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Large Language Model (LLM) agents are rapidly improving to handle increasingly complex web-based

tasks. Most of these agents rely on general-purpose, proprietary models like GPT-4 and focus on

designing better prompts to improve their planning abilities. However, general-purpose LLMs are not

speci�cally trained to understand specialized web contexts such as HTML, and they often struggle with

long-horizon planning. We explore an alternative approach that �ne-tunes open-source LLMs using

production-scale work�ow data collected from over 250 domains corresponding to 6 billion tokens.

This simple yet e�ective approach shows substantial gains over prompting-based agents on existing

benchmarks—ScribeAgent achieves state-of-the-art direct generation performance on Mind2Web and

improves the task success rate by 7.3% over the previous best text-only web agents on WebArena. We

further perform detailed ablation studies on various �ne-tuning design choices and provide insights

into LLM selection, training recipes, context window optimization, and e�ect of dataset sizes.
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1. Introduction

Large language model (LLM) agents have advanced signi�cantly in web navigation. They can carry out

user-speci�ed tasks in multiple steps by reasoning on their own what actions to take and what external

resources to interface with. Recent studies[1][2][3][4]  have shown that, with better planning and

exploration strategies, LLM agents can independently solve various web tasks ranging from simple
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navigation, such as locating a speci�c Wikipedia page, to more complex operations, such as booking

�ights or restaurants.

Despite these improvements, the performance of existing web agents on research benchmarks remains

signi�cantly below human levels[5][6][7]. One possible reason is their dependence on general-purpose

LLMs. Indeed, all top-performing agents like WebPilot[3], AWM[8], and SteP[9]  rely on prompting

proprietary models like GPT-4[10]. These general-purpose LLMs are not optimized for interpreting web

contexts such as HTML or accessibility trees; their pretraining and alignment processes do not address

navigation-related challenges; and their proprietary nature presents a major obstacle in adapting them

to web environments via continual training.

In this work, we explore an alternative approach by �ne-tuning open-source LLMs with a large set of

real-world work�ow data1 to develop specialized web agents (Figure 1). Through extensive experiments,

we show that this approach not only boosts the web understanding and planning abilities of LLMs,

achieving state-of-the-art results on various benchmarks, but also allows us to develop agent models

signi�cantly smaller than proprietary LLMs, reducing the serving costs. Our empirical results suggest

that large-scale, high-quality, real-world data can be essential to agent development.

Speci�cally, we collect a set of proprietary work�ow data representing action sequences executed by real

users in real web environments through Scribe. This dataset encompasses a large and diverse spectrum of

websites (over 250 domains and 10,000 subdomains), task objectives, task di�culty, and task length.

Each step in the work�ow features not only the raw HTML-DOM of the website but also a comprehensive

documentation of the action, including action description in natural language, mouse or keyboard

operation, and the CSS selector of the target HTML element. We reformat the data into a next-step

prediction formulation and �ne-tune a set of open-source LLMs via the parameter-e�cient LoRA[11].

After preprocessing and reformatting, our training dataset contains more than 6 billion tokens.
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Figure 1. Left: Most existing LLM web agents are built on top of general-purpose, proprietary models like

GPT-4 and rely heavily on prompt engineering. Their performance is enhanced by leveraging external

planning, reasoning, and memory modules. Right: We explore an alternative way to develop specialized

agents by �ne-tuning open-source LLMs using a large set of high-quality, real-world work�ow data. This

signi�cantly boosts agent’s navigation and planning capacity, enabling it to outperform proprietary

models with a smaller LLM backbone, thereby reducing serving costs.

With access to this production-scale dataset, we develop ScribeAgent, the �rst family of specialized,

single-stage LLM agents capable of directly generating the next step based on the website’s DOM and

action history. This is in contrast with previous �ne-tuned agents that require multiple stages to produce

an action, e.g., �rst narrowing down to a set of target element candidates and then selecting one from the

candidates[5]. To evaluate the capacity and generalization ability of ScribeAgent, we test it on public

benchmarks without any further training. ScribeAgent signi�cantly outperforms existing GPT-4-based

and multi-stage agents. Notably, the 32B-parameter ScribeAgent-Large achieves state-of-the-art direct

generation performance on Mind2Web[5], with step success rate surpassing the baselines by 5-10%

across all test sets. On the end-to-end task execution benchmark WebArena[6], our 7B ScribeAgent-Small

improves the previous best task success rate from 45.7% to 51.3%. ScribeAgent-Large achieves an even

better task success rate of 53%, marking the highest performance among text-only LLM agents.

Beyond the empirical results, our work also provides several insights valuable for future web agent

research: (1) we show that direct �ne-tuning on highly structured inputs (HTML-DOM) is feasible and

can improve the agent’s ability in identifying the correct target; (2) we identify an e�ective HTML

preprocessing strategy that balances between preserving essential information and minimizing context

length; (3) we provide a thorough analysis on various design choices in �ne-tuning, such as LLM

backbone and context window selection; (4) we illustrate how �ne-tuning improves agent performance

as dataset size increases.
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Our work highlights the potential of building web agents via specialized �ne-tuning with production-

scale data. This approach not only improves agents’ capabilities relative to prompt-engineered

alternatives, but also reduces inference costs due to the smaller sizes of open-source LLMs. While our

work focuses on studying the e�ect of �ne-tuning, ScribeAgent can be extended to leverage more

sophisticated search or memory modules[12][8], combined with existing planning frameworks[13][14][15],

or integrated into multi-modal web agent systems as the text model[16]. We view ScribeAgent as an

important step towards developing AI assistants and fully automated agents for real-world web

applications.

2. Related Work

Prompting-based agent frameworks.

The majority of web agent works reuse existing LLMs and propose di�erent prompting strategies to

improve action prediction. One line of research focuses on exploiting previous experience via self-

feedback[17]  or in-context demonstrations[18][1][8][19][20]. A separate line of work centers around

encouraging exploration by including external evaluators[21], using synthesized instructions[22], or

applying more sophisticated search algorithms like stack[9], best-�rst tree search[12], or Monte Carlo

Tree Search[3]. Despite the research e�orts, these prompting methods rely heavily on the quality of the

LLM used. Open-source models such as LLaMA[23], Code LLaMA[24], and Flan-T5[25]  generally

underperform proprietary models like GPT-4. However, �ne-tuning proprietary LLMs can often be costly

and challenging, as it is restricted to being done through APIs. This implies an opportunity for enhancing

open-source LLMs to match or outperform proprietary agents.

Fine-tuning-based web agents.

Compared to developing better reasoning and planning frameworks, comparatively less attention has

been given to optimizing the LLMs themselves to better handle web environments. Due to the di�culty of

directly generating a single target element from the raw HTML, which often contains thousands of

elements, existing work mostly focuses on multi-stage prediction. MindAct[5]  proposes a two-stage

pipeline that �rst uses a small LM to �lter the web elements and then uses a more powerful LM to select

from the �ltered elements in a multi-choice question answering format. Both LMs can be �ne-tuned

using the Mind2Web dataset. WebAgent[26] uses HTML-5 to �rst process the HTML and then �ne-tunes

a 540B Flan-UPalm to generate code for controlling web pages. More recently, AutoWebGLM[2] trains a
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single ChatGLM3 6B[27]  using a combination of curriculum learning, reinforcement learning, and

rejection sampling �ne-tuning. NNetnav[28]  leverages synthetic demonstrations collected by zero-shot

LLM exploration and hindsight relabeling to �ne-tune open-source models into web agents. Despite the

complicated training and inference procedures, these methods often underperform agents that prompt

GPT-4. In contrast, our work shows that given su�cient high-quality work�ow data, �ne-tuning a

single LLM can achieve strong performance. We note that the newly released OpenAI o1[29] can be viewed

as a specialized agent with a complicated planning framework. Nonetheless, we show in Section 4.1 that

ScribeAgent outperforms o1-preview by a large margin on our proprietary dataset. Moreover, while none

of the training details for o1 have been released, our work provides valuable insights into data

preprocessing and �ne-tuning.

Beyond the aforementioned work, there is an earlier line of research that �ne-tunes LLMs for HTML

inputs[30][31][32]. However, their primary application is question-answering tasks, such as answering

“could sun�owers really track the sun across the sky”, and they cannot be used to generate a sequence of

actions based solely on the user objective.

Lastly, we note that an emerging line of research has committed to developing multi-modal web agents

that use screenshots along with HTML observations. Examples include CogAgent[33], SeeClick[34],

WebGUM[35], WebVoyager[36], and AWA 1.5[37]. However, our current version of ScribeAgent focuses

exclusively on text-based inputs due to the lack of e�ective visual preprocessing schemes. Thus, we do

not compare with the aforementioned multi-modal methods in our experiments and leave developing

multi-modal ScribeAgent as future work.

3. Method

In this section, we �rst overview the general setup of solving web-based tasks with LLM agents. Then, we

detail our proposed method to develop specialized agents from open-source LLMs.

3.1. General Setup

We consider solving a web-based task as a sequential decision-making process guided by a high-level

objective. For each task, the user �rst speci�es an objective and a starting web page. Then, at every step,

the agent outputs an action based on the task objective, the current web page, and the history. Formally,

denote the user objective as  . The web environment is governed by a transition function    that can

evolve over time. The agent is instantiated by a language model  . At each time step  , the agent observes 
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  produced by the environment state    and observes the history  . It outputs an

action  , which is executed in the environment, and the state changes correspondingly 

. This iterative process stops when the agent issues a stop signal, or a task termination

condition is met, such as we have reached a prede�ned maximum number of steps.

For single-modal, text-only agents, the observation    typically consists of the website’s URL, the

HTML-DOM (Object Model for HTML, which de�nes HTML elements and their properties, methods, and

events), and potentially the accessibility tree (a representation that can be understood by assistive

technologies like screen readers). Since the raw HTML-DOM is often long and contains redundant

structural information, most methods employ preprocessing and pruning strategies, which could be as

simple as retaining a �xed set of HTML tags and attributes or more complex ones like LLM-based

element ranking and �ltering[5].

The action    emulates the keyboard and mouse operations available on web pages. The most general

action space in existing work consists of element operations, such as clicking, typing, and key

combination pressing; tab actions, such as opening, closing, and switching between tabs; navigation

actions, such as going forward and backward in the browsing history[6].

As discussed earlier, previous web agent work focuses on presenting useful demonstrations through   or

iteratively revising   to improve the quality of the predicted next step. In contrast, we explore whether

we can improve the model    itself by learning from a vast amount of data and incorporating more

information into  , such as the natural language description and HTML representation of a action. We

detail our approach in the next section.

3.2. ScribeAgent: Specializing Web Agents Through Fine-Tuning

3.2.1. Collecting Production-Scale Data

We collected a large set of real-world, user-annotated, proprietary data through Scribe, a software that

streamlines the creation of step-by-step guides for web-based tasks. Scribe allows users to record their

interactions with the web through a browser extension and converts the interactions into well-annotated

instructions, which can be then customized to speci�c business needs. The collected dataset consists of

everyday work�ows in common web application domains, encompassing customer relationship

management (CRM) tools like HubSpot and Salesforce; productivity tools like Notion and Calendley;

social platforms like Facebook and LinkedIn; shopping sites like Amazon and Shopify; and many others.
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Each work�ow features a high-level user objective and a step-by-step documentation of the action

sequence to achieve the task. The objective spans a wide range of topics, such as “add a user in a

Salesforce” or “invite someone to manage Facebook ad accounts”. Each step contains the following

information: the current web page’s URL, raw HTML-DOM, a natural language description of the action

performed, the type of action, and the autogenerated CSS selector to identify the action target. There are

three types of actions in the dataset:

mouse_click_action: click at an element

keyboard_sequence_action: type a sequence of characters to an element

keyboard_combination_action: press a set of keys together (e.g., hotkey like ctrl+c)

Note that there is no scroll actions in our action space since all elements are already fully accessible in the

captured data. This is because we capture the full DOM from a system perspective, which inherently

includes the entire webpage as observed from the backend. This method di�ers from user-centric data

collection, where only the elements within the visible browser viewport are captured.

To ensure the quality of the data, we remove work�ows with invalid selectors, i.e., the selector cannot be

used to locate a target element in the DOM. We also remove non-English work�ows to reduce dataset

complexity and enable us to explore English-only LLMs like Mistral 7B[38]. The resulting dataset is at

production scale: using raw data collected over a two-month period, we are able to extract work�ow data

from more than 250 domains and 10,000 subdomains with an average task length of 11 steps, which

correspond to about 6 billion training tokens. This large-scale, high-quality, real-world dataset is

unmatched in prior web agent research.

Since this dataset is collected from real users and might contain sensitive and con�dential information, it

will not be released to the public to protect user privacy. The dataset is solely for research purposes and

has been anonymized to prevent the identi�cation of any individual.

3.2.2. Preprocessing

For ScribeAgent, we consider an observation space consisting mainly of the URL and HTML-DOM.

Speci�cally, HTML-DOM provides agents with all structural and content information about the web page

that are essential for generating the next step and long-term planning. For instance, while a drop-down

menu may not be visible on the website before expansion, the agent can detect the menu items from the

DOM and determine whether to click and expand it. We do not use accessibility tree to develop
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ScribeAgent because it may lose information about the HTML elements, such as the drop-down items,

and does not generalize across di�erent browsers and devices.

Given our observation space, a subsequent problem is that the DOM can be quite long and exceed the

context window of prevailing open-source LLMs. To reduce the DOM sizes, we propose a pruning

algorithm that maintains the essential structure and content while eliminating redundant or disruptive

elements that could hinder the LLM’s understanding. Speci�cally, we �rst use the BeautifulSoup

library[39] to remove non-essential components such as metadata, CSS, and JavaScript. Then, we utilize a

tag-attribute white list to retain useful tag level information like retaining interactive elements. Since

some attribute values can contain random character sequences that do not provide useful information,

we propose a novel detection method that removes the attributes with character-to-token-ratio smaller

than 2, i.e.,  , where   denotes the value string. Intuitively, if each character in a string is

encoded using a separate token, it is highly likely that the string is not semantically meaningful. Lastly,

we remove the comments and extra whitespaces to clean up the DOM. After pruning, we assign each tag

in the HTML with a unique ID by traversing the HTML tree from bottom to top. More details about

preprocessing and analysis on the tokenizer-pruning method can be found in Appendix A.1.

We restrict the action space of ScribeAgent to the three types of operations speci�ed in Section 3.2.1. To

preprocess the action sequences, we rewrite each step into �ve lines as follows:

The �rst line represents the current time step. The second line is the natural language description of the

action, which can help LLMs to learn about the rationale behind applying a speci�c action. The third line

is one of the three operations in the action space. The fourth line is the unique ID assigned to the target

element. The last line details the HTML tag and attributes, which can be directly obtained from the

processed DOM.

For the history, we consider only previous actions, omitting previous observations due to the extensive

length of the DOMs. That is,  . Therefore, at each step, ScribeAgent will be given the task

objective, URL, HTML-DOM, and all previous actions in the aforementioned �ve-line format. Its goal is

to output the next action   that helps complete the task. In Appendix A.2, we provide an

example of a full work�ow.

< 2
len(s)

len(tokenizer(s))
s

=ht a1:t−1
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Lastly, during our inspection, we �nd that 10% of the action descriptions in the dataset are not

informative (e.g., “click here”). In these cases, we use GPT-4o[40]  to regenerate the action description

from screenshots. We provide the prompt as well as examples of the regenerated action descriptions in

Appendix A.3.1.

3.2.3. Fine-Tuning with LoRA

After preprocessing, we divide the dataset into two splits. The test set comprises of   work�ows with

diverse objectives and domains. We use the remaining work�ows as the training data to adapt LLMs via

standard supervised �ne-tuning. Note that for each �ne-tuning example, the label is a single next-step

instead of all remaining steps needed to complete the task. The agent is trained to generate all

information in the �ve-line format described above, including the natural language description.

To reduce �ne-tuning cost, we opt for the parameter e�cient method LoRA[11]  instead of full �ne-

tuning, since we have not observed signi�cant performance gain by updating more parameters. We also

follow previous work[41][42]  to �ne-tune the layernorms in addition to the LoRA adapters. Based on

empirical observations, we set the �ne-tuning epoch to 2, e�ective batch size to 32, LoRA rank to 64 and 

 to 128. We use a cosine scheduler with 30 warmup steps and a learning rate of 1e-4.

3.2.4. Exploring the Design Space

There are multiple design choices for ScribeAgent that might a�ect the prediction accuracy, �ne-tuning

cost, and inference latency. We focus on three aspects and perform detailed ablation studies to �nd out

the optimal modeling and training con�gurations.

1200

α
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Model # Params
Before Fine-Tuning After Fine-Tuning

EM (%) Calibrated EM (%) EM (%) Calibrated EM (%)

Mistral-7B-Instruct-v0.3 7B 3.89 5.13 19.92 26.31

Qwen2-7B-Instruct 7B 6.06 7.92 29.34 38.72

Llama-3.1-Instruct-8B 8B 1.42 1.88 28.34 37.42

Qwen2.5-14B-Instruct 14B 8.79 11.60 31.76 41.89

Codestral-22B-v0.1 22B 4.53 6.08 31.11 41.25

Qwen2.5-32B-Instruct 32B 10.02 13.21 32.98 43.51

Mixtral-8x7B-Instruct-v0.1 56B-A12B 7.35 9.82 28.38 37.49

Qwen2-57B-A14-Instruct 57B-A14B 5.72 7.51 31.02 40.10

Table 1. Performance of di�erent LLMs �ne-tuned on 1B work�ow tokens on the test split of our

proprietary dataset. We highlight the best results for small/medium/large models. EM is short for Exact

Match.

Pretrained LLM Selection.

Intuitively, the quality of a �ne-tuned web agent should be relevant to the quality of the pretained LLM.

We identify two axes that are crucial to performance—model architecture and model size—and explore

seven open-source LLMs spanning these axes: Llama 3.1 8B[23], Mistral 7B[38], Mixtral 8x7B[43], Qwen2

7B[44], Qwen2 57B[44], Qwen2.5 14B[45], Qwen2.5 32B[45], and Codestral 22B[46]. We �ne-tune these

models with 1 billion training tokens and evaluate their performance on the test split of the dataset we

collected.

Given that many of the evaluated LLMs have a maximum context window of approximately 32K, and the

processed DOM can exceed this limit, we divide the DOM sequentially into chunks that �t into the context

window. For �ne-tuning, we use the chunk containing the correct target, but for evaluation, we use the

last chunk since the target’s location is not known beforehand. When evaluating at a 32K context window,

25% of the test data do not have the correct target tag in the DOM, i.e., these tasks are unachievable. Thus,

we compute two metrics for evaluation: (1) exact match (EM) measures the model’s ability to select
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exactly the same HTML tag as the ground truth; (2) calibrated exact match (Calibrated EM, or CEM)

measures the percentage of correct target predictions where the target tag was present in the truncated

HTML DOM, i.e., it is EM on the set of examples where the observation contains su�cient information to

complete the task. As we scale the context window, these two metrics converge.

We report the performance of di�erent LLMs before and after �ne-tuning in Table  1. Notably, for all

models, specialized �ne-tuning drastically increases the prediction accuracy. Both before and after �ne-

tuning, the Qwen family demonstrates better EM and CEM across small, medium, and large models. We

observe performance gains as model size increases. For example, the calibrated EM for Qwen2 57B is

higher than its 7B counterpart. Qwen2.5 32B is also better than Qwen2.5 14B. Mixtral 8x7B outperforms

Mistral 7B by a large margin as well. However, �ne-tuning larger models is signi�cantly more resource-

intensive—while Qwen2 7B can be �ne-tuned using 8 H100 GPUs in just one day, Qwen2 57B takes over a

week using the same hardware con�guration. Larger models also incur longer inference times and

require multiple GPUs even at a 32K context length. To balance e�ectiveness and e�ciency, we develop

two versions of ScribeAgent using Qwen2 7B and Qwen2.5 32B, respectively. The Qwen2 7B model o�ers

an optimal balance between prediction accuracy and the costs associated with �ne-tuning and inference.

Meanwhile, the Qwen2.5 32B model provides stronger performance when we have su�cient

computational resources.

Model Context EM (%) CEM (%)

Qwen2 7B 32K 29.34 38.72

Qwen2 7B 65K 31.42 36.22

Qwen2.5 14B 32K 31.76 41.89

Qwen2.5 14B 65K 33.96 39.15

Qwen2.5 32B 32K 32.98 43.51

Qwen2.5 32B 65K 36.16 41.69

Table 2. Ablations on context window length.
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Context Window Length.

We evaluate the models with 65K context window to add additional context and increase the rate of

solvable tasks (Table 2). On both Qwen2 and Qwen2.5, scaling the context window from 32K to 65K leads

to approximately   performance boost for Exact Match but approximately   performance drop for

Calibrated Exact Match. We hypothesize that this performance degradation might be due to rotary

position embedding[47] and the fact that it becomes harder to pick the correct target given twice as many

options to choose from. Besides, we note that using 65K context window increases the inference time by

approximately four times in practice.

# Train Tokens EM (%) CEM (%)

1B 29.34 38.72

3B 32.65 43.06

6B 34.96 46.42

Table 3. Ablations on dataset size. All settings are trained and evaluated with Qwen2-7B-Instruct and 32K

context window.

Dataset Size.

Lastly, we are interested in understanding the e�ect of �ne-tuning dataset size on the agent’s

performance. To this end, we sample our training set without replacement into smaller subsets and �ne-

tune Qwen2 7B on them. Results are shown in Table  3. Plotting on a log-linear scale, we observe that

there is a roughly 2% performance boost when we double our dataset size.

To sum up, using our proprietary dataset, we study the e�ect of LLM backbone, context window, and

dataset size on the agent performance. We �nd that (1) scaling parameter count generally improves

prediction quality, but the latency and training time of large LLMs can be prohibitive; (2) using longer

context window boosts model performance on EM but increases the inference time signi�cantly; (3)

training with more tokens is helpful. Based on these insights, we develop two versions of ScribeAgent:

ScribeAgent-Small, based on Qwen2 7B, and ScribeAgent-Large, based on Qwen2.5 32B. Both versions are

�ne-tuned on the full 6B-token dataset at a 32K context window. While ScribeAgent-Large demonstrates

2% 2.5%
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better performance in both internal and external evaluation,s the 7B ScribeAgent-Small is cheaper to

serve at inference time, particularly when compared to large-scale proprietary models.

4. Results

We evaluate ScribeAgent on three web datasets. We �rst consider the next-step prediction setting, where

performance is evaluated only on a single next step. We show that ScribeAgent not only outperforms

various general-purpose LLMs on our proprietary dataset but also achieves state-of-the-art on the

public benchmark Mind2Web[5]. Then, we move to the end-to-end task completion benchmark

WebArena[6]  and show that ScribeAgent augmented with GPT-4o achieves top performance among all

existing agent systems. Note that we do not perform any task-speci�c adaptation for Mind2Web and

WebArena, even when additional training data is available. This allows us to evaluate the generalization

ability of ScribeAgent. Our focus is on ensuring that ScribeAgent remains versatile and robust across

diverse settings, rather than optimizing for speci�c benchmarks.

4.1. Proprietary Dataset

To study whether specialized �ne-tuning is indeed bene�cial, we �rst compare the performance of

ScribeAgent with general-purpose baselines on our proprietary test data. We consider the non-�ne-

tuned Qwen2 7B, GPT-4o, and GPT-4o mini. We use in-context demonstrations to prompt them to

generate actions in the same �ve-line format as de�ned in Section 3.2.2. All OpenAI baselines in this work

follow the prompt in Appendix A.3.2.

Results on the full 1200 test work�ows are shown in Table 4. First, we note that ScribeAgent signi�cantly

outperforms the proprietary GPT-4o and 4o mini. This shows the bene�t of specialized �ne-tuning over

using general-purpose LLMs. Moreover, while the non-�ne-tuned Qwen2 performs extremely poorly,

�ne-tuning with our dataset (ScribeAgent-Small) boosts its performance by nearly 6  , which highlights

the importance of domain-speci�c data.

×
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Model EM (%) CEM (%)

Qwen2 7B 6.28 8.20

GPT-4o mini 12.60 13.26

GPT-4o 15.24 16.02

ScribeAgent-Small 34.96 46.42

ScribeAgent-Large 37.67 49.67

Table 4. ScribeAgent v.s. non-�ne-tuned, general-purpose baselines on the full test set with truncation at

32K tokens.

Figure 2. Exact Match (EM) comparison between ScribeAgent-Small

and OpenAI models across di�erent types of websites.

We also plot the Exact Match metric for four types of commonly seen domains, including customer

relationship management (CRM) tools, E-commerce platforms, productivity tools, and social platforms

(Figure 2). While our agent’s performance varies by domain, with a 6% gap between the best performing

domain and the worst performing one, we observe that ScribeAgent consistently outperforms the

general-purpose baselines across all of them.
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Models EM (%) CEM (%)

o1-mini 17.40 18.32

o1-preview 22.60 23.79

GPT-4o mini 13.80 14.53

GPT-4o 16.60 17.96

ScribeAgent-Small 47.60 50.11

ScribeAgent-Large 50.00 52.60

Table 5. Comparing ScribeAgent with OpenAI baselines on 500 test samples. All models are evaluated at a

128K context window.

As we were wrapping up this work, OpenAI released o1[29], a series of specialized models for solving

complex tasks in science, coding, and math. Since it has better planning ability, we also include it in our

baselines. However, we did not run the o1 models on the full test set due to cost and API call limitations.

Instead, we subsample 500 work�ows and compare with ScribeAgent. As shown in Table 5, o1-preview

performs the best among all general-purpose baselines. However, ScribeAgent still outperforms it by a

wide margin, highlighting the importance of �ne-tuning on real-world web navigation data. It is

important to note that ScribeAgent-Small only has 7B parameters, while ScribeAgent-Large has 32B

parameters, and neither model requires additional scaling during inference. In contrast, most proprietary

baselines are typically larger in size and require more compute at inference. This makes ScribeAgent a

better choice in terms of accuracy, latency, and cost.

4.2. Mind2Web

Mind2Web[5]  is a text-based dataset for assessing the navigation ability of web agents across di�erent

tasks, websites, and domains. Each task features a human demonstration of a real-world work�ow, such

as booking a hotel on Airbnb. At each step, the agent is asked to predict a single action, consisting of an

operation and the target element. Performance is measured by element accuracy, which checks if the

correct target is selected; action F1 score, which measures operation correctness like text input; step
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success rate, which evaluates whether both the target element and the operation are correct; and task

success rate, indicating all steps are correct.

The original Mind2Web benchmark reports two sets of baselines: (1) multi-stage, multi-choice question-

answering agents (i.e., the MindAct family) �rst use a pretrained element-ranking model to �lter out 50

candidate elements from the full DOM and then use a separate LLM to recursively select an action from

�ve candidates in a multi-choice question-answering (QA) fashion until one action is chosen; (2) a

single-stage, generation-based agent (i.e., �ne-tuned Flan-T5B) directly generates the operation and the

target based on the full DOM. The multi-stage baselines generally show higher metrics than direct

generation models, as the element selection process e�ectively �lters out noise, simplifying the task.

Beyond these baselines, we also consider recent published work such as AWM[8], Synapse[1], and �ne-

tuned HTML-T5[26]. AutoWebGLM[2]  reports only step success rate among all four metrics. While the

reported numbers are high, it uses a di�erent and possibly more favorable evaluation procedure, so we do

not compare against it. For both single-stage and multi-stage settings, we further categorize the

baselines into those leveraging the Mind2Web training data for �ne-tuning or in-context

demonstrations and zero-shot methods. As stated earlier, we do not �ne-tune our agents because our

goal is to test the agent’s out-of-distribution generalization abilities.
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Method  

Cross-Task Cross-Website Cross-Domain

EA AF1

Step

SR

Task

SR
EA AF1

Step

SR

Task

SR
EA AF1

Step

SR

Task

SR

Multi-

Stage QA

Uses M2W Train Set

MindAct

(Flan-T5B)
43.6 76.8 41.0 4.0 32.1 67.6 29.5 1.7 33.9 67.3 31.6 1.6

MindAct

(Flan-T5L)
53.4 75.7 50.3 7.1 39.2 67.1 35.3 1.1 39.7 67.2 37.3 2.7

MindAct

(Flan-T5XL)
55.1 75.7 52.0 5.2 42.0 65.2 38.9 5.1 42.1 66.5 39.6 2.9

AWM-o�ine

(GPT-4)
50.6 57.3 45.1 4.8 41.4 46.2 33.7 2.3 36.4 41.6 32.6 0.7

HTML-T5-

XL
60.6 81.7 57.8 10.3 47.6 71.9 42.9 5.6 50.2 74.9 48.3 5.1

Zero-Shot

MindAct

(GPT-4)
41.6 60.6 36.2 2.0 35.8 51.1 30.1 2.0 21.6 52.8 18.6 1.0

AWM-online

(GPT-4)
50.0 56.4 43.6 4.0 42.1 45.1 33.9 1.6 40.9 46.3 35.5 1.7

ScribeAgent

Small (Ours)
42.6 50.1 39.7 0 44.9 50.1 41.6 0.6 44.1 51.4 41.4 0

ScribeAgent

Large (Ours)
53.5 52.9 51.2 0 53.4 52.8 51.3 2.3 53.3 54.7 51.2 0

Direct

Generation

Uses M2W Train Set

Flan-T5B 20.2 52.0 17.5 0 13.9 44.7 11.0 0 14.2 44.7 11.9 0.4

Synapse

(GPT-3.5)
34.0 - 30.6 2.4 29.1 - 24.2 0.6 29.6 - 26.4 1.5
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Method  

Cross-Task Cross-Website Cross-Domain

EA AF1

Step

SR

Task

SR
EA AF1

Step

SR

Task

SR
EA AF1

Step

SR

Task

SR

Zero-Shot

ScribeAgent

Small (Ours)
28.6 50.1 26.8 0 27.6 50.1 25.6 0 32.0 51.4 29.9 0

ScribeAgent

Large (Ours)
38.0 52.9 35.6 0 34.1 52.7 32.5 0 39.4 54.7 37.3 0

Table 6. ScribeAgent achieves state-of-the-art zero-shot performance on Mind2Web. EA is short for

element accuracy, AF1 is short for action F1, and SR is short for success rate. We note that the three

categories are based on increasing level of domain generalization di�culty. However, since we do not train

on Mind2Web data, our performance is similar across di�erent test sets. Numbers are bolded for each

method category.

We evaluate ScribeAgent on both multi-stage QA and direct generation. For the multi-stage setting, we

�rst use the pretrained Mind2Web element-ranker to obtain the element ranking. Then, given the output

of ScribeAgent, we traverse the sorted list of HTML elements from top to bottom, and stop when the

agent’s generated HTML element is a subchild of the element. We then replace ScribeAgent’s prediction

by the element. For direct generation, we simply compare the output of our agent to the ground truth

action and target.

We report results following the evaluation procedure speci�ed in the Mind2Web repository in Table 6. For

the multi-stage setting, ScribeAgent-Large achieves the best overall zero-shot performance. Our

element accuracy and step success rate metrics are also competitive with the best �ne-tuned baseline,

HTML-T5-XL, on cross-website and cross-domain tasks. However, our task success rates are not

satisfactory, which is mainly due to the distribution di�erences between our training data and the

Mind2Web data. Upon inspection, we �nd that the primary failure cases of our models are (1) predicting

the subchild element of the ground truth instead of the ground truth; (2) predicting another element with

identical function but is di�erent from the ground truth; and (3) our agent tends to decompose type
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actions into click followed by type actions. In many cases, we actually correctly predict the action

description. These situations can be addressed by improving the evaluation procedure, which we discuss

later in this section and in Appendix A.4.2.

As for direct generation, ScribeAgent-Large outperforms all existing baselines. Our step success rates are

2-3 times higher than those achieved by the �ne-tuned Flan-T5 and show an improvement of 5-10%

over Synapse, which utilizes GPT-3.5. We attribute ScribeAgent’s strong performance to the diversity and

high quality of the work�ows in our dataset. Relatedly, the three test sets (Cross-Task, Cross-Website,

Cross-Domain) are designed to capture di�erent degrees of domain generalization di�culty. Since we do

not train on Mind2Web data, the performance of ScribeAgent is similar across all three test sets.

As mentioned earlier, we observe several limitations in the Mind2Web evaluation that underestimate our

agent’s performance. First, the evaluation strictly compares element IDs, where only the outermost tags

are labeled as ground truths, disregarding the subchildren. This leads to inaccuracies when our agent

selects functionally identical but hierarchically deeper elements, which are marked as incorrect. Second,

for direct generation, ScribeAgent might select a functionally identical element that is located in a

di�erent part of the website (e.g., consider clicking on the next page button vs. clicking on the page

number). Lastly, there is a notable discrepancy between the distribution of our training data and the

synthetic trajectories of Mind2Web. For instance, Mind2Web expects immediate type actions for

textarea or input tags, whereas our model �rst clicks before typing.

To better re�ect ScribeAgent’s capabilities, we re�ne the evaluation method by relaxing the labels to

include subchildren of the ground truths. For direct generation, we also introduce an element attribute

matching step that compares not only the element IDs but also tag and text attributes. The results with

re�ned evaluation is shown in Appendix A.4.2. We observe an average of 8% increase in task success rate

and element accuracy for ScribeAgent, showing the need for enhancing evaluation of text-based

benchmarks. It is worth noting again that results in Table 6 follow the original evaluation procedures to

ensure fair comparison with established baselines.

While the Mind2Web results are promising, we note that another limitation of static, text-based

benchmark is that the ground truth evaluation does not account for di�erent action sequences that could

reach the same goal. For instance, to book a �ight, one can �rst enter the destination or �rst choose the

departure date, but the ground truth trajectory only accounts for one possibility. Considering this, we also

evaluated ScribeAgent on a dynamic benchmark WebArena[6].
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4.3. End-to-End Task Execution on WebArena

WebArena[6] features 812 web navigation tasks across �ve domains: E-commerce (OneStopShop), social

forums (Reddit), software development (GitLab), content management (CMS), and online map

(OpenStreetMap). Unlike the static Mind2Web, it implements a dynamic environment for agents to

interact with and allows for assessing the functional accuracy of action sequences. Since the WebArena

environment is implemented to accept only target element IDs speci�ed in the accessibility tree, whereas

ScribeAgent operates on DOM and outputs targets in HTML, we employ GPT-4o to map between the

di�erent representations.

More generally, we tackle end-to-end task solving by developing a multi-agent system that utilizes GPT-

4o to simulate user interactions with ScribeAgent. Our system contains four stages: (1) objective

re�nement: user adds details about the task objective to help complete the task; (2) action generation:

based on the current website and action history, agent outputs an action suggestion; (3) action execution:

user executes the suggested action, e.g., clicking a button; (4) completeness evaluation: user observes the

current state and decides whether the task is completed.

We apply the above pipeline to solve the WebArena tasks. In stage 3, GPT-4o maps the agent’s output in

HTML to the accessibility tree format, which is then processed by the WebArena environment. To further

improve performance, we allow ScribeAgent to generate multiple actions in stage 2 and select the one

with the highest con�dence using majority vote and GPT-4o analysis. More details about evaluating

ScribeAgent on WebArena can be found in Appendix A.5.
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Method LLM
Total

SR
Shopping CMS Reddit GitLab Maps

AutoWebGLM ChatGLM3 6B 18.2 - - - - -

NNetnav Llama 3 8B Instruct 7.2 7.4 4.2 0 0 28.5

AutoEval GPT-4 20.2 25.5 18.1 25.4 28.6 31.9

BrowserGym GPT-4 23.5 - - - - -

BrowserGymaxtree GPT-4 15.0 17.2 14.8 20.2 19.0 25.5

SteP GPT-4 33.0 37.0 24.0 59.0 32.0 30.0

AWM GPT-4 35.5 30.8 29.1 50.9 31.8 43.3

Tree Search GPT-4o 19.2 - - - - -

WebPilot GPT-4o 37.2 36.9 24.7 65.1 39.4 33.9

Broswing+API Hybrid

Agent
GPT-4o 35.8 25.7 41.2 28.3 44.4 45.9

AgentOccam with Judge GPT-4-Turbo 45.7 43.3 46.2 67.0 38.9 52.3

Multi-Agent System

(Ours)

ScribeAgent-Small +

GPT-4o
51.3 48.1 35.5 70.2 58.8 51.9

ScribeAgent-Large +

GPT-4o
53.0 45.8 37.9 73.7 59.7 56.3

Table 7. Task success rates (SR) on WebArena and score breakdown on �ve web domains. ScribeAgent

consistently outperforms considered text-only baselines, often improving the previous-best results by

more than 5%. Note that we only test ScribeAgent-Small due to the large number of tasks in WebArena

and the evaluation costs associated with the multi-agent system.

We compare our performance with all top-performing, text-only agents on the WebArena leaderboard.

We note that we do not include Autonomous Web Agent (AWA) 1.5[37]  as a baseline because it uses a
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proprietary system to parse the HTML-DOM and web screenshots, rather than building from the

WebArena GitHub. This allows them to have richer observations and bypass the accessibility tree action

mapping step. In contrast, ScribeAgent is single-modal, text-only, and we stick to the original WebArena

implementation. That said, AWA 1.5 employs more advanced reasoning, planning, and progress tracking

techniques and is the only agent system with a higher average task success rate than ours.

The results are shown in Table  7. Compared with existing text-only baselines, ScribeAgent augmented

with GPT-4o obtains the highest task success rate in 4 of 5 categories, leading to 7.3% performance

improvements in total success rate over the previous-best GPT-4-Turbo-based AgentOccam[48]. In

particular, on Reddit and GitLab tasks where the domains are more realistic and thus closer to the ones in

our training data, ScribeAgent demonstrates stronger generalization ability and higher task success rates

than in other domains. Despite known issues with combobox selection and the absence of scroll actions in

our training data, our agent e�ectively navigates these challenges through strategic keyboard actions.

More details are provided in Appendix A.5.2.

To better understand the contribution of ScribeAgent to the multi-agent system, we perform an ablation

study that leverages GPT-4o for all four stages of the proposed pipeline. Given the large number of tasks

in WebArena and the evaluation costs associated with using a multi-agent system, we perform our

ablation studies using ScribeAgent-Small. As shown in Table  8, using ScribeAgent consistently

outperforms only using GPT-4o, and the GPT-4o-only setting is less e�ective than existing agents like

WebPilot. This shows that our strong performance on WebArena can be mainly attributed to the action

generation process of ScribeAgent. Apart from getting better results, the multi-agent system is cheaper

than using GPT-4o alone, as calling ScribeAgent to generate a next action incurs negligible cost as it is

served locally.

Method LLM Total SR Shopping CMS Reddit GitLab Maps

Single-Agent GPT-4o 34.2 31.9 21.3 44.7 38.2 42.6

Multi-Agent ScribeAgent-Small + GPT-4o 51.3 48.1 35.5 70.2 58.8 51.9

Table 8. We replace ScribeAgent with GPT-4o in our four-stage pipeline to study how much ScribeAgent

contributes to the performance. The success rates drop signi�cantly for all domains.
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Agent

Backbone

# Train

Tokens

Total SR

(158)

Shopping

(36)

CMS

(39)

Reddit

(24)

GitLab

(33)

Maps

(26)

Mistral 7B 1B 41.8 41.7 30.8 50.0 42.4 42.3

Qwen2 7B 1B 44.3 52.8 33.3 50.0 48.5 42.3

Qwen2 7B 3B 47.5 55.6 33.3 58.3 48.5 46.2

Qwen2 7B 6B 55.0 58.3 41.0 70.8 63.6 46.2

Table 9. Task success rates on a subset of WebArena. The numbers after the domains indicate the number

of tasks considered. All models are used along with GPT-4o to formulate the multi-agent system. We see

that the general trends agree with what we found on our proprietary dataset.

We also use WebArena to verify the signals observed in our proprietary test data. To do so, we randomly

select a subset of 158 WebArena tasks with non-overlapping objective templates and run ablation studies

following the ones presented in Section  3.2.4 to study the e�ect of LLM backbones and the number of

training tokens. As shown in Table  9, on all domains, Qwen2 7B outperforms Mistral 7B, and the task

success rate increases as the number of training tokens increases. These trends suggest that

improvements on our proprietary dataset lead to even greater improvements on WebArena, further

highlighting the advantages of �ne-tuning web agents with large-scale datasets.

5. Conclusion

In this work, we explore how �ne-tuning open-source LLMs with high-quality real-world work�ow data

can bene�t developing specialized web agents. We present ScribeAgent, which consistently outperforms

existing methods that prompt proprietary models in various evaluation settings and benchmarks. We also

provide empirical insights into data processing and model �ne-tuning.

Limitations and Future Work.

The long-context nature of DOMs presents great challenges in adapting LLMs. In the short term, we aim

to enable ScribeAgent to compare and reason over multiple DOM chunks so that its observation is always

complete. This might require integrating a memory component, which could also aid in maintaining
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context or state across interactions to improve multi-step reasoning. Besides, we currently do not

incorporate planning into ScribeAgent, so its output will be directly used as the next action. However,

adding better action selection strategies such as Monte Carlo Tree Search (MCTS) could potentially

facilitate online planning and exploration, further improving the agent’s decision-making processes in

complex scenarios. In the long run, we aim to expand ScribeAgent’s capabilities to handle multi-modal

inputs and multilingual content. This would signi�cantly broaden its applicability across di�erent

linguistic and visual contexts, making it more versatile and robust in real-world web environments.
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Appendix A.

A.1. Preprocessing

A.1.1. Pruning Pipeline

The code for preprocessing, chunking the DOM for �ne-tuning, �ne-tuning, and inference can be found

in our GitHub.

A.1.2. Tokenizer Pruning

In this section, we provide more details on the tokenizer-based detection method to remove random

character strings. The rationale behind our approach is based on the observation that typical English

words consist of more than two characters. Assuming the token count is   and the character count is  ,

this means that when  ,  , leading to  . By setting the pruning threshold to 2 and removing

tag attributes with  , we aim to eliminate strings composed solely of single-character tokens, which

are likely to be nonsensical.

t s

t = 1 s ≥ 2 ≥ 2s

t

< 2s

t
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In our actual implementation, we employ this technique only for tag attributes with  , being more

lenient for shorter attributes. To show that this tokenizer pruning strategy is e�ective and to study the

performance across di�erent tokenizers and pruning thresholds, we perform the following experiments.

We take three tokenizers from di�erent models: Qwen2-7B-Instruct, Mistral-7B-Instruct-v0.3, and

Meta-Llama-3-8B. For each tokenizer, we vary the pruning thresholds across a set of values: 

. Note that it is meaningless to study overly small thresholds (e.g., it is impossible

to have  ) or overly large thresholds (e.g.,   could result in the loss of meaningful attributes, as

many English words contain three letters). We randomly sample 1000 DOMs from our proprietary test

dataset, apply our standard pruning pipeline followed by tokenizer pruning, and then perform three

analysis:

False positives: we use the Python enchant library to detect if there are meanful English words within

the pruned strings. Note that even though these are actual words, many of them are related to DOM

structure and can be safely ignored. Still, we count them as false positives since the tokenizer method

is designed to remove random character strings.

Average   and   for the entire DOM before and after tokenizer pruning: this is for understanding the

reduction in content length.

Lastly, we sort tags and attributes by the frequency of being pruned to identify patterns.

s > 32

{1.5, 1.75, 2, 2.25, 2.5}

< 1s

t
< 3s

t

s t
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Tokenizer
Prune

Threshold

False Positive (%) 
Before Pruning

(K)
After Pruning (K)

Qwen2-7B-Instruct

1.5 0.025

224.3 79.14

221.4 77.11 2.03

1.75 0.013 217.3 74.67 4.47

2 0.18 215.7 73.89 5.21

2.25 0.36 213.9 73.13 6.01

2.5 0.38 210.0 71.63 7.51

Mistral-7B-Instruct-

v0.3

1.5 0.012

224.3 90.54

219.5 87.10 3.44

1.75 0.18 216.1 85.07 5.47

2 0.44 212.7 83.40 7.14

2.25 0.49 205.3 80.20 10.34

2.5 11.28 190.3 74.44 16.10

Meta-Llama-3-8B

1.5 0.0097

224.3 71.44

223.1 70.60 0.84

1.75 0.012 218.3 67.85 3.59

2 0.035 216.8 67.09 3.43

2.25 0.043 215.2 66.41 5.03

2.5 0.10 212.7 65.46 5.98

Table 10. Tokenizer pruning analysis.

As shown in Table  10, there is a clear trade-o� between precision and context reduction: greater

reductions in content length tend to result in higher false positive rates. While di�erent tokenizers

exhibit varying sensitivities to the pruning thresholds, a threshold of   achieves the most balanced trade-

↓

s t s t Δt

2
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o�, which aligns with our intuition. We then list the top-5 tag-attribute pairs most frequently pruned

under threshold 2 along with their pruning counts:

Qwen: (‘div’, ‘class’): 3188, (‘span’, ‘class’): 11426, (‘a’, ‘href’): 8802, (‘button’, ‘class’): 6844, (‘i’,

‘class’): 5010

Mistral: (‘div’, ‘class’): 5288, (‘span’, ‘class’): 15824, (‘a’, ‘href’): 12948, (‘button’, ‘class’): 7998,

(‘svg’, ‘class’): 5871

Llama: (‘div’, ‘class’): 29559, (‘span’, ‘class’): 8823,(‘button’, ‘class’): 5889, (‘i’, ‘class’): 4608,

(‘svg’, ‘class’): 2577

Attributes such as ‘class’ often contain random character strings and are frequently pruned. However, we

observe di�erences in how tokenizers handle the href attribute: both Qwen and Mistral tokenizers tend to

prune it away, whereas the Llama tokenizer preserves it, indicating its better capability in tokenizing

URLs. Although we currently use the Qwen tokenizer in our preprocessing pipeline to align with the

backbone model of ScribeAgent, the Llama tokenizer can be a compelling alternative for future

consideration since it is better at recognizing URLs and producing shorter token sequences. In general,

we believe developing specialized models can be important to achieve strong results, as evidenced in

prior works[49][50][51][52].
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A.2. Example Prompt and Label for ScribeAgent

Objective: Grant delegation access to another user in Gmail settings.

URL: https://mail.google.com/mail/u/0/

Observation: {processed dom}

Step-by-step guide:

1. Description: Click “See all settings”

Action: mouse_click_action

Node: 254

Target: <button class="Tj" node="254">

2. Description: Click “Accounts”

Action: mouse_click_action

Node: 2625

Target: <a class="f0 LJOhwe" href="https://mail.google.com/mail/u/0/? tab=#settings/accounts"

node="2625" role="tab">

3. Description: Click “Add another account”

Action: mouse_click_action

Node: 1215

Target: <span class="LJOhwe sA" id=":kp" node="1215" role="link">

A.3. OpenAI Prompts

A.3.1. Data Preparation

Below shows the prompt to generate step descriptions.
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You are navigating a webpage to achieve an objective. Given the objective, a list of the previous actions,

the current action, and a screenshot of the current action on the webpage. The objective and previous

steps are only here to ground the current step, the current action and its screenshot are the most useful

to your task. Give me a concise description of the current action being done on the webpage. You should

look at the part of the webpage with the red circle, this is where the user clicked for the current action.

Describe this action and ensure your response is in the same format, concise, coherent. Use any relevant

information in the image to ground the action description. Your response should NOT use any json or

markdown formatting. The response should be a single sentence that starts with an action verb. For

example, ’Click on the ’SUBMIT’ button.’

Regenerated Action Descriptions.

We provide a few examples of generated action descriptions using GPT-4o.

“Click on the Submit button.”

“Type in the name of the item.”

“Double-click on the highlighted text.”

A.3.2. Proprietary Benchmark Baselines

Below shows the prompt for all OpenAI baselines. The text is the prepend for every input to which we

append the task input with the corresponding objective, URL, DOM, and action history.
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You are an autonomous intelligent agent tasked with solving web-based tasks. These tasks will be

accomplished through the use of speci�c actions you can issue.

Here’s the information you’ll have:

- The user’s objective: This is the task you’re trying to complete.

- The current web page’s URL: This is the page you’re currently navigating.

- Part of the current web page’s HTML: Each element is assigned in descending order with an unique

ID, denoted by the attribute \"node\".

The actions you can perform include:

- mouse_click_action: click

- keyboard_sequence_action: type a sequence of characters

- keyboard_combination_action: press a set of keys together (e.g., hotkey like ctrl+c)

You will generate a step-by-step guide to complete the task based on the given information. You will

only produce a SINGLE next step.

Do NOT use additional punctuation, or any markdown formatting.

The output should be in the following format:

Description: Click \"Users\"

Action: mouse_click_action

Node: 93

Target: <a node=\"93\" class=\"slds-tree__item-label\">

Now complete the following task by generating the next step. {task input}

A.4. Mind2Web Experiment Details

A.4.1. Preprocessing

Data and Label Conversion.

To apply ScribeAgent to Mind2Web data, we �rst re-process the provided DOM using the procedure

detailed in Section 3.2.2. We store a map between our node ID and the backend ID given in the dataset.

Then, we transform the history action provided in the dataset to our 5-line format. After ScribeAgent

generates the next step, we check the backend ID of the provided label and map it to the node ID in our

processed DOM. We then compare this label with the target node ID generated by ScribeAgent. We provide

qeios.com doi.org/10.32388/8VOG0O 30

https://www.qeios.com/
https://doi.org/10.32388/8VOG0O


the code for the DOM processing and label conversion process in the supplementary material and will

release them later.

DOM Chunking and Action Generation.

When the DOM length exceeds the 32K context window, we chunk the DOM sequentially and run the

prediction work�ow on each piece. For each piece of DOM, we call ScribeAgent �ve times to obtain �ve

valid actions. We then aggregate all possible actions and select the one with the highest number of

appearances. We use the following generation con�guration: do_sample=True, top_p=0.95,

temperature=0.6.

A.4.2. Re�ned Evaluation

As mentioned in the main text, we improve the Mind2Web evaluation from two perspectives:

Subchild label relaxation: We hypothesize that the distribution gap between our training data for

ScribeAgent and the Mind2Web test set could be due to Mind2Web preferring ancestor/parent nodes in

the HTML tree, while ScribeAgent’s training data prefers lower HTML elements. To this e�ect, we

relax the Mind2Web set of positive candidates to include not only the positive candidates, but also

their children (direct children and grandchildren).

Attribute matching: Direct generation setting enables higher degree of freedom in element selection.

To address scenarios where the predicted element has the same function as the ground truth but is in a

di�erent location, we enhance the direct generation evaluation by introducing an element attribute

comparison step. Rather than merely comparing the node ID of the predicted and the ground truth

elements, we also evaluate the tag and text attributes (e.g., the text displayed on a button). If these

attributes match, we consider the prediction to be correct as it has identical functionality.

Lastly, we note that in Mind2Web, whenever there is a textarea or an input tag, the expected behavior is

to directly execute the type action. However, our model is trained to �rst click on the input element and

then perform the type action. Thus, for actions predicted on textarea or input tags, we adjust our model

to replace click actions with type actions and then compare with the ground truths.

Table  11 presents the improved performance of ScribeAgent after re�ning the evaluation method,

showing signi�cant gains in both settings. We �nd that the label relaxation strategy helps bridge part of

the distribution gap, and our multi-stage pipeline e�ectively covers most of the gains from this label

relaxation strategy by using the Mind2Web ranker. However, inspecting cases that are not covered by
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label relaxation, we found that there still remains a distribution gap. As a result, there is large room for

improving the evaluation criteria of text-based benchmark to bridge this gap.

Models   Eval

Cross-Task Cross-Website Cross-Domain

EA AF1

Step

SR

Task

SR
EA AF1

Step

SR

Task

SR
EA AF1

Step

SR

Task

SR

Multi-

Stage

ScribeAgent-

Small

M2W 42.6 50.1 39.7 0 44.9 50.1 41.6 0.6 44.1 51.4 41.4 0

M2W +

Subchild
42.6 50.1 39.8 0 45.2 50.1 41.5 0.6 44.3 51.4 41.6 0

ScribeAgent-

Large

M2W 53.5 52.9 51.2 0 53.4 52.8 51.3 2.3 53.3 54.7 51.2 0

M2W +

Subchild
53.8 52.9 51.3 0 54.0 52.8 51.9 2.3 53.5 54.7 51.4 0

Direct

Gen

ScribeAgent-

Small

M2W 28.6 50.1 26.8 0 27.6 50.1 25.6 0 32.0 51.4 29.9 0

M2W +

Subchild

+ Attr

Match

48.8 60.8 48.3 5.5 58.0 66.2 56.7 6.8 52.9 62.1 52.4 6.5

ScribeAgent-

Large

M2W 38.0 52.9 35.6 0 34.1 52.7 32.5 0 39.4 54.7 37.3 0

M2W +

Subchild

+ Attr

Match

58.0 63.8 52.0 5.7 67.3 69.4 59.8 11.8 62.0 63.7 52.9 10.8

Table 11. We also re�ne the evaluation procedure to better re�ect ScribeAgent’s capacity.

A.5. WebArena Experiment Details

A.5.1. Four-Stage Pipeline

For the most up-to-date prompts, please refer to our GitHub.
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Stage 1:

GPT-4o re�nes the intent. We use the following prompt:

I have a simple task objective related to {domain}, rewrite it into a single paragraph of detailed step-

by-step actions to achieve the task. When revising the objective, follow the rules:\\

- Assume you are already on the correct starting website and are logged in.\\

- Do not include any newlines, tabs, step numbers in the rewritten objective.\\

- Follow the example as much as possible.\\

{In-context demonstrations for domain rules}\\

Here is an example:\\

Simple Task Objective: {in-context demonstration}\\

Detailed Task Objective: {in-context demonstrations}\\

Now, rewrite the following objective:

Stage 2:

We process the environment-generated DOM using our preprocessing procedure. When the DOM length

exceeds the 32K context window, we chunk the DOM sequentially and run the prediction work�ow on

each piece. For each piece of DOM, we call ScribeAgent multiple times to obtain multiple valid actions. We

use the following generation con�guration: do_sample=True, top_p=0.95, temperature=0.6. We then

aggregate all possible actions, pick the top candidates, and prompt GPT-4o to select the best candidate

using the following prompt:
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You are an autonomous agent helping users to solve web-based tasks. These tasks will be accomplished

through series of actions.

The information you’ll have includes:\\

- The user’s objective\\ - The current web page’s URL\\

- The current web page’s accessibility tree\\

- Previous steps performed by the user, where each step includes a description of the action and the

target web element\\

- Several proposed next steps, labeled by ‘‘No."\\

Your goal is to select the best next step that can complete the task and output this candidate’s number,

follow the following rules:\\

- Do not repeat previous steps\\

- Reject candidates with incorrect intentions, e.g., searching for an item di�erent from the one

speci�ed in the objective\\

- Reject candidates with factual errors, e.g., the description and the chosen web target do not match\\

- Only output a single number after to represent the selected candidate but not explanation\\

Now analyze the following case:

Stage 3:

GPT-4o maps the agent output to accessibility tree format using the following prompt:
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You are an autonomous agent helping users to solve web-based tasks. These tasks will be accomplished

through series of actions.

The information you’ll have includes:\\

- The user’s objective\\

- The current web page’s URL\\

- A snippit of the current web page’s HTML\\

- A snippit of the current web page’s accessibility tree\\

- Previous steps performed by the user\\

Your goal is to translate a proposed next step, which consists of an action and a HTML element, into the

following format:\\

- ‘click [accessibility tree id]’: This action clicks on an interactive (non-static) element with a speci�c

id. Note this id is the number inside ‘‘[]" in the accessibility tree, not the HTML attribute ‘‘node".

Brackets are required in the response. For example, a valid response is ‘‘click [1234]"\\

- ‘type [accessibility tree id] [content]’: Use this to type the content into the �eld with a speci�c id in

the accessibility tree. For example, a valid response is ‘‘type [1234] [New York]". The second bracket

should include everything that needs to appear in the textbox, but not only the added content. Do not

change the letter case\\

- ‘press [key_comb]’: Simulates pressing a key combination on the keyboard (e.g., press [PageDown],

press [Enter])\\

- ‘go_back‘: Return this when the current web page does not contain useful information and the user

should go back to the previous web page\\

When mapping the next step into actions in the above formats, follow the following rules:\\

- Take the user’s objective into consideration, so the action must help complete the task\\

- Do not repeat previous steps\\

- Only output a single step in the above format but not explanation\\

Note also: {in-context demonstration of rules}\\

Now analyze the following case:

The action is then returned to the environment for execution.

Stage 4: GPT-4o evaluates if the task objective is achieved. For operational tasks, if the task is completed,

nothing is returned. For information seeking tasks, if the task is completed, GPT-4o retrieves the answer
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to the question. The prompt looks like the following:

You are an autonomous agent helping users to solve web-based tasks. These tasks will be accomplished

through series of actions.

The information you’ll have includes:\\

- The user’s task, including a high-level objective and a more detailed illustration\\

- The current web page’s URL and accessibility tree\\

- Previous steps performed by the user, where each step includes a description of the action and the

target web element\\

You should follow the rules: {in-context demonstration rules}\\

You will decide whether the task speci�ed by the high-level objective is completed (which means the

**last** step of the detailed instruction is completed and the current webpage completes the task) and

respond ‘‘completed" or ‘‘incomplete". If the task requires returning a number or a string and the

answer can be obtained in the current webpage, reply ‘‘completed, [answer]" where ‘‘[answer]" is the

number or string. If the task requires �nding a webpage and the current webpage satis�es the

requirement, reply ‘‘completed, [answer]" where ‘‘[answer]" is the current URL. Now analyze the

following case. First provide the reasonings.

Then summarize the answer with ‘‘Summary:", followed by ‘‘completed" or ‘‘incomplete", followed by

the answer to the question if applicable.

Do not include newlines after ‘‘Summary:".

A.5.2. Scrolling Actions and Combobox Selection

In our data collection process, we capture the full DOM from a system perspective, which inherently

includes the entire webpage as observed from the backend. This method di�ers from user-centric data

collection, where only the elements within the visible browser viewport are captured. Consequently, there

is no concept of scrolling in our training datasets since all elements are already fully accessible in the

captured data.

However, we recognize the importance of scroll actions in solving WebArena from a user perspective. To

address this, before issuing any action to the environment, our multi-agent system includes a viewport

check that uses the bounding box position to determine if the target element is within the visible webpage
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area. If not, the system manually inserts necessary scroll actions to bring the element into view. This

ensures accurate interaction with web elements in a typical user scenario.

To handle combox selection, our agent discovers a workaround that bypasses the need for scrolling

through comboboxes. Speci�cally, after clicking on the combobox, it types the name of the desired item

in the combobox, which brings the item to the top of the dropdown menu. Then, the agent can simply

click the item or press Enter. This approach avoids the need for scrolling and is especially e�ective in

densely populated lists. It improves the task success rate on a large number of Map, Reddit, and GitLab

tasks.

A.5.3. GPT-4o-Only Setting

When we use GPT-4o for stage 2, we use the following prompt:
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You are an autonomous intelligent agent tasked with solving web-based tasks.

These tasks will be accomplished through the use of speci�c actions you can issue. Here’s the

information you’ll have:\\

- The user’s objective: This is the task you’re trying to complete.\\

- The current web page’s URL: This is the page you’re currently navigating.\\

- The current web page’s HTML: Each element is assigned with an unique ID, denoted by the attribute

‘‘node".\\

The actions you can perform include:\\

- mouse_click_action: click\\

- keyboard_sequence_action: type a sequence of characters\\

- keyboard_combination_action: press a set of keys together (e.g., hotkey like ctrl+c)\\

You will generate a step-by-step guide to complete the task based on the given information. At each

step, you can perform only one action to one web element. The output should be in the correct format: a

single step consisting of a text description, an action, as well as the node and HTML of the target web

element to perform the action. Be coherent, concise, and accurate in your response.

Do NOT use any special characters (e.g., ‘‘*", ‘‘#", etc.) in your response.

Follow EXACTLY the format of the response below.\\

Here is one example:\\

Description: click ‘‘Users"\\

Action: mouse_click_action\\

Node: 93\\ Target: <a class=‘‘slds-tree__item-label" node=‘‘93">\\

Now complete the following task by generating a single next step:

A.5.4. Results

Below, we provide example action trajectories produced by our agent and explanations to shed light on its

decision making process.

Domain: Shopping

Task ID: 466

Intent: Add 2 Hawaiian Bamboo Orchid Roots #zc50 - by Discount Hawaiian Gifts to my wish list.

Actions:
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1. click [1585] where [1585] is combobox ‘Search’ autocomplete: both hasPopup: listbox required:

False expanded: False   Click on the search bar.

2. type [1585] [Hawaiian Bamboo Orchid Roots #zc50 - by Discount Hawaiian Gifts ] where [1585] is

combobox ‘Search’ focused: True autocomplete: both hasPopup: listbox required: False expanded:

True   Type the target item name.

3. press [enter]   Do the search.

4. scroll [down]   Scroll down the page to �nd out the target item.

5. click [4859] where [4859] is link ‘2 Hawaiian Bamboo Orchid Roots #zc50 - by Discount Hawaiian

Gifts’   Open the item page.

6. click [6733] where [6733] is link ‘Add to Wish List’  Add item to wish list.

Domain: CMS

Task ID: 244

Intent: Show me the email address of the customer who is the most unhappy with Olivia zip jacket.

Actions:

1. click [108] where [108] is link ‘MARKETING’   Click on the “MARKETING” button in the side bar.

2. click [419] where [419] is link ‘All Reviews’   Clicking the side bar shows more option. We can then

click on the “All Reviews” button.

3. click [2195] where [2195] is button ‘Reset Filter’   Remove all previous set �lters.

4. type [4435] [olivia] where [4435] is textbox ‘’ required: False   In the search box, type “olivia”.

5. press [enter]  Do the search

6. stop [emma.lopez@gmail.com]    Inspect all listed reviews and return the email of the negative

review.

Domain: Reddit

Task ID: 403

Intent: Change my reddit bio to “Awesome Prompt Artist”

Actions:

1. click [12] where [12] is button ‘MarvelsGrantMan136’ hasPopup: menu expanded: False   Click my

user name on the top right corner.

2. click [249] where [249] is link ‘Pro�le’   After the drop-down menu shows up, click “Pro�le”.

3. click [886] where [886] is link ‘Edit biography’   Click the “Edit biography” button.

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→
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4. type [2456] [Awesome Prompt Artist] where [2456] is textbox ‘Biography’ required: False

describedby: user_biography_biography_help   Type the target content.

5. click [2474] where [2474] is button ‘Save’   Save the new pro�le.

Domain: GitLab

Task ID: 293

Intent: Show me the command to clone Super_Awesome_Robot with SSH.

Actions:

1. click [1507] where [1507] is textbox ‘Search GitLab’ required: False   Click on the search bar.

2. type [1516] [Super_Awesome_Robot] where [1516] is searchbox ‘Search GitLab’ focused: True

describedby: search-input-description   Type the repo name in the search bar.

3. click [2082] where [2082] is link ‘Convex Eggtart / Super_Awesome_Robot’   Click on the correct

repo.

4. click [2699] where [2699] is link ‘Clone’   Click on the “Clone” button.

stop [git clone ssh://git@metis.lti.cs.cmu:2222/convexegg/super_awesome_robot.git]    Read the

command from the pop-up window.

Domain: Maps

Task ID: 7

Intent: Tell me the full address of all international airports that are within a driving distance of 50 km to

Carnegie Mellon University.

Actions:

1. click [35] where [35] is textbox ‘Search’ focused: True required: False   Click on the search box.

2. type [35] [airport Pittsburgh] where [35] is textbox ‘Search’ focused: True required: False   Type

“airport Pittsburgh” in the search box.

3. stop [Pittsburgh International Airport, Airport Boulevard, Findlay Township, Allegheny County,

15231, United States.]    Return “Pittsburgh International Airport, Airport Boulevard, Findlay

Township, Allegheny County, 15231, United States.” as the answer.

Notes

Github: https://github.com/colonylabs/ScribeAgent

→

→

→

→

→

→

→

→

→

→
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Footnotes

1 Due to privacy concerns, we restrict access to our proprietary dataset. However, we release our complete

preprocessing, training, and inference code, along with a version of ScribeAgent trained on open-source

datasets [5] on GitHub.
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