.

2. Related Work

2.1. Generation for Perception

Perception and generation models have long been regarded as two distinct paradigms in machine learning. In computer vision, perception tasks such as

classi�cation, retrieval, and segmentation require training data of  image, ground truth   pairs labeled in a de�ned format, which often leads to a

limitation in the amount of training data. Generative models, on the other hand, reconstruct the original image during training without requiring

annotations, enabling the use of larger amounts of image-only training data. In order to generate new samples, image generation models learn the

distribution of images  , and this knowledge could aid in the understanding of images as well. This insight has led us to explore the use of a di�usion-

based generation model in aiding medical image understanding.

Existing works in image understanding have been bene�ting from generative models. One stream of work explores using generative models to augment or

synthesize training data[9][10][11]. Another stream of work uses generative modeling as a pretraining task. For example, Masked AutoEncoders (MAE)

[12] reconstructs the original image from a partial input during pretraining, and �netunes on downstream classi�cation tasks. In terms of medical images,

[7]  proposed medical anomaly detection with classi�er-guided di�usion. When applied on Chest X-rays, their work produces reasonable anomaly

heatmaps for easy cases like pleural e�usion, but cannot handle the co-occurrence of multiple diseases reliably. Our work is based on[7], and we make

signi�cant algorithmic improvements to turn the output into a useful feature that aids downstream tasks. Our improvements are detailed in section 3.

2.2. Image Retrieval and Classi�cation

In the era of transformer models, pretraining on web-scale data boosts the performance on downstream tasks like retrieval and classi�cation.

CLIP[4] proposes image-text contrastive learning, which aligns the feature spaces of an image encoder and a text encoder. Retrieval methods base on the

cosine similarity of CLIP features have become dominant since then. Due to the signi�cant domain gap between medical images and the common scenic

images, CLIP shows limited zero-shot performance in the medical domain. A stream of work[13][14] aims to �ne-tune CLIP on medical image-text data.

In this study, we address the challenges of medical image retrieval and classi�cation from two perspectives, including DAug from the feature

augmentation perspective and the Image-Text-Class Hybrid Contrastive learning from the loss function perspective. Related to feature augmentation,

previous studies[15][16] show that maintaining feature banks for prototypes built on the whole dataset is often e�ective for tasks with limited training data,

and this applies to medical images. Recently, X-TRA[17] proposes improving radiology multi-modal retrieval and classi�cation by a retrieval-based feature

augmentation. They use a CLIP model to select the top-K similar samples from the dataset and construct an augmented feature for each input sample.

Di�erently, DAug, our method, leverages generative models and outperforms existing methods.
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Related to our Image-Text-Class Hybrid Contrastive loss, UniCL[18]  also combines image-text and image-class datasets for contrastive pretraining.

However, each training sample is assumed to have either a text label or a class label, but not both. This assumption is di�erent from the medical domain,

where datasets such as MIMIC-CXR and CheXpert[8][19][20] often contain both text (medical report) and class (multiple disease classes) labels at the same

time. Our Image-Text-Class Hybrid Contrastive loss function utilizes this observation by combining both image-text contrastive loss and image-class

contrastive loss into a single loss term per sample. Intuitively, the method treats image classi�cation as a special image-to-class retrieval task. It not only

enables the synergy of learning both retrieval and classi�cation tasks together, but also delivers a single model that can perform both two tasks. Therefore,

both model performance and deployment ease are improved.

3. DAug: Di�usion-based Feature Augmentation

We propose a uni�ed model for multi-modal retrieval and image classi�cation in the radiology domain. Two proposed methods improve the input feature

and the training criterion, respectively, and are both portable to a suite of pretrained transformer architectures. This section walks through Di�usion-

based Feature Augmentation (DAug) in detail. We �rst introduce the training of the classi�er which guides di�usion. Then, we describe the use of a

di�usion-based generative model to create heatmaps and the methods of using these additional features.

3.1. Multi-label Image Classi�er

The disease classi�er is trained separately with the di�usion model to provide guidance on generating an image targeting a disease class. The inputs

include a noisy image   and the time step  . We use sigmoid activation and binary cross-entropy loss to handle multiple labels per image.

For experiments on both retrieval and classi�cation tasks, we use MIMIC-CXR[8], the largest Chest X-ray image-text dataset. As class labels are

unavailable on this dataset, we follow existing work to generate them with CheXbert[20], a text classi�cation model that converts text into a pre-de�ned

set of 14 disease classes.

3.1.1. Disease Super-classes

To support our goal of generating heatmaps to enhance the feature for downstream tasks, we extend previous study[7] from a single disease class that is

relatively easy (pleural e�usion) to multiple disease classes that develop in di�erent regions. We �nd that simply training a classi�er on the 14 CheXbert

classes results in unsatisfying result when using the classi�er to guide a di�usion model. This is because some of the 14 de�ned disease classes may share

the same or similar visual features. For example, the class “Consolidation” includes another class “Pneumonia”, and “Pneumonia” has similar visual

features with “Edema”, although they are triggered by di�erent causes. In sum, the de�nition of 14 CheXbert classes includes non-visual clues. Therefore,

it hurts the performance of image generation when the classi�er is forced to distinguish between them. In addressing these challenges, we select

representative classes and group them into seven super-classes, and trained the classi�er on the super-classes. For example, “Pleural E�usion” and

“Pleural Other” are grouped together to generate a heatmap on abnormalities near the pleural areas. The rationale for using super-classes is two-fold: it

eliminates ambiguity in distinguishing between a parent class and its child classes, and it acknowledges that some diseases share similar visual features

but di�er in their causes. This approach enables the classi�er to focus on distinguishing visual features rather than the underlying causes.

The grouping of child classes should be decided based on the dataset and the tasks. Too many or too few super-classes result in under-�tting and over-

�tting to the grouped classes, respectively. We �nd seven super-classes is a balanced choice for the scenarios in this paper. Please �nd the list of super-

classes and the classi�er performance in the supplementary material.

3.2. Classi�er-Guided Di�usion Model

We train a Denoising Di�usion Probabilistic Model (DDPM) model[21] on Chest X-ray images. Given an input image  , we generate a series of noisy images

{ } by gradually adding Gaussian noise for    steps.    is the original image with no noise and  . A U-Net model is trained to

reverse the process by estimating the noise added in any timesteps. During evaluation, the model can recover the original image    by removing the

estimated noise for   steps from Gaussian noise  . We set  .

To translate a radiology image into its healthy or diseased variant, the generated image must retain the same anatomic structure as the input image. For

this purpose, following[7], we add noise by only 500 steps to the original input, resulting in    where the anatomic structures are still visible. The

di�usion model is used to recover the original input from  . To produce a diseased or healthy version of the input, the denoising process is guided by the

image classi�er in subsection 3.1 that assigns an X-ray to de�ned disease classes. The gradients for a selected class are used to condition the denoising

process, making the output image maximize or minimize the probability of the class in the classi�er.
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For Chest X-ray images, each image may contain multiple diseases, making the binary classi�er from the single-class baseline[7] unsuitable. From our

evaluation, particularly challenging cases involve diseases that often co-occur (e.g., pleural e�usion and lung opacity). In such instances, the generated

heatmap highlights areas for both diseases without accurately distinguishing them. This problem arises because the image classi�er cannot di�erentiate

diseases that frequently co-exist, where the presence of one disease serves as a strong bias for the presence of the other. To address these challenges, we

propose the improvements below.

3.2.1. Sigmoid for Training and Softmax for Testing

When using the classi�er as guidance, we employ sigmoid activation for training the classi�er but softmax for guiding the di�usion model during testing.

As multiple diseases can co-exist on a medical image, we train the classi�er with sigmoid activation to use multiple disease class labels. During inference,

however, we observed that the generated outputs using sigmoid gradients as de-noising guidance tend to highlight false positive regions. This issue can be

intuitively explained with an example. Suppose that we are generating a diseased version of the input image where the disease class is cardiomegaly. We

want the generated output to contain only cardiomegaly so that the di�erence heatmap will accurately highlight this particular disease. During the

denoising process, we update the noisy image toward a direction that increases the sigmoid probability   for cardiomegaly. As the sigmoid equation in

Equation (1) considers only one class, the generated output is not guaranteed to be free of other diseases (i.e., minimized  ). In fact, as some

diseases tend to co-exist (e.g., cardiomegaly and pleural e�usion), the generated image tends to have both diseases, which introduces false positives.

Using softmax as the activation during inference solves this issue because mathematically Equation (2) enforces maximized    while minimizing

probability of other classes ( ). Intuitively, the task transforms from “generating an image where the chance of cardiomegaly is maximized” to

“generating an image where the chance of cardiomegaly, compared to other diseases, is maximized”. We validate the e�ectiveness with qualitative

comparisions, as shown in Figure 1 (bottom row) and Figure 2.

Figure 1. Di�usion-based Feature Augmentation (DAug) pipeline. The original image is translated into a diseased or healthy version with a classi�er-guided

di�usion model. The upper row shows an example where an image with a healthy heart is turned into a cardiomegaly (enlarged heart) version. The di�erence

between the input and output images produces a heatmap highlighting the potential area of the corresponding disease. In the case of cardiomegaly, the

heatmap correctly highlights the boundary of the heart. The heatmaps are added to the original monochrome radiology image as additional image channels,

resulting in an augmented input feature that can improve the performance of downstream tasks. The DAug features support multiple disease categories (two

examples in the second row), and our softmax-based approach generates more accurate heatmaps than the existing baseline. Green and orange bounding

boxes indicate correctly and wrongly highlighted regions, respectively.
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Figure 2. Example output of abnormality heatmaps generated by DAug. We use two chest X-rays as examples, each one covers four types of abnormalities

(cardiomegaly, consolidation, etc. in each column). The plus ( ) and minus ( ) signs indicate the direction of the classi�er gradient, meaning amplifying the

disease and reducing the disease, respectively. “+ No Findings” reduces the probability of all potential diseases. For each input, the �rst row shows the output

heatmap guided by gradients of softmax probabilities, and the second row shows the results guided by gradients of the sigmoid probabilities. The green

bounding boxes shows that our method correctly highlights the region of the disease, which can help the mode to establish better image-text correspondence.

Also, using softmax gradient is better than sigmoid gradient as guidance, as softmax successfully removes false positives (see orange circles). Orange circle in

the second row highlights false positive areas of consolidation, and the orange circle in the last row highlights a wrong activation of lung lesion when it is

supposed to detect pleural e�usion. The corresponding softmax version (green box) makes correct detections.

 

3.2.2. Channel-wise Feature Augmentation

The generated heatmaps can be integrated into the downstream perception model in various ways. A simple method involves processing them through a

vision backbone and then concatenating or adding the heatmap features to the image features for downstream tasks. This straightforward approach

necessitates modi�cations to the model architecture. We propose an alternative, channel-wise feature augmentation method, which incorporates the

heatmaps as additional image channels alongside the medical image.

This channel-wise feature augmentation o�ers two main advantages. First, it leverages the capabilities of powerful pretrained vision models designed for

RGB three-channel input. As radiology images are typically monochrome, the channel-wise augmentation makes better use of the computational budget

+ −
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for three channels. Second, channel-wise augmentation does not require any changes to the model architecture, making it easier to utilize a wide range of

pretrained transformers. This approach is complementary to other methods, enhancing performance on downstream tasks without the need for

architectural modi�cations.

4. Image-Text-Class Hybrid Contrastive Learning

Image-to-text retrieval and image classi�cation are deeply interconnected tasks. Essentially, image classi�cation can be seen as a retrieval problem

focusing on a smaller, reused set of targets. When the classi�cation head is a linear layer without bias, the class logits become unscaled cosine similarities

between the image feature and the weights in the linear layer. In image-to-text retrieval, the weights in the linear layer are replaced by text embeddings

dynamically generated for each target text. Motivated by the potential bene�ts of jointly training both retrieval and classi�cation tasks, we integrate

image-text and image-class labels into our training loss. Unlike existing methods[22][18]  that expand contrastive learning to class labels, our approach

uniquely addresses scenarios where a single sample is associated with both text and class labels, aiming to train a uni�ed model for retrieval and

classi�cation. To distinguish from existing work, we name our method image-text-class hybrid contrastive learning.

As illustrated in Figure  3, we �rst transform each class into a �xed set of texts by converting each class into prompts. For instance, the class

"Cardiomegaly" is rephrased as "A photo of a Chest X-ray image with cardiomegaly". During training, as depicted in Figure 3, class prompts and radiology

reports are transformed into text embeddings   and  , respectively. We then calculate two sets of losses and take the weighted average:

where    is the CLIP loss including both image-to-text and text-to-image cross-entropy loss, and    is the image-to-class binary cross-entropy

loss. Speci�cally,

where    is the cosine similarity between the image embedding    and text embedding for class prompts  . During training, embedding    is

regenerated with each update to the text encoder. Several works discussed the connection between contrastive learning and cross-entropy loss[22][18]. In

our scenario,   is essentially contrasting image   with the class prompts, where multiple positive pairs could exist determined by the ground truth class

labels. The inherent cross-entropy nature of both loss terms facilitates training both tasks simultaneously without causing the embedding space to diverge

for each task.

C R

L = w ∗ + (1 − w) ∗ ,LCLIP Li2c (3)

LCLIP Li2c

= − [ log(sim(i, j)) + (1 − ) log(1 − sim(i, j))],Li2c
1

N
∑
i=1

N

yi yi (4)
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Figure 3. Model architecture and Image-Text-Class Hybrid Contrastive Loss. The inputs are pairs of radiology reports and DAug features (3-channel images

including both medical image and abnormality heatmap channels). The image and text encoders are pretrained by CLIP.   and   are text embeddings for the

reports and class prompts, respectively. The hybrid contrastive loss includes both the image-text CLIP loss and image-class contrastive loss. Blue cells are

positive pairs, in which the image-class matchings are derived from ground-truth class labels.

4.1. Multi-modal Retrieval and Classi�cation

After the model is trained, we leverage the model in di�erent ways for the classi�cation and retrieval tasks. For classi�cation, we use only the image

encoder and connect it with a linear classi�er. The linear classi�er consists of a single layer where the weight vectors per class are populated with the text

embeddings for class prompts generated by the �nal text encoder. The bias is set to zeros. Essentially, the output logit per class is equivalent to the

unscaled cosine similarity between the image and classes  .

For retrieval tasks, both the image and text encoders are used to convert each sample into embeddings. We use the cosine similarity of the embeddings to

rank the association for retrieval.

5. Experiments

5.1. Implementation details

To benchmark our ideas, we need an image-text-class dataset on medical images. We select MIMIC-CXR, the largest Chest X-ray (CXR) medical report

dataset. It contains 227,835 image-text pairs, where the texts are radiology reports which list the normal and abnormal �ndings. We follow the o�cial

training and testing splits. As class labels are unavailable, we generate pseudo-class labels with the CheXbert labeler[23], which is a standard practice in the

�eld. It is a text classi�cation model that converts a radiology report into binary labels on 14 disease classes. One of them is “No Findings”, indicating a

healthy case.

For DAug feature augmentation, we construct a three-channel image with the �rst two channels containing the medical image and the third channel �lled

with the di�usion-generated heatmap guided by the class “No Findings”. In our experiments, we evaluate all 14 disease classes and compare the results

with the original CLIP as a baseline. Therefore, we select the heatmap for “No Finding” which combines all diseases. This requires no change to the model

architecture for a fair comparison with the vanilla CLIP. In real-world applications, heatmaps for individual disease groups (e.g., cardiomegaly) can be

selected for optimal performance gain according to the scenario.

R C

= sigmoid(I ⋅ )logiti Ci
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Following existing work[17], we resize images to   and use a CLIP pretrained ViT-Base/32 model for fair comparison. We �ne-tune the model with

a cosine learning rate scheduler with a base learning rate of    for 10 epochs. We set the weight    in Equation  3 to 0.7 based on the validation

performance of two tasks. We use a batch size of 256 over eight V-100 GPUs. With all images resized in advance, training and evaluation take around 2

hours. Abnormality heatmaps are pre-generated.

5.2. Results

We compare our method, DAug with existing methods on both multi-modal retrieval and image classi�cation on the MIMIC dataset. Table 1 demonstrates

that our method outperforms existing state-of-the-art approaches in retrieving radiology images with medical reports, a critical clinical scenario where

radiologists refer to previous cases to con�rm diagnoses. Table 2 shows the performance of the same model on image classi�cation, which outperforms

existing methods by a clear margin. Speci�cally, we �nd that X-TRA bene�ts more in the tail classes, while DAug improves the overall performance which

is re�ected in the higher wAvg score.

DAug produces heatmaps without requiring ground truth. Unfortunately, the lack of ground truth also constrains us on measuring the quality of the

heatmaps. Considering that our end goal is to improve the performance of downstream tasks, we validate the heatmap quality by measuring the

improvement of these tasks when using the heatmaps. Therefore, we conduct ablation studies in Table 3. The results show that performance on both tasks

surpasses the baseline when only changing the feature augmentation approach to DAug, which proves that the heatmaps are helpful features. When both

the DAug feature augmentation and the proposed Hybrid Contrastive criterion are used, the performance on both tasks is improved. This comparison

validates that both methods e�ectively aid in medical image understanding tasks.

256 × 256

2e−5 w
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No

Finding

Enl.

Cardiomed.
Cardiomegaly

Lung

Opacity

Lung

Lesion
Edema Consolidation Pneumonia Atelectasis Pneumothorax

Pleural

E�usion

Zhang et al.

[24]

   

- - - - - - - - - - -

X-TRA CLIP

( )
.62 .52 .93 .88 .50 .60 .29 .44 .75 .54 .85

X-TRA

CNN+BERT
.77 .54 .73 .91 .52 .83 .39 .87 .77 .63 .74

X-TRA

PubmedCLIP
.75 .65 .92 .99 .23 .79 .21 .51 .59 .72 .81

X-TRA CLIP .63 .62 .96 .94 .62 .69 .47 .61 .85 .69 .91

DAug CLIP

(ours)
.77 .86 .83 .89 .64 .79 .80 .71 .81 .64 .79

Yu et al.[25]

   

- .65 .75 .72 .43 .80 .73 .60 .76 .76 .85

X-

TRA[17] CLIP

( )

.71 .52 .74 .78 .39 .79 .39 .40 .76 .42 .67

X-TRA

CNN+BERT
.87 .63 .88 .90 .49 .90 .57 .60 .85 .85 .83

X-TRA

PubmedCLIP
.90 .63 .82 .83 .39 .86 .45 .63 .87 .53 .90

X-TRA

PubmedCLIP
.90 .63 .82 .83 .39 .86 .45 .63 .87 .53 .90

X-TRA CLIP .84 .62 .89 .89 .56 .91 .55 .59 .89 .60 .86

DAug CLIP

(ours)
.72 .86 .83 .88 .53 .78 .79 .65 .81 .47 .77

Table 1. Retrieval performance for both report-to-image (r-x) and image-to-image(x-x) scenarios, measured with retrieval mAP@K, where K=5. wAvg and

Avg are the weighted average of classes and the average of classes, respectively. wAvg is the primary metric as long-tailed challenges is not a focus of this

paper. Our model, DAug-CLIP surpasses existing methods by a clear margin in the prevalent report-to-image scenario. In terms of image-to-image retrieval,

DAug-CLIP achieves state-of-the-art performance on the most common classes and in terms of wAvg. This could be attributed to the reliability of the DAug

feature in these classes, as the classi�er guiding the di�usion model is a�ected by class imbalance.

r → x

LCLIP

x → x

LCLIP
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  Aug
No

Finding

Enl.

Cardiomed.
Cardiomegaly

Lung

Opacity

Lung

Lesion
Edema Consolidation Pneumonia Atelectasis Pneumothorax

Pleural

E�usion

CNN+BERT

- .81 .63 .73 .67 .62 .83 .69 .59 .68 .75 .83

X-

TRA[17]
.81 .74 .75 .69 .63 .81 .72 .63 .75 .75 .83

PubmedCLIP

- .78 .65 .72 .66 .61 .82 .70 .61 .73 .76 .81

X-

TRA[17]
.84 .76 .78 .69 .64 .83 .73 .64 .76 .75 .82

CLIP

- .77 .65 .71 .67 .62 .85 .73 .61 .72 .75 .80

X-

TRA[17]
.82 .78 .74 .70 .71 .82 .75 .63 .79 .78 .86

DAug,

ours
.93 .90 .90 .91 .85 .89 .89 .85 .89 .90 .90

Table 2. Image classi�cation performance on MIMIC-CXR dataset. Results are in AUC-ROC. wAvg is the weighted average by number of samples per class. Avg

is the average. Augmentation method X-TRA improves baseline performance, with CLIP achieving the best result. DAug-CLIP, our method, surpasses the best

setting of X-TRA by a clear margin in all classes.
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Method
Feature

Aug
Criterion

No

Finding

Enl.

Cardiomed.
Cardiomegaly

Lung

Opacity

Lung

Lesion
Edema Consolidation Pneumonia Atelectasis Pneumot

Image

Retrieval: 
                       

X-TRA

(Baseline)
X-TRA CLIP .62 .52 .93 .88 .50 .60 .29 .44 .75 .54

DAug (Ablation) DAug CLIP .77 .85 .80 .86 .60 .76 .78 .67 .79 .61

DAug (Full) DAug
Hybrid

Contrastive
.77 .86 .83 .89 .64 .79 .80 .71 .81 .64

Image

Retrieval: 
                       

X-TRA

(Baseline)
X-TRA CLIP .71 .52 .74 .78 .39 .79 .39 .40 .76 .42

DAug (Ablation) DAug CLIP .71 .86 .81 .88 .49 .76 .78 .62 .81 .44

DAug (Full) DAug
Hybrid

Contrastive
.72 .86 .83 .88 .53 .78 .79 .65 .81 .47

Image

Classi�cation
                       

CLIP (Baseline) - CLIP .77 .65 .71 .67 .62 .85 .73 .61 .72 .75

X-TRA

(Baseline)
X-TRA CLIP .82 .78 .74 .70 .71 .82 .75 .63 .79 .78

DAug (Ablation) DAug CLIP .77 .86 .83 .89 .64 .79 .80 .71 .81 .64

DAug (Full) DAug
Hybrid

Contrastive
.93 .90 .90 .91 .85 .89 .89 .85 .89 .90

Table 3. Ablation studies on image retrieval and classi�cation tasks. Compared to baselines, our feature augmentation method DAug gains performance over no

augmentation (CLIP Baseline) and the X-TRA augmentation (X-TRA Baseline). Besides, using the proposed Image-Text-Class Hybrid Contrastive loss

outperforms the baselines using the original CLIP loss. Baseline results from[17].

6. Conclusion

In this paper, we present a single model that achieves state-of-the-art performance in both medical image retrieval and classi�cation tasks. We propose

DAug, a di�usion-based channel-wise feature augmentation method that empirically directs the model where to look for clinical diagnoses. We enable

multi-class support and reduce the false positive issue found in previous work by using super-classes and softmax gradients for di�usion guidance. In

addition, we propose the Image-Text-Class Hybrid Contrastive learning criterion, which leverages both image-text and image-class labels and enables a

uni�ed model for two tasks with easy deployment. Our method requires no modi�cations to the model architecture, making it portable to a wide range of

pretrained models.

Appendix A. Details on Image Generation and Image-to-Image Translation

Common image generation methods include Generative Adversarial Networks (GANs) [26], Variational Autoencoders (VAEs) [27] and Di�usion Models [28].

Di�usion models have become mainstream due to the ease of training and the superior image quality. During training, the di�usion model learns to

remove noise from a noisy input and therefore can gradually turn a Gaussian noise into an image. Such denoising steps can be guided by an image classi�er

r → x

x → x
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trained separately, whose gradients are used to determine the direction of the denoising process, encouraging the output to maximize the probability of a

certain class based on the classi�er. The result will be an image of the chosen class.

To train a di�usion model, we �rst conduct a forward di�usion process which gradually adds Gaussian noise to the original image. The forward process

has    steps (usually,  ), producing a sequence of noisy samples  .    is the original image and    becomes a Gaussian

noise. Then, a U-Net model is trained to predict the noise added per step, in order to reverse the steps by removing the added noise from the noisy image.

The reverse process gradually turns a Gaussian noise into an image. Di�usion models can be guided by an image classi�er to generate an image of a

particular class. The image classi�er is trained to produce class probabilities given a noisy image  . The gradients of the classi�er are used to alter

the denoising at each step so that the output maximizes the probability of the target class.

A classi�er-guided di�usion model can be used for image-to-image translation. Speci�cally, we obtain a half-noised image at time step  , and

then conduct denoising guided by a classi�er. As   maintains key distinguishable features of the original image, the output still maintains the identity of

the original input, but changes it in a way that will be classi�ed to the target class. Related to medical images, this is about converting a healthy CXR to a

diseased one, and vice versa.

Appendix B. Disease Super-classes

In our classi�er-guided di�usion model, the classi�er is trained on disease super-classes, with each super-class consisting of one or multiple related

diseases. The super-classes were de�ned with radiologists to align with medical knowledge. For the additional rationale behind this de�nition,

CheXpert[20] provides a hierarchical structure of the 14 disease classes, which aligns with our super-class de�nition. Take super-class #4 as an example,

they are grouped together because they are shown as increased density in the X-ray, although for di�erent reasons. The goal is to let the classi�er focus

only on the appearance instead of attempting to distinguish the cause. For example, in[20], Atelectasis is another type of lung opacity abnormality. We

categorize it separately because it looks di�erent (an absence of density).

We show the classi�er performance on the super-classes in Table 4. Upon empirical examinations, we found that the quality of the heatmaps is highly

correlated with the classi�er performance of the selected class. This observation supports the decision to group sub-classes together to improve the

classi�er’s robustness. Please note that the performance in the table is expected to be low, as input to the classi�er is noisy images instead of the original

image (see Appendix A for details about classi�er-guided di�usion).

Super Class Disease classes AP

1 No Finding

2 Enlarged Cardiomediastinum, Cardiomegaly

3 Lung Lesion

4 Consolidation, Edema, Pneumonia

5 Atelectasis

6 Pleural E�usion, Pleural Other

7 Support Device

Table 4. Multi-label classi�er performance in Average Precision (AP). Please note that this is the classi�er that takes in the noisy image and is trained to guide

the di�usion model. There are totally seven classes, and each one is a super-class consisting of disease classes with similar visual features. For example, super

class 4 includes Edema and Pneumonia, which are sub-categories of Consolidation. Training the classi�er with merged classes reduces class imbalance and

improves performance, and therefore provides better guidance for the di�usion model.

Appendix C. Pseudo-label Quality

The class labels are not human annotated but are generated with CheXpert, a text classi�cation model that converts a radiology report into disease classes.

According to human evaluation in[20], the label quality is claimed to have a 96.9% F1 score.

T T = 1000 , … ,x1 xT = Ix0 ∼ N (0, I)xT

(y| , t)fϕ xt

x = 500

x500

0.631

0.885

0.407

0.857

0.778

0.746

0.633

qeios.com doi.org/10.32388/8F044P 12

https://www.qeios.com/
https://doi.org/10.32388/8F044P


Appendix D. Ethical Considerations and Limitations

Our use of the MIMIC-CXR dataset was approved through PhysioNet1. All authors who accessed the data have obtained permission.

We identify two limitations of our work. First, to be compatible with the pretrained models, we con�gure the input image to be 3 channels. The method

may achieve even better results if heatmaps of all supported super-classes are used. Second, the use of a di�usion model introduces signi�cant

computational overhead. To address this limitation, it worth exploring to use the heatmaps as an additional supervision to improve a student model. We

will take these directions as our future work.

Notes

NeurIPS 2024 Workshop on Advancements In Medical Foundation Models.

Footnotes

1 https://physionet.org/content/mimic-cxr/2.0.0/
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