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With the rapid evolution of large language models (LLM), reinforcement learning (RL) has emerged

as a pivotal technique for code generation and optimization in various domains. This paper presents a

systematic survey of the application of RL in code optimization and generation, highlighting its role

in enhancing compiler optimization, resource allocation, and the development of frameworks and

tools. Subsequent sections �rst delve into the intricate processes of compiler optimization, where RL

algorithms are leveraged to improve e�ciency and resource utilization. The discussion then

progresses to the function of RL in resource allocation, emphasizing register allocation and system

optimization. We also explore the burgeoning role of frameworks and tools in code generation,

examining how RL can be integrated to bolster their capabilities. This survey aims to serve as a

comprehensive resource for researchers and practitioners interested in harnessing the power of RL to

advance code generation and optimization techniques.
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1. Introduction

As software systems grow more complex with tighter development timelines, manual code

development and optimization become impractical to a certain extent. Code generation and

optimization from natural language (NL) have thus become essential for boosting software

development e�ciency[1][2]. Meanwhile, advances in natural language processing (NLP), particularly

in large language models (LLMs), have opened new possibilities for code generation. Compiler

optimizations are essential in enhancing software performance and reducing resource consumption.

Conventional compiler optimization relies on techniques like autotuning[3], while deep learning
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approaches for optimized compiler sequences[4] struggle with generalization. Although large language

models (LLMs) improve code generation and optimization[5], they often produce biased or inconsistent

outputs[6][7] and require time-consuming pre-training with code-speci�c models like Code T5[8] and

Code T5+[9]. In Figure 1, we present a schematic diagram of memory management, wherein the main

controller selects speci�c strategies based on the constraints. Subsequently, it interacts with relevant

hardware components such as the compiler and con�gures the registers, thereby achieving an overall

optimization e�ect.

Figure 1. The controller is in control of the resources.

Current Code LLM research is more focused on the pre-training of code-related corpora.

Reinforcement learning (RL), as a method that can learn the optimal strategy in complex

environments, provides a new approach to code generation[10], and optimization[11]  in Code LLMs. It

allows label-free input-output pairs and leverages existing knowledge and re�ning strategies through

trial and error. The advantages of using RL in code optimization and compiler enhancement lie in its

capacity to reduce reliance on pre-trained models and to enable large language models (LLMs) to adapt

more �exibly to evolving environmental conditions. Figure 2 illustrates related work on reinforcement

learning applied to compiler optimization and code generation.
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Figure 2. The diagram illustrates the development of code optimization and generation from 2021

to 2024, covering key projects such as CompilerDream, the GPT series, and other important

contributions from various organizations.

Given the great potential for reinforcement learning applications in the most important aspects of

improving software performance and e�ciency, this paper explores how reinforcement learning can be

successfully applied and provides a broader overview of RL-related issues to encourage more

researchers to bene�t from advances in RL.
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2. Background and Fundamentals

2.1. Code Generation: Concepts and Evolution

Code generation is a fundamental task of Code LLMs, which is essential for automatic programming

tasks by generating executable code from natural language descriptions[12]. These descriptions usually

contain statements of programming problems and sometimes include information about the

programming context, such as function signatures or assertions, and also a formal input and output.

The generated code is then executed by a compiler or interpreter and veri�ed by unit tests to ensure

that the generated code meets the requirements and works correctly.

Although LLMs have made signi�cant progress in code generation, there are still some challenges in

the quality of the code. Studies have shown that LLM can produce a shorter but more complex code

when dealing with complex problems, which is a discrepancy compared to standard solutions[13].

As the LLM’s context learning capabilities advance, sample code can be introduced into the code

generation process to enhance the generation or to control the code format. These examples consist of

a �xed set of example pairs that contain several pairs of example inputs and corresponding output

codes. By including these examples, the model can refer to similar pairs of inputs and outputs during

the generation process, thus improving the accuracy and consistency of the generated code. Decoding

strategies commonly used in code generation include two main categories: deterministic strategies and

sampling strategies. Deterministic strategies include greedy search and bundle search, which seek to

generate the optimal solutions. In contrast, sampling strategies employ methods such as temperature

sampling, Top-K sampling, and Top-P (kernel) sampling to introduce variety and �exibility for a wide

range of possible code solutions. These di�erent decoding strategies provide a variety of

implementations for code generation and adapt to di�erent application requirements.

2.2. Reinforcement Learning in Code LLMs

Reinforcement learning (RL) is a technique that determines the best strategies by receiving reward

signals from its environment interactions[14]. Its goal is to discover an optimal policy parameter   that

maximizes the sum of rewards through ongoing engagement with the environment[15]. The

distribution   indicates the probability of choosing action   given state  . Direct computation of

cumulative rewards is challenging due to the environment being frequently unknown or only partially

observable. To address this, value-based and policy-based methods are used to approximate
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cumulative rewards or gradients, facilitating iterative updates of  . Within the realm of reinforcement

learning applied to Code LLMs, policy-based methods, such as the PPO method and the Actor-Critic

framework, are particularly signi�cant. The Actor-Critic architecture is widely employed in

reinforcement learning by combining an action executor (actor) and an evaluator (critic)[16]. The

actor’s responsibility is to execute actions following the present policy, while the critic assesses the

actions’ values and provides feedback to enhance the actor’s strategy.

PPO enhances the strategic model by training a value function and incorporating token-wise KL

penalties into the rewards to balance the updates to the strategy and prevent excessive optimization of

the reward model[17]. The value function is frequently distinct and comparable in size to the policy

model, which can result in signi�cant computational and memory requirements. Moreover, within

reinforcement learning (RL), the value function serves as a baseline for computing advantages and

reducing variance. However, in the context of large language models (LLMs), the reward model

generally computes the reward only for the �nal token, which can complicate the training of the value

function for individual tokens.

Some research has introduced DPO[18]  and GRPO[19]  approaches to address the problems discussed.

Direct preference Optimization (DPO) fundamentally focuses on directly optimizing policies to match

human preferences, avoiding the requirement of policy enhancement via reinforcement learning (RL)

[18]. This method eliminates the reliance on reward models in traditional RL, instead opting to �t an

implicit reward model using a simple classi�cation objective, from which the optimal policy can be

articulated. GRPO takes a di�erent approach by removing the extra value function and directly

incorporating the KL divergence between training and reference policies into the loss function[19]. It

uses the average reward from di�erent solutions to the same problem as a baseline, streamlining the

PPO training process, and mitigating the risk of excessively optimizing model rewards.

In summary, reinforcement learning (RL) improves Code LLMs by tuning policy parameters to increase

rewards. It employs methods such as PPO, DPO, and GRPO to enhance strategies via environmental

interactions and produce code that aligns with human preferences.

2.3. RL-based Fine-tuning Algorithms in LLMs

Reinforcement Learning from Human Feedback (RLHF) has become a crucial algorithmic strategy.

Using feedback from humans, RLHF �ne-tunes large language models, aligning their outputs with

human preferences or speci�c task objectives. This approach is especially signi�cant in complex tasks,

θ
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such as program synthesis, where traditional supervised learning struggles to grasp subtle

performance indicators. In RLHF, models are trained to favor actions that receive the most favorable

evaluation from humans, allowing greater precision in controlling language and code generation.

In the context of code generation, Reinforcement Learning from Human Feedback (RLHF) encounters

speci�c hurdles, as achieving functional correctness—a pivotal aim in programming—cannot be

reliably accomplished with token-based similarity metrics such as BLEU or ROUGE, which are typically

utilized in translation and summarization tasks. In code generation, token similarity does not

consistently correlate with correctness or functionality. Consequently, it is crucial to employ reward

signals that directly assess program correctness. Unit test signals o�er a potent solution here: they

provide a concrete measure of functionality, as programs that pass unit tests can be deemed

functionally correct. The feedback system of the reinforcement learning (RL) framework is depicted in

Figure 3, through which various elements are utilized to evaluate the action and provide feedback to

optimize the agent behavior with diverse operational strategies. Users can also select preferred results

to in�uence the outcomes, enabling RL to exhibit �exibility and adaptability in dynamic environments.

By exploiting these unit test outcomes as reward signals, RL-based methods can bring code generation

models more aligned with desired outputs, thereby narrowing the gap between generated code and

actual functional requirements.

qeios.com doi.org/10.32388/8G8TB2 6

https://www.qeios.com/
https://doi.org/10.32388/8G8TB2


Figure 3. Principles of reinforcement learning (RL) code generation.

Rather importantly, reinforcement learning (RL)-based �ne-tuning methods are crucial in code

generation tasks. These methods often employ execution-guided synthesis techniques to re�ne the

strategy of the code model by detailed tuning, which ensures that the generated code is both correct

and functionally meets expectations. For instance, this process might involve conducting real-time

functional tests on code produced by the model, then adjusting the model’s behavior according to the

outcomes, thereby enhancing the model’s capability to handle intricate programming tasks.

3. Frameworks in Code Generation and Optimization

3.1. Theoretical Basis of Code Generation and Optimization

Generating code entails transforming a natural language description into source code. Given a natural

language input detailed as a sequence  , a language model (LM)   is used to predict

the next token sequentially. At each time step  , the LM calculates the probability distribution for the

x = [ , … , ]x1 x|x| pLM

t
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following token, considering all previous tokens, represented as  . The probability of

creating a program    consisting of the token sequence    is computed as the

product of these conditional probabilities:

Within the framework of few-shot learning utilizing large language models (LLMs), the generation

process frequently relies on a predetermined ensemble of   exemplars, represented by  . As

a result, the code generation via LLM can be described as:

Optimizing code involves substituting equivalent code to enhance e�ciency in terms of time and space.

Local optimization focuses on regions with high time complexity to boost code performance, whereas

global optimization considers the overall code structure and its execution. With technological progress,

optimization also occurs during the compilation phase, including intermediate code optimization,

which re�nes code structure, and object code optimization, which transforms intermediate code into

e�ective machine code. Additionally, dynamic optimization happens during the program’s runtime.

Optimizing algorithms and data structures markedly diminishes computational and spatial

complexities. The equation to determine the optimal model parameters,  , is given by:

In this context,   stands for the set of parameters that optimizes the likelihood of producing the best

candidate program   from the input program   using the model parameters  .

3.2. Pre-training and Post-training

3.2.1. Construction of Datasets

At the outset of constructing datasets for large language models (LLMs) oriented towards code, it is

crucial to de�ne the objectives and requirements of the dataset clearly. For such models, the core

purpose of the dataset is to enhance the model’s capabilities in code generation, comprehension, and

task execution. Therefore, collecting code data that encompasses rich algorithmic logic, adheres to

good programming practices, and aligns with practical application scenarios becomes particularly

important. Figure 4 illustrates the training process for code language models (Code LLM), proceeding

( ∣ )pLM xt x1:t−1

y y = [ , … , ]x|x|+1 x|x|+|y|

P (y ∣ x) = ( ∣ )∏
t=|x|+1

|x|+|y|

pLM xt x1:t (1)

m {⟨ , ⟩xi yi }i≤m

(y ∣ x) = P (y ∣ x, {⟨ , ⟩ )PLM xi yi }i≤m (2)

θ∗

= P ( ∣ x; θ)θ∗ argmaxθ ybest (3)

θ∗

ybest x θ
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through data preprocessing, model pre-training, �ne-tuning, post-training, and other operations for

the applications in code generation.

Figure 4. Flowchart of training a code language model (Code LLM).

To obtain high-quality data sources, GitHub, a widely recognized platform for code sharing and

collaboration, serves as an ideal original data source. This platform hosts a vast array of open-source

projects, providing us with abundant code data. When selecting data, emphasis should be placed on

choosing code �les that are logically complete, standardly formatted, and clearly commented.

Additionally, to further diversify the dataset, the Common Crawl dataset, a large-scale web scraping

dataset, is often utilized. By parsing code-related content from it, a more varied set of code data can be

obtained.

However, raw data often contains unrecognized or duplicated content, making data preprocessing an

indispensable step. Initially, a rigorous data cleaning process should be implemented to remove non-
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informative content such as pure hexadecimal code and overly short code snippets, with �ltering based

on generic attributes like �le size and number of lines. Heuristic �ltering rules are applied for more

re�ned cleaning tailored to the data characteristics. Given the high degree of repetition in GitHub

source code, �le-level deduplication strategies, including exact and fuzzy deduplication, are typically

employed to e�ectively reduce data redundancy.

Based on data cleaning, further quality optimization is conducted on the code �les. Firstly, code �les

are checked for their ability to run independently, ensuring they do not depend on external �les or

libraries. Secondly, code �les with unclear logic or disordered structure are eliminated, ensuring the

code adheres to standard formatting norms and is converted into a format suitable for LLM training.

To further enhance model performance, during the data re�nement stage, not only the cleaned raw

data is used, but also algorithm corpora and synthetic data are introduced. These high-quality data

rewrites aid the model in better memorizing and embedding knowledge. While preserving the integrity

of the original data distribution, downsampling is applied to data from certain high-resource

programming languages to improve data utilization e�ciency. Simultaneously, to bolster the model’s

instruction comprehension capabilities, large-scale instruction data is synthesized. Language

sampling, task speci�cation modules, and other means are employed to ensure the diversity and

speci�city of the instruction data. Throughout the construction process, a combination of manual

inspection and perplexity (PPL)-based evaluation methods is used to comprehensively assess the

data’s quality and learnability[20].

On the other hand, addressing the limitations of traditional datasets, researchers have proposed the

RL4RS framework, a novel system evaluation framework. This framework encompasses multiple

dimensions such as environmental simulation evaluation, environmental evaluation, counterfactual

policy evaluation, and opportunity test set construction, aiming to provide a more comprehensive

assessment of RL algorithm performance. Unlike most related research, RL4RS evaluates policies

directly on raw data, avoiding the impact of environment model generalization errors. By introducing

counterfactual policy evaluation algorithms and real-world datasets, RL4RS signi�cantly enhances its

alignment with the real world[21].

As dataset size continues to expand, the time and labor required to obtain high-quality human

feedback become technological bottlenecks. To address this issue, researchers have introduced

ULTRAFEEDBACK[22], a large-scale, high-quality, and diversi�ed AI feedback dataset. This dataset

broadens the scope and depth of instructions and responses, covering a wider range of user-assistant
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interaction scenarios while mitigating symbolic bias to improve AI feedback reliability. However, large

language models face numerous challenges when implementing Reinforcement Learning from Human

Feedback (RLHF)[23], such as introducing additional PTX losses and studying the distribution shifts

between Supervised Fine-Tuning (SFT) and RLHF. To tackle these challenges, SFT data can be used as

alternative data for �ne-tuning, enhancing transparency from pretraining to SFT and fostering a better

understanding of model changes. Furthermore, resource considerations are also crucial in large

language model training. High-performance GPUs are used for training, and a combination of human

and AI approaches is employed to improve testing consistency.

In recent years, the application of reinforcement learning algorithms to datasets has matured[24].

However, the trial-and-error learning and reward mechanisms of reinforcement learning rely on

interactions between the agent and the environment, which are often time-consuming and costly. The

emergence of o�ine reinforcement learning algorithms o�ers the possibility of data-driven

approaches without requiring expensive real-world exploration, instead relying on large pre-collected

datasets. O�ine reinforcement learning methods can provide e�ective initialization for online �ne-

tuning, but current benchmark tasks for evaluating o�ine reinforcement learning algorithms are

relatively simple and approaching performance saturation. The advent of the D5RL dataset provides a

new perspective for evaluating o�ine reinforcement learning. It o�ers both o�ine and online �ne-

tuning evaluations and designs speci�c pretraining and �ne-tuning for certain tasks. By simulating

accessible evaluation environments and providing a level of realism that re�ects real-world system

attributes, D5RL lays a new foundation for the development of o�ine reinforcement learning

datasets[25]. Figure 5 demonstrates the process of constructing a dataset, ranging from data collection

and preprocessing to data optimization and augmentation, with automation and e�ciency fully

achieved in the process.

Figure 5. The dataset building process.

qeios.com doi.org/10.32388/8G8TB2 11

https://www.qeios.com/
https://doi.org/10.32388/8G8TB2


3.2.2. Pre-training

During the pre-training for Code LLMs, datasets often comprise a large-scale code corpus along with a

smaller fraction of data sources like mathematics, text, etc., or involve �ne-tuning a code corpus on

top of general-purpose LLMs. Code LLM architectures, similar to generic LLMs, can be categorized into

three types: encoder-only, decoder-only, and encoder-decoder models. Encoder-only models, such as

CodeBERT, are generally e�ective for code understanding tasks, including type prediction, code

retrieval, and code clones detection[26]. Decoder-only models, like StarCoder, excel in generative tasks

such as code generation, translation, and summarization[27]. Encoder-decoder models, such as

CodeT5, are capable of addressing both code understanding and generation tasks, although they are not

necessarily superior to their encoder-only or decoder-only counterparts[28]. Additionally, some Code

LLMs, like Qwen2.5-Coder, leverage synthetic data in their training procedures, thereby exhibiting

higher comprehension abilities[29].

Within the �eld of code generation using LLMs, the design of current models generally belongs to one

of the two main types: encoder-decoder architectures, like CodeT5, CodeT5+, and CodeRL[30][28][31]

[32]; or decoder-only architectures, such as Codex, StarCoder, CodeLlama, and CodeGemma[33][27][34]

[35].

3.3. Post-training

The searching phase in post-training is essential for re�ning Code LLMs by systematically exploring

and optimizing solutions within large and complex code spaces. This stage involves generating

candidate solutions using pre-trained models through probabilistic decoding methods such as beam

search, Top-k sampling, nucleus sampling, or deterministic strategies like greedy search, ensuring a

balance between diversity and high-con�dence outputs. To evaluate these candidates, functional

correctness is prioritized using metrics like pass@k and unit tests, which directly assess program

functionality and complement traditional token similarity measures. Reinforcement learning

techniques, such as Proximal Policy Optimization (PPO), are often employed to iteratively re�ne

candidates by leveraging execution feedback and semantic evaluations, thereby optimizing policies to

align with syntactic and functional criteria. Given the computational intensity of searching, strategies

like model quantization, caching, and parallelized execution pipelines are employed to enhance

scalability and e�ciency. Overall, this phase bridges the gap between pre-trained model capabilities
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and real-world requirements, ensuring that the generated code is both high-quality and functional for

practical applications.

OpenCoder signi�cantly improves its pro�ciency in theoretical computer science and practical

programming tasks through a two-phase instruction �ne-tuning process, overcoming the limitations

of models concentrating on just one �eld. DeepSeekMath uses Online Rejection Sampling Fine-tuning

(Online RFT) which di�ers from conventional methods by leveraging outputs from a live policy model

for �ne-tuning, rather than a supervised approach. Similarly, Group Relative Policy Optimization

(GRPO), a variation of Proximal Policy Optimization (PPO), enhances policies by evaluating relative

rewards from multiple outputs for the same problem, instead of depending on a single value function.

These methods strive to enhance the model’s problem-solving abilities through more dynamic and

context-sensitive learning processes. Using a framework known as CORGI (Controlled Generation with

RL for Guided Interaction), certain researchers have enabled models to obtain immediate textual

feedback over several cycles. This is accomplished by simulating interactive sessions with an

automated critique system, prompting the models to modify their responses to adhere to prede�ned

constraints derived from the feedback. Qwen2.5-Coder series utilizes a comprehensive strategy to

improve model performance. It involves creating instruction-tuning datasets by identifying

multilingual programming code and generating instructions from GitHub. A combined method of

coarse-to-�ne tuning and mixed tuning strategy then incorporates both low- and high-quality

instruction samples, enhancing the model’s ability to respond to commands. Furthermore, data

decontamination is performed to reduce test set leakage e�ects on evaluation accuracy. Together, these

approaches enhance the robustness and e�ectiveness of the Qwen2.5-Coder series for coding tasks.

In the post-training phase, preference feedback-based learning methods, especially PPO (Proximal

Policy Optimization) and DPO (Direct Preference Optimization), have become the key techniques to

improve the performance of language models. PPO, as an online reinforcement learning algorithm in

the post-training phase, includes reward model training and policy model optimization. First, PPO uses

the preference data to train a reward model, which evaluates the quality of the responses generated by

the model and becomes the objective function for subsequent policy optimization. Next, PPO leverages

the reward model to score the responses generated by the strategy model and further uses this score to

optimize the strategy model. This optimization process ensures training stability by introducing a KL

penalty term that prevents the model’s policy distribution from deviating too much from the initial

policy. The advantage of PPO is that its ability to train with online data helps the model to remain
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exploratory and adaptable in real-world applications, especially for tasks that require complex

reasoning and coding capabilities. However, the online training approach of PPO brings higher

computational cost and engineering complexity. In contrast, DPO, as an o�ine reinforcement learning

approach, eliminates the step of training reward models by optimizing policy models directly on

preference data, which simpli�es the training process and e�ectively reduces the demand for

computational and engineering resources. The optimization process of DPO improves the performance

of the policy model by increasing the log-likelihood di�erence between the selected and rejected

responses while ensuring that the model does not overly deviate from the initial strategy. DPO is

computationally e�cient and is particularly suitable for resource-constrained environments, although

it may not be as good as PPO in terms of model adaptability and exploration capabilities.

Comparing PPO and DPO, each has its own strengths and limitations in the post-training phase. PPO

shows stronger potential and typically performs better on multiple tasks, especially on tasks involving

complex reasoning and coding capabilities. However, DPO is ideal for resource-constrained

environments due to its more streamlined training process and lower computational cost. Overall, PPO

and DPO provide two di�erent paths for language model optimization in the post-training phase, with

PPO providing stronger performance on complex tasks, while DPO meets more stringent resource

constraints by improving computational e�ciency. As language modeling technology continues to

evolve, the selection of an appropriate post-training method will depend on speci�c application

requirements, resource conditions, and performance goals.

4. Related Applications of Reinforcement Learning

4.1. Enhancing Code Language Models with Reinforcement Learning

The integration of reinforcement learning (RL) into code language models (Code LLMs) o�ers a

signi�cant enhancement in accurate and e�cient code generation through interactive feedback

mechanisms. RL frameworks e�ectively handle vital aspects such as unit tests and functional

correctness by employing real-time evaluation and iterative improvement methods that traditional

supervised �ne-tuning often overlooks. CodeRL[10] is an example that combines pre-trained language

models with deep RL to re�ne code generation processes. In this system, the code model acts as an

actor network, while a critic network evaluates the functional correctness of the generated code, using

feedback from unit tests as reward signals. This interactive training cycle continuously enhances the

syntactic and semantic precision of the model, producing code that is both accurate and robust
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particularly in complex programming settings. Further advancements in RL-based code generation are

demonstrated by PPOCoder[36] and PanGu-Coder2[37]. PPOCoder merges CodeT5 with Proximal Policy

Optimization (PPO), improving stability and reliability by restricting policy updates and using

execution feedback to optimize the code’s structure and function. A reward function assesses the

alignment between the code’s Abstract Syntax Tree (AST) and the ground truth, enabling PPOCoder to

generate highly precise, functionally correct code. On the other hand, PanGu-Coder2 uses Ranking

Reinforcement from Human Feedback (RRHF) to directly integrate human preferences into the code

generation process. This framework employs ranking-based reinforcement to emphasize outputs that

satisfy human expectations, considerably boosting the relevance and quality of code generated for

complex tasks. Collectively, these frameworks demonstrate how RL-enhanced Code LLMs can

dynamically evolve to achieve excellence in code functionality, accuracy, and alignment with human

standards.

4.2. The Impact of Reinforcement Learning on End-to-end Software Development

Reinforcement learning (RL) is revolutionizing software engineering, contributing to enhancements

across various phases from design to deployment[38]. By learning optimal actions through

environmental interactions, RL facilitates automation in areas such as code suggestion and generation,

accelerating development and minimizing human error. In the realm of software testing, RL

streamlines test case generation, determines execution orders, and optimizes processes, thus

enhancing test quality and coverage. For network control, RL also advances tra�c management and

control strategies, which are essential for distributed systems[39].

As RL technology advances, its role in comprehensive software development—spanning code creation,

testing, and resource management—will become increasingly prominent, establishing it as an

indispensable tool for software engineers. GitHub Copilot, utilizing OpenAI’s Codex model, employs

Reinforcement Learning from Human Feedback (RLHF) to improve functions such as code completion,

generation, refactoring, and documentation. This strategy, in conjunction with extensive training on

large code datasets, enables Copilot to deliver real-time coding support in popular IDEs like Visual

Studio and JetBrains with substantially boosted developing e�ciency. Similarly, Zhipu AI’s CodeGeeX,

leveraging the ChatGLM model with RLHF, supports code generation, translation, and completion

across various languages in IDEs including VS Code and IntelliJ. Huawei’s CodeArts Snap, using PanGu-

Coder2 and Reinforcement Learning from Human Reverse Feedback (RRHF), enhances code
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generation, debugging, and test generation with contextually tailored code recommendations. These

models, optimized through RLHF or RRHF, exhibit e�ective end-to-end applications by aligning code

generation with actual developer needs in IDE settings.

5. Metrics and Benchmarks

5.1. Metrics

Identifying e�cient and reliable automatic evaluation metrics for code generation has been a

signi�cant challenge[40]. Initially, drawing inspiration from machine translation and text

summarization, many e�orts relied on metrics that evaluated token matching. Notable examples

include BLEU[41], ROUGE[42], and METEOR[43]. Nevertheless, these methods typically struggle to

accurately assess the syntactic and functional accuracy of the code, as well as its semantic attributes.

Furthermore, these metrics are not tailored for various programming languages and speci�c

compilers, which also diminishes their practicality. To mitigate these limitations in token-matching

based metrics, CodeBLEU[40]  was developed. It combines syntactic and semantic elements from

Abstract Syntax Trees (ASTs) and Data Flow Graphs (DFGs) with conventional BLEU scores, thereby

enhancing the evaluation precision for code generation. However, CodeBLEU still fails to fully resolve

the issues related to execution errors and discrepancies in execution results.

Given these obstacles, execution-based metrics have become increasingly important for assessing code

generation. Notable methodologies include execution accuracy[44], pass@t[45], n@k[46], and

pass@k[47]. When reinforcement learning (RL) is applied to enhance the code generated by large

language models (LLM), execution-based metrics, especially pass@k[47], have shown greater

signi�cance. The estimation of pass@k is described as follows:

Here,    represents the number of successful tests among the generated    codes, with a larger 

 resulting in a more precise estimate. It assesses the likelihood that at least one of the created code

samples   passes all unit tests. Such metrics are crucial in establishing the functional correctness of the

generated code by examining its execution performance, serving as a key evaluation tool for modern

Code LLMs. For an evaluation of the code generated by Code LLMs enhanced with reinforcement

learning, see Table 1. However, these execution-focused evaluation techniques depend heavily on the

pass@k := [1 − ]Eproblems

( )n−c
k

( )n
k

(4)

c n

n

k
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integrity of unit tests and are con�ned to estimating the quality of executable code. In scenarios where

unit tests are not suitable, token matching metrics are frequently employed as an alternative evaluation

approach.

In summary, choosing the right metrics to assess the quality of code generated by Code LLMs is

essential. While current methods, such as token-matching and execution-based approaches, are well

established, there remains a shortage of metrics to e�ectively evaluate the generated code’s security

and e�ciency. More sophisticated metrics are necessary to evaluate the models.
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Model Size

Pass@1 Pass@5 Pass@1000

Intro Inter Comp All Intro Inter Comp All Intro Inter Comp All

Base Models

Codex 12B 4.14 0.14 0.02 0.92 9.65 0.51 0.09 2.25 25.02 3.70 3.23 7.87

AlphaCode 1B - - - - - - - - 17.67 5.24 7.06 8.09

GPT-3 175B 0.20 0.03 0.00 0.06 2.70 0.73 0.00 1.02 - - - -

GPT-2 0.1B 1.00 0.33 0.00 0.40 3.60 1.03 0.00 1.34 - - - -

GPT-2 1.5B 1.30 0.70 0.00 0.68 5.50 1.03 0.00 1.58 27.90 9.27 8.80 12.32

GPT-Neo 2.7B 3.90 0.57 0.00 1.12 5.50 0.80 0.00 1.58 27.90 9.83 11.40 13.76

GPT-J 6B 5.60 1.00 0.50 1.82 9.20 1.73 1.00 3.08 35.20 13.15 13.51 17.63

CodeT5† 60M 1.40 0.67 0.00 0.68 2.60 0.87 0.10 1.06 - - - -

CodeT5† 220M 2.50 0.73 0.00 0.94 3.30 1.10 0.10 1.34 - - - -

CodeT5† 770M 3.60 0.90 0.20 1.30 4.30 1.37 0.20 1.72 - - - -

Reinforcement Learning-based Models

CodeRL 770M 6.20 1.50 0.30 2.20 9.39 1.90 0.42 3.10 35.30 13.33 13.60 17.78

PPOCoder 770M 5.20 1.00 0.50 1.74 9.10 2.50 1.20 3.56 35.20 13.35 13.90 17.77

RLTF 770M 4.16 0.97 0.20 1.45 10.12 2.65 0.82 3.78 38.30 15.13 15.90 19.92

-Coder
770M/stage3

6.70 1.50 0.30 2.30 10.40 2.63 0.70 3.80 37.00 13.67 12.60 18.12

Multi Reinforcement Learning- based Models

CodeRL +

CodeT5
770M 4.90 1.06 0.5 1.71 8.60 2.64 1.0 3.51 36.10 12.65 13.48 17.50

PPOCoder +

CodeT5
770M 5.20 1.00 0.5 1.74 9.10 2.50 1.20 3.56 35.20 13.35 13.90 17.77

Table 1. Performance of Base, Reinforcement Learning-based, and Multi Reinforcement Learning-based

Models on APPS benchmark

B

≤
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5.2. Benchmarks

To thoroughly evaluate the performance of large language models (LLMs) in code generation,

researchers have recently developed numerous high-caliber benchmarks. Building upon foundational

studies, several variations of the HumanEval dataset have been introduced, alongside additional

benchmarks designed to assess the code generation abilities of LLMs in a wider scope. Benchmarks

used for testing, often involving reinforcement learning-related Code LLMs, typically encompass the

following elements.

HumanEval features 164 selected Python programming tasks, each including a function signature, a

descriptive docstring, an implementation, and several unit tests[48]. HumanEval+ expands on the

original HumanEval benchmark by increasing the number of test cases by 80-fold. This expanded

testing capability allows HumanEval+ to detect a signi�cant amount of previously unnoticed �awed

code produced by LLMs[49]. MBPP is a collection of around 974 beginner-level Python coding tasks

sourced from public contributions. Each task o�ers an English description, a code solution, and three

automated test cases. MBPP+ enhances MBPP by removing poorly designed problems and �xing �awed

solutions. It also boosts the test capacity by a factor of 35 to improve coverage[50].

In the realm of competitions, the APPS benchmark contains 10,000 Python problems spanning three

levels of di�culty: introductory, interview, and competition. Each problem includes a description in

English, a correct Python solution, and corresponding test cases de�ned by inputs and outputs or

function names, if available. The APPS+ dataset consists of 7,456 entries. It improves upon the original

APPS dataset by eliminating defective entries, standardizing input and output formats, and ensuring

quality and coherence through unit tests and manual review. Each entry includes a problem

description, a standard solution, a function name, unit tests, and initial code. LiveCodeBench provides

a comprehensive and uncontaminated benchmark designed to assess a wide range of coding skills in

LLMs, such as code creation, self-repair, execution, and test output prediction[51]. It continuously

gathers new coding challenges from competitions on three renowned platforms: LeetCode, AtCoder,

and CodeForces. The dataset’s latest update includes 713 problems released between May 2023 and

September 2024.
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6. Prospects for Future Development

Through our survey, it is evident that reinforcement learning (RL) emerges as a transform strategy for

enhancing large language code models (Code LLMs) in the domain of code generation with signi�cant

advancements in performance. However, there are still several challenges that require addressing:

Creating High-Quality Code Datasets

The success of Code LLMs is greatly in�uenced by the diversity and quality of the code datasets used for

pretraining and �ne-tuning. At present, there is a shortage of comprehensive, high-quality datasets

that cover a wide array of programming tasks, styles, and languages. This shortfall impedes the ability

of LLMs to generalize to new programming tasks, various coding settings, and real-world software

development. Advanced data acquisition methods, including automated mining of code repositories,

sophisticated �ltering techniques, and code data synthesis, could facilitate the development of more

enriched datasets. Although RL algorithms often excel at speci�c tasks, their challenge lies in adapting

to new tasks or environments, which restricts their versatility and applicability.

Formulating Comprehensive Benchmarks and Metrics for Code Generation in Code LLMs

Current benchmarks, such as HumanEval, may not comprehensively evaluate the array of coding skills

required in practical software development. Additionally, many of the evaluation metrics currently in

use prioritize syntactic accuracy or functional performance, overlooking critical aspects such as code

e�ciency and security. Creating benchmarks that replicate the complexities of real-world software

development could provide a more accurate evaluation of the coding ability of LLMs.

Enhancing Support for Low-Level and Domain-Speci�c Programming Languages

LLMs are mainly trained on popular high-level languages, resulting in limited support for low-level

and domain-speci�c languages like assembly and lean. This underrepresentation curtails the use of

LLMs in specialized domains and systems programming. Progressing research in transfer learning and

meta-learning could allow LLMs to apply knowledge from widely-used languages to improve their

performance on lesser-known ones.
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Minimizing Computational Costs

RL algorithms, especially those involving extensive state spaces or intricate decision-making

processes, typically require signi�cant computational power, such as high-performance GPUs and

substantial memory. Such demands can be prohibitive in environments with limited resources.

Exploring more e�cient RL methods and re�ning resource utilization can help mitigate these

computational needs. Confronting these challenges is essential for fully realizing the potential of RL-

augmented LLMs in code generation and enhancing their capabilities across varied programming

domains.

7. Conclusion

In this paper, we discuss current reinforcement learning (RL) approaches to code generation and

optimization, and analyze various RL-based strategies in di�erent generation and optimization

directions. We examine the commonalities and di�erences of these methods, arguing that RL holds

signi�cant promise for code generation and optimization, potentially marking a major shift in the �eld.

Our goal is to help researchers gain a comprehensive understanding of the possible directions and the

core challenges, and to inspire future advancements and progresses in this evolving �eld.

8. Limitations

In this comprehensive survey, we have examined the application of reinforcement learning in code

generation and optimization, analyzing a range of methods and techniques. However, due to space

limitations, we have not provided a comprehensive analysis of all aspects under discussion. Firstly, we

did not provide a detailed account of the datasets employed for model training, which are of paramount

importance for the model’s generalization and performance. Further research could examine the

in�uence of disparate datasets on model performance and the construction of more diverse and

representative datasets to improve generalization. Secondly, the scalability and generalization of

reinforcement learning models in the context of large-scale codebases and across multiple projects

were not discussed. In practical applications, models must be capable of handling codebases of varying

scales and complexities, necessitating good scalability and adaptability. Further research could

concentrate on improving the scalability of the models and the transfer of learning between disparate

projects and programming languages. Lastly, a detailed comparison of the training and inference times

of various algorithms was not provided. In the context of software development, the e�ciency of the
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algorithm is of paramount importance. Consequently, future studies could assess the time complexity

of di�erent reinforcement learning algorithms during the training and inference phases to optimize

these times.
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