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Abstract

The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs

(MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human’s daily

life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs’ personalization.

Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-

value database to store user-related information, e.g., user’s name, avatar and other attributes. (b) Retrieve: When the

user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c)

Generate: The input query and retrieved concepts’ information are fed into MLLMs to generate personalized,

knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the

external database. To further improve generation quality and alignment with user-specific information, we design a

pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset,

we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs

can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility

and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual

recognition. The code, data and models are available at https://github.com/Hoar012/RAP-MLLM.
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Figure 1. Introduce some user-specific concepts to our RAP-LLaVA, it can remember them and achieve excellent performance in a variety of

personalized multimodal generation tasks.

1. Introduction

Recently, the development of large language models (LLMs) has significantly enhanced their language processing and

generating capabilities[1]. Building on this foundation, the integration of visual and textual ability through vision-language

alignment brings powerful multimodal LLMs (MLLMs)[2][3][4][5][6][7]. MLLMs have shown significant improvement in various

tasks, such as image description and question answering, highlighting their potential as human’s assistants. However,

their lack of user-specific knowledge continues to limit their effectiveness as personalized assistants in daily life.

A qualified personalized assistant first needs to be able to recognize and remember user-related concepts, such as the

dog named ⟨Lala⟩ adopted by the user. Although existing MLLMs have been trained on large-scale datasets and possess

strong recognition and classification capabilities, directly transferring this knowledge to a user’s personal concepts remains

challenging. For instance, current leading MLLMs cannot remember your dog’s name, even if you have mentioned it

before, and they lack awareness of your identity and preferences. Furthermore, the assistant should generate responses

tailored to the user’s preferences and requirements. However, collecting extensive personal information to train a unique

assistant for each user is impractical.

To address this issue, the personalization of MLLMs has become a topic of growing interest, with several approaches

already being proposed. MyVLM[8] utilizes external classification heads to recognize specific concepts, and learns an

embedding for each concept to personalize the outputs of vision language models (VLMs). Another concurrent work,

Yo’LLaVA[9], learns a few special tokens to represent each concept. However, both approaches necessitate continuous

learning and updating of the model as new concepts emerge. This presents a challenge in dynamic, ever-changing real-
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world scenarios, where the computing power of users’ personal devices is often limited, and all data must be stored locally

for privacy concerns.

To address these challenges, we propose the Retrieval Augmented Personalization (RAP), designed to allow MLLMs to

update their supported concepts without additional training. Specifically, our RAP works in three key steps. (a) Remember:

RAP includes a designed database to help remember each concept via storing its image and basic information, e.g.,

name, avatar and other attributes. (b) Retrieve: When a user initiates a conversation, RAP will retrieve relevant

information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts

information are incorporated into the MLLM’s input for personalized, knowledge-augmented generation. RAP requires only

one image per concept with its basic information for personalization. It allows users to make real-time adjustments to the

model’s outputs by modifying their personal databases, eliminating the need for retraining. A more detailed comparison is

presented in Table 1.

Another significant challenge is the lack of large-scale datasets for training MLLMs’ personalized generation capabilities.

To address this, we design a pipeline to collect extensive training data and create a comprehensive dataset, which

enables to train MLLMs to effectively understand and utilize user-related information for generation. Based on this dataset,

we train LLaVA[5] and Phi3-V[10] as novel personalized assistants and evaluate their performance across various tasks,

including personalized image captioning, question answering, and visual recognition. Experimental results demonstrate

that our RAP-MLLMs excel in wide range of personalized generation tasks, showcasing excellent generation quality and

flexibility.

Our contributions are summarized as follows:

We propose the RAP framework for MLLMs’ personalization, allowing models to be trained just once and adapt to

diverse users and infinite new concepts without further training.

We develop a pipeline for collecting large-scale data and create a dataset specifically designed for the personalized

training and evaluation of MLLMs. This dataset enables us to train a series of MLLMs to function as personalized

assistants.

Our models demonstrate exceptional performance across various personalized multimodal generation tasks, including

personalized image captioning and question answering. Additionally, they exhibit a strong capability to recognize

personal concepts within images.

Table 1. Comparison of Different Personalization Methods.  RAP needs only 1 image

with its personalized description, showing outstanding convenience and flexibility in

practical applications.
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 Number of image Data requirement Support

Method Positive Negative Caption Description Question-Answer
Real-time
edit

Fine-tuning n - Yes Yes No ✗

MyVLM n 150 Yes No Yes ✗

Yo’LLaVA n 200 No No Yes ✗

RAP(Ours) 1 - No Yes No ✓

2. Related Work

Multimodal Large Language Models. Recently, numerous advanced large language models (LLMs)[11][12][13][14] have

been proposed, showing remarkable performance in addressing a wide range of tasks. The rapid development of these

LLMs has led to the emergence of multimodal LLMs (MLLMs)[3][4][5][6][7][15], which excel in general visual understanding

and complex reasoning tasks. For instance, LLaVA[5][16] and MiniGPT-4[15] align visual and language modalities through

visual instruction tuning, showcasing impressive capabilities in multimodal conversations. GPT4RoI[17] and

RegionGPT[18] enhance fine-grained understanding and reasoning for specific regions by training on region-level

instruction datasets. Despite these advancements in tasks such as image captioning and question answering, the lack of

user-specific knowledge restricts the generation of personalized content, which hinders the practical application of MLLMs

in daily life. In this work, we focus on the personalization of MLLMs, enabling them to remember and understand user-

specific concepts, and generate personalized content tailored to user’s preferences.

Personalization of MLLMs. In the realm of artificial intelligence, personalization typically refers to the process of tailoring

a system, application, or model to meet the individual needs and preferences[19][20][21]. Substantial efforts have been

made to generate images of user’s personal objects or in certain context[22][23][24][25][26]. For example,

Dreambooth[22] employs transfer learning in text-to-image diffusion models via fine-tuning all parameters for new

concepts. In this paper, we mainly aim at enabling MLLMs to remember and understand user-specific concepts, and

generate personalized language outputs. There are several works focusing on the personalization of MLLMs, among

which the most relevant works are MyVLM[8] and Yo’LLaVA[9]. MyVLM introduces the task of personalizing VLMs. It

utilizes external classification heads to recognize specific concepts, and learns an embedding for each concept to

personalize the outputs of VLMs. Yo’LLaVA personalizes LLaVA by extending its vocabulary and learning specific tokens

for each concept. However, both approaches require continuous model updates as new concepts emerge, which presents

challenges in dynamic real-world applications. In this work, we propose RAP framework for the personalization of MLLMs,

enabling models to be trained once while continuously updating supported concepts without further training.

Retrieval Augmented Generation. Retrieval-based methods for incorporating external knowledge have proven effective

in enhancing generation across a variety of knowledge-intensive tasks[27][28][29][30][31][32]. DPR[33] introduces Dense

Passage Retrieval, marking a shift from sparse to dense retrieval techniques. Later, MuRAG[34] proposes to use

multimodal knowledge to augment language generation. Self-Rag[29] introduces special tokens to make retrieval adaptive

and controllable. ERAGent[21] presents a comprehensive system for retrieval-augmented language models. With the
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advancements in MLLMs, RAG has been widely applied to multimodal generative tasks. For instance, FLMR[35] employs

multi-dimensional embeddings to capture finer-grained relevance between queries and documents, achieving significant

improvement on the RA-VQA setting. While existing methods primarily enhance models’ performance by retrieving from

external knowledge bases, few of them consider the personalization task. Although RAG has been applied to image

generation[36][37] and image captioning[38][39], there is currently no existing work focusing on personalizing MLLMs via

RAG, to the best of our knowledge.

3. Retrieval Augmented Personalization

Existing MLLMs typically align other modalities with language. For instance, LLaVA[5] projects visual tokens into text

space, and then generates subsequent tokens using an LLM. While these MLLMs perform well in various tasks, the lack

of memory and comprehension of personal concepts hinders effective user-specific responses. In this work, we mainly

focus on personalizing MLLMs to generate tailored language responses, such as creating personalized captions for user’s

images and answering questions about personal concepts. In this section, we detail the implementation steps of our

proposed Retrieval Augmented Personalization (RAP). Unlike previous approaches that usually necessitate additional

data collection and further training to learn new concepts, our RAP does not require additional training as the user’s

database expands. By pretraining on our dataset, our RAP-MLLMs can adapt to diverse users and infinite new concepts

without further training. In section 3.1, we present the RAP framework that is applicable to various types of MLLMs, and

then in section 3.2, we provide details of the proposed dataset.

3.1. RAP Framework

Figure 2. Retrieval-Augmented Personalization Framework.  Region-of-interest detected by an open world detector are used to retrieve concepts

from the database. The images and accompanying information of the retrieved concepts are then integrated into the input for the MLLM.
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Our RAP works in three main steps: Remember, Retrieve and Generate, as shown in Figure 2.

Remember. The premise of personalization is that the model can remember personal concepts and relevant information,

such as the dog named ⟨Lala⟩ adopted by ⟨A⟩. To facilitate this, we construct a database M to store these personal

concepts, which comprises an avatar, a name, and a brief description for each concept. The key for each concept in the

database is its visual feature, obtained by feeding its image into a pre-trained image encoder E( ⋅ ). Examples of our

database are presented in Figure 2. When a user initiates a conversation, the input can be represented as Q = (I, T),

which may include both image I and some textual instructions T. The first step involves identifying possible concepts

within the input image that have been previously stored in the database. Previous methods[8] typically need to learn an

external classifier to determine whether a concept appears in the input image, which requires a substantial amount of

training data and can only apply to specific concept. To enhance the generalizability of the recognition process, we do not

construct specific modules for each concept. Instead, we employ a universal detection model, such as YOLO[40] and

YOLO-World[41], as recognition model R( ⋅ ). Given the predefined setting P that specifies which categories should be

remembered, the user’s region-of-interest can be acquired via Iu = R(I, T |P).

Retrieve. Identified region-of-interest will be used as query to retrieve from the database. For each recognized

component Iiu, we feed the image crop into the image encoder E( ⋅ ) to get its visual feature Qi = E(Iiu), which is a n-

dimensional vector. Then we calculate the euclidean distance between the visual feature and each key kj ∈ M, which is

calculated as Dist(Qi, kj) = ‖Qi − kj‖. The Top-K image-text pairs {(I1, T1), (I2, T2),⋯(Ik, Tk)} with the lowest distances are

selected. We also introduce retrieval using concept names, such as ⟨sks⟩ for a unique concept. When the user mentions

the name of an object documented in the database, our model retrieves its related information from the database. This

also enables our model to respond to text-only queries effectively.

Generate. Each pair Mj = (Ij, Tj) provides related information about a user’s personal concept and will be incorporated into

the input of the MLLM. Take LLaVA[5] as an example, the image Ij is first encoded by a pre-trained vision encoder, such as

CLIP[42], to obtain their visual tokens Zj. These image tokens are then projected by a projector into language tokens Hv
j ,

which could be understood by the language model. Simultaneously, corresponding text information Tj are transformed into

text tokens Hq
j . During training, we keep parameters of both the detector and retriever frozen, just train the MLLM’s

parameters θ. Given the length L of the output sequence, the probability of the target answers Xa computed as: 

p(Xa | I, T, M1,⋯Mk) =

L

∏
i=1 pθ(Xa, i | I, T, M1,⋯Mk, Xa, < i)

3.2. Personalization Dataset
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Figure 3. Our Pipeline for Data Collection.  We first crop the target concept from the image based on the dataset annotations and then query

Gemini to generate its personalized description. We also apply data augmentation to diversify these cropped images. Then we combine them with

the original image to derive a series of instructions and answers from Gemini.

Most existing MLLMs struggle to generate personalized outputs even if additional concept information is provided, and

there is currently no large-scale dataset for personalized training of MLLMs. To this end, we design a pipeline for data

creation and curate a novel dataset specifically for the personalized training and evaluation of MLLMs. We use Gemini-

1.5[4] to generate annotations for our dataset. An overview of our pipeline and dataset is presented in Figure 3.

The first component of our dataset is dedicated to visual grounding. In this task, a MLLM is trained to determine whether a

specific concept is in an image, particularly identifying if the person or object in a reference image appears in the given

image. When a positive match is detected, we also require the model to provide the bounding box for the identified

concept. For single-concept grounding, we primarily use the RefCOCO dataset[43]. Based on RefCOCO’s annotations, we

crop target concepts from the images and assign names to them, which serve as references for specific concepts. We

then query Gemini to generate concise descriptions about properties of the concepts in these cropped regions, by which

we construct a large-scale database including numerous different concepts. The training data pairs images and these

descriptions as queries and the corresponding bounding boxes as outputs. However, data generated in this way is

insufficient to simulate the complexity of real-world recognition, especially when the target concept in the reference and

input image is captured from different perspectives. To address this, we incorporate the ILSVRC2015-VID video object

detection dataset[44], TAO[45] and CustomConcept101[23] to enrich our dataset. For multi-object grounding, we use the

Object365 dataset[46] to construct our training data.

The second component of our dataset is designed for instruction following. This section includes training data for tasks

such as image captioning, image description and question answering. For the image captioning and description data, we
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provide cropped images of target concepts, accompanied by their names and related information from the large-scale

database, then query Gemini to generate a caption or description that reflects the concepts depicted in the entire image.

For question answering, we first design a set of seed questions to serve as examples. These examples are used to

prompt the annotator, Gemini, to generate new questions and corresponding answers. This iterative process facilitates the

creation of a rich and diverse collection of conversations that MLLMs can learn from. We construct such data using

RefCOCO[43], Object365[46], TAO[45] and CustomConcept101[23] dataset.

To enhance alignment with real-world scenarios, it is essential to collect data featuring the same identity in various

environments. Thus, we also include multiple images about the same individual from the CelebA dataset[47] and produce

question answering data about the individual. To further diversify the dataset, we apply image editing techniques for data

augmentation. This includes performing random rotations and flips on the cropped images, as well as generating novel

views of the concepts by diffusion models. Specifically, we use Inpaint-Anything[48] to separate the foreground from the

background, and use Wonder3D[49] and SiTH[50] to synthesize novel views of foreground object or person respectively.

Finally, we combine these elements to generate images of the target concept from different perspectives.

In the generation step, the MLLM needs to prioritize accurate and contextually relevant information. Considering that

retrieval results can be inaccurate, potentially leading to unreasonable answers, we construct negative samples by

incorporating noise elements into the additional input while preserving the original output. This approach trains the

model’s discrimination capability. By exposing the MLLM to both relevant and irrelevant information during training, it

learns to discern and filter out noise, enhancing its robustness at inference time. Additionally, we include a subset of the

LLaVA-Instruct-665k visual instruction dataset[16] to retain general knowledge from the original MLLM. Further details

about our dataset can be found in Appendix D.

4. Experiment

Implementation Details. We conduct experiments on LLaVA-1.5-13B[5] and Phi3-V-3.8B[10], resulting in two personalized

MLLMs, RAP-LLaVA and RAP-Phi3-V. We select YOLO-Worldv2[41] as the detector and construct a multimodal retriever

using Facebook AI Similarity Search (FAISS)[51], employing a pre-trained CLIP ViT-L/14-336[42] as the visual encoder.

Due to the context length limitation of the backbone language model, for RAP-LLaVA and RAP-Phi3-V, we retrieve the 2

and 3 different concepts with the highest similarity, respectively. More details can be found in Appendix C.

Training. In the training phase, we skip the recognition and retrieval procedures, instead perform instruction tuning to train

the MLLMs. We adhere to most settings from the original experiment of LLaVA[5], except for using a maximum learning

rate of 1e-4 and training for 1 epoch. We employ low-rank adapters[52] to reduce the number of trainable parameters, and

train our models on 8 A100 GPUs with a valid batch size of 64.

Evaluation. We primarily focus on tasks that require both visual and language understanding. Specifically, we address

image captioning and question answering in Section 4.1 and 4.2, and compare our models with baseline methods on

visual recognition. In Section 4.3, we compare the cost of personalization with existing methods, and present results of
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ablation studies in Section 4.4.

4.1. Personalized Image Captioning

Table 2. Qualitative Comparison on Image Captioning.  Image examples of target concepts are shown in the left and captions generated are

shown in the right.

In this section, we evaluate our models on generating personalized image captions with user’s specific concepts. We

extend the dataset introduced by MyVLM[8] via adding 16 new concepts, which include both objects and humans, forming

8 concept pairs that appear together in images. For each pair, there are 8-13 images used for testing. This multiple

concepts setting presents additional challenges for personalization.

Settings. We compare our models with MyVLM and finetuning based method LLaVA-LoRA[52]. We do not include

Yo’LLaVA since it does not porvide open-sourced model. For LLaVA-LoRA and MyVLM, the training dataset contains 1

image accompanied by 5 captions for each concept. This simulates the real-world challenge of collecting high-quality
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training data for each concept, which is both difficult and time-consuming. For LLaVA-LoRA, we train it with captions of the

training images for 3 epochs, applying low-rank adapters[52] and the same hyperparameters as our models. For MyVLM,

following their training process, we first train the classification head with the positive and 150 negative images, then train

the corresponding concept embedding with the provided captions for each concept. For our models, we construct a

database where each concept is represented by a cropped image and a personalized description. Details of our database

could be found in Appendix G. All remaining images are used as test samples. This evaluation process is repeated three

times using different seeds, and we report the average results.

Qualitative Comparison. In Table 2, we present image captions generated by different methods to make a comparison.

While LLaVA and Phi3-V generally provides brief and clear captions for most test images, its lack of understanding of the

user’s specific concepts restricts it from generating a more personalized caption. LLaVA-LoRA and MyVLM can generate

personalized captions, however, the limited training data often results in imprecise outputs, particularly noticeable when

multiple concepts are present in the same image. In contrast, our models produce clear and accurate captions based on

the database content, which also ensures the reliability of the outputs. Additional examples of personalized captions

generated by the models could be found in Appendix E.

Quantitative Evaluation. We employ recall, precision and the comprehensive metric F1-score as our evaluation metrics.

Recall is calculated as the percentage of correct occurrences of target concepts, while precision is the ratio of correct

concept names to the total number of concept names presented. The experimental results are shown in Table 3. From the

results, we find that the finetuning based model LLaVA-LoRA achieves higher performances than MyVLM. Notably, the

classification heads of MyVLM exhibit higher error rates when the number of positive images is limited, leading to weaker

performance. Our models demonstrate superior performance in both recall and precision metrics, highlighting the

advantages of our RAP-MLLMs in data efficiency.

Influence of Number of Learned Concepts. In real-world scenario, users’ personal databases typically expand over

time. Next, we evaluate the performance of various methods with varying numbers of learned concepts. We extend the

database with hundreds of new concepts selected from RefCOCO dataset[43], ensuring no overlap with the test dataset.

For LLaVA-LoRA and MyVLM, we provide images containing the target concepts along with their captions as training

data, and we assess the models’ performance on the original test dataset. The results are presented in Figure 4. As the

number of learned concepts increases, performance of all methods declines. More learned concepts result in increased

recognition errors, leading to a drop in performance. Our RAP-MLLMs maintain the highest performance under different

settings.

Table 3. Quantitative Evaluation on Image

Captioning. We report Recall, Precision and F1-score

in the table, the best result in each metric is bold and

the second is underlined.
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Method LLM Recall Precision F1-score

LLaVA-LoRA Vicuna-13B 82.97 93.28 87.82

MyVLM Vicuna-13B 84.65 86.37 85.50

RAP-LLaVA Vicuna-13B 93.51 96.47 94.97

RAP-Phi3-V Phi3-V-3.8B 88.14 95.10 91.49

Figure 4. Performance under varying number of personalized concepts.

Method Train #Image
Question Answering Visual Recognition

Visual Text Weighted Positive Negative Weighted

GPT-4V+Prompt ✗ 1 0.866 0.982 0.924 0.809 0.992 0.901

GPT-4V+Prompt ✗ 5 0.887 0.987 0.937 0.851 0.998 0.925

LLaVA ✗ - 0.899 0.659 0.779 0.000 1.000 0.500

LLaVA-LoRA ✓ 1 0.900 0.583 0.741 0.988 0.662 0.825

LLaVA-LoRA ✓ 5 0.935 0.615 0.775 0.997 0.444 0.721

MyVLM-LLaVA ✓ 5 0.912 - - 0.994 0.845 0.919

Yo’LLaVA ✓ 5 0.929 0.883 0.906 0.949 0.898 0.924

RAP-LLaVA(Ours) ✗ 1 0.935 0.938 0.936 0.979 0.982 0.980

RAP-Phi3-V(Ours) ✗ 1 0.941 0.850 0.896 0.922 0.988 0.955

Table 4. Quantitative Evaluation on Question Answering and Visual Recognition.  The

best result in each setting is bold and the second is underlined. Evaluation results of GPT-

4V are also provided as reference. Weighted results are computed as arithmetic means.

4.2. Personalized Question Answering

Settings. In this section, we evaluate different methods on the benchmark of personalized question answering introduced

by Yo’LLaVA[9], which contains both visual-based and text-only questions about user’s personal concepts. For each

concept, we generate a description that serves as the concept’s information in our database. For LLaVA-LoRA, we feed
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these descriptions and corresponding images to train the model to describe the properties of concepts. Additionally, we

incorporate text-only queries and answers to enhance the model’s understanding of specific concepts from textual

perspectives. The training dataset for Yo’LLaVA and MyVLM consists of 5 positive images with question answering pairs

and 200 negative images for each concept. For GPT-4V[3], images and related information about the concepts mentioned

in the questions are provided as supplementary prompt. Additional details on the baselines are provided in Appendix C.

Results and Analysis. The experimental results are provided in Table 4. LLaVA and LLaVA-LoRA both perform well in

visual based question answering, because substantial information of the target concept can be obtained from the images.

However, their performance is quite poor when images of the target concept mentioned in the question are not available.

MyVLM performs well in visual question answering but does not support text-only question answering. Yo’LLaVA excels in

text-only question answering, but its performance is still limited by the insufficient information provided by the learned

tokens of a concept. In contrast, our models demonstrate balanced performance in both visual and text-only question

answering. By providing a single image, our RAP-LLaVA surpasses baseline methods and achieves performance

comparable to that of GPT-4V.

Visual Recognition. We also evaluate the models’ recognition abilities for a more comprehensive comparison. In this

task, the MLLMs are required to determine whether a personal concept exists in an image. We query them with ”Is ⟨sks⟩ in

the image? Answer with a single word or phrase.”, where ⟨sks⟩ is replaced by corresponding concept name. For positive

images, the desired response is ”Yes” and ”No” for negative. Results show that, without understanding of personal

concepts, the vanilla LLaVA consistently outputs negative responses. After training on the target concepts, LLaVA-LoRA,

MyVLM and YoLLaVA tend to give positive responses, but struggle to differentiate between concepts, resulting in weaker

performance on negative images. Our models demonstrate exceptional performance in both positive and negative

scenarios, achieving the best overall results.

4.3. Cost of Personalization
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Figure 5. Time Cost of Personalization.  We conduct experiment with 2 A800 GPUs.

Figure 6. Performance of Our Retriever.  Top-K recall rates under varying database

size N.

We further compare the costs of personalization. As shown in table 1, existing methods usually struggle with continuous

updates or have high demands for training data. For finetune-based method like LLaVA-LoRA, while they can achieve

satisfactory performance, finetuning the model each time a new concept emerges incurs substantial computational costs.

MyVLM and Yo’LLaVA learn an embedding or some new tokens to represent the new concept without updating the pre-

trained MLLM’s parameters, however, they require multiple labeled images of the target concept and a large number of

negative images, which poses significant challenges for data collection. In contrast, our RAP requires only 1 image with its
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related information provided by the user, achieving outstanding performance across various personalized generation

tasks. At the same time, by modifying images and descriptions in the database, RAP enables real-time editing of

personalized generation settings. We present examples of real-time concept editing in Table 10.

Time Cost. We also evaluate the time cost associated with different methods for learning a set of user’s concepts. The

results are presented in Figure 5. MyVLM has to train an external recognition model for each concept and learn an

embedding to adjust the model’s outputs. Similarly, Yo’LLaVA needs to learn new tokens for each concept. During the

optimization process, both approaches necessitate multiple forward and backward pass of the MLLM, resulting in

significant time consumption. In contrast, our RAP only requires time for encoding the image and adding its embedding to

the database, which can be accomplished in just a few seconds. This significantly enhances the convenience and

practicality of our models in practical applications.

4.4. Ablation Study

Retriever. The recall rate of the retriever is crucial for a RAG system. We first assess the retriever’s performance on the

personalized captioning dataset. We use the detection model to identify potential concepts and retrieve the K concepts

with the highest similarity from the database. The Top-K recall rates for varying values of K and database sizes N are

presented in Figure 6. Results indicate that as the database size increases, the retriever’s performance declines, while a

larger K generally enhances the recall rate. Notably, even with 500 personal concepts to remember, the Top-5 recall rate

is still able to surpass 90%, which guarantees the effectiveness of our RAP framework.

Generation Ability of MLLM. We skip the recognition and retrieval processes, providing the MLLM with relevant

information of each concept present in the image to evaluate the generation capability of the trained MLLM. The results,

shown in Table 5, indicate that when relevant concept information is supplied, our RAP-LLaVA achieves superior

generation performance, obtaining 100% precision without outputting irrelevant concepts as well as a higher recall rate.

Dataset Composition. We conduct experiments to assess contribution of each component in our dataset. First, we

remove data generated through data augmentation and train the original LLaVA. The results indicate a obvious decrease

in the recall metric for image captioning, resulting in lower overall performance. We further exclude constructed negative

samples from the dataset and retrain the model, then we find that it performs poorly on precision metric. This suggests a

diminished ability to discriminate against noisy concepts not present in the image.

Table 5. We evaluate model’s performance with

perfect retrieval, and test contributions of each

dataset component.

Qeios, CC-BY 4.0   ·   Article, November 28, 2024

Qeios ID: 95W7KC   ·   https://doi.org/10.32388/95W7KC 14/37



Setting Recall Precision F1-score

RAP-LLaVA 93.51 96.47 94.97

Skip retrieval 96.16 (+2.7) 100.0 (+3.5) 98.04 (+3.1)

- Data aug 89.25 (-4.3) 98.01 (+1.5) 93.42 (-1.6)

- Neg samples 95.74 (+2.2) 58.21 (-38.3) 72.40 (-22.6)

Method MMMU InfoSeek

LLaVA 0.364 0.205

LLaVA-LoRA 0.359 0.205

RAP-LLaVA 0.361 0.218

RAP-LLaVA(With KB) 0.369 0.344

Table 6. Evaluation on Multimodal

Benchmarks. RAP-LLaVA maintains

most knowledge of original LLaVA.

Multimodal Benchmark. We also evaluate our model’s performance on several traditional multimodal benchmarks,

including MMMU[53] and InfoSeek[54]. We assess our models’ performance both with and without external knowledge

base. Details of the knowledge base are provided in Appendix C. We evaluate on the validation set of MMMU, and 5K

questions sampled from the validation set of InfoSeek. We use the official scripts to get the results, which are presented in

Table 6. From the results, our RAP-LLaVA retains most general knowledge of the original LLaVA. It also equips the

MLLM with the ability to retrieve information from an external knowledge base, demonstrating superior performance in

knowledge intensive tasks.

5. Conclusion

In this paper, we introduce the RAP framework for personalizing MLLMs. This framework enables MLLMs to understand

an infinite number of user-specific concepts, generate personalized captions and respond to user-related queries. To

enhance the quality of the generated content and better align outputs with user’s configuration, we curate a large-scale

dataset for personalized training of MLLMs. Using this dataset, we train a series of MLLMs to function as personalized

assistants. Experimental results show that RAP-MLLMs achieve exceptional performance in various personalized

generation tasks while preserving the general knowledge of the original MLLMs. Moreover, our RAP framework allows

real-time adjustments to generation settings. It eliminates the need for retraining on new concepts and provides significant

flexibility in personalized generation.

Appendix A. Appendix Overview

Section B: Additional evaluations of our models.
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Section C: More experiment details.

Section D: More details of RAP dataset.

Section E: Additional demonstrations.

Section F: Analysis on limitations of our work.

Section G: Examples of the personalized database.

Appendix B. Additional Evaluation Results

Method
Question Answering Visual Recognition

Visual Text Weighted Positive Negative Weighted

RAP-LLaVA 0.935 0.938 0.936 0.979 0.982 0.980

- Data aug 0.924 (-0.011) 0.918 (-0.020) 0.921 (-0.015) 0.943 (-0.036) 0.988 (+0.006) 0.965 (-0.015)

- Neg samples 0.918 (-0.017) 0.933 (-0.005) 0.925 (-0.011) 0.958 (-0.021) 0.985 (+0.003) 0.971 (-0.009)

Table 7. Ablation studies on Question Answering and Visual Recognition. Weighted results are

computed as arithmetic means.

Ablation Studies. We conduct ablation experiments on the question answering and recognition benchmark, experimental

results are present in Table 7. The results further demonstrate that our data augmentation and the constructed negative

samples also contribute to the model’s performance.

Appendix C. More Experimental Details

Implementation details. We utilize YOLO-Worldv2-X[41] as the detection model, setting detection classes to include all

categories stored in the database to reduce the interventions from unrelated objects. We construct a multimodal retriever

using Facebook AI Similarity Search (FAISS)[51], employing a pre-trained CLIP ViT-L/14-336[42] as the visual encoder.

Each key in the database is generated by inputting the image of a concept into the CLIP visual encoder, resulting in a 768-

dimensional vector. Considering the restriction of context length of the backbone language model, we retrieve the 2 most

similar images from the database for each region of interest. And then, we select 2 and 3 different concepts with the

highest similarity among all as supplementary inputs for RAP-LLaVA and RAP-Phi3-V, respectively.

External knowledge base. For MMMU[53], we use 30K images paired with corresponding captions from Wikipedia as the

external knowledge base. During testing, we retrieve the three most similar images based on the question’s image and

incorporate only the textual knowledge to the input. For InfoSeek[54], we randomly sample 5K questions from the

validation set and construct a knowledge base containing 50K entities from Wikipedia database provided by the authors,

which includes all relevant entities associated with the questions. For each question, we retrieve the most similar entity

and add only the textual knowledge to the input.
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Baselines. For MyVLM, we find that when the training data is very limited, it is quite hard for the classification head to

work effectively. Therefore, we use data augmentation to help improve its performance. Specifically, we crop the single

image into several pieces containing the target concept to improve the accuracy of classification heads. To distinguish

between multiple possible different concepts that may appear in the image, we use ⟨sks1⟩, ⟨sks2⟩… as concept identifiers.

For YoLLaVA, as there is no open-source code or model available, we present its experimental results as reported in the

original paper[9].

Appendix D. Details of Dataset

D.1. Dataset Composition

We provide a summary of the composition of our dataset in Figure 7, which visually represents the distribution of

different components.

Table 8 presents detailed numerical data for each part.

In Table 9, we specify the sources for each component of our dataset.

Figure 7. Composition of our dataset.

Table 8. Statistics of our

dataset.
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Type Size

Visual Grounding 100K

Recognition 40K

Caption & Description 37K

Question Answering 16K

LLaVA-Instruction 67K

Total 260K

Type Source Dataset

Visual Grounding
RefCOCO[43], TAO[45]

ILSVRC2015-VID[44], Object365[46]

Recognition CustomConcept101[23], CelebA[47]

Caption & Description
RefCOCO[43], TAO[45]

Object365[46], CustomConcept101[23]

Question Answering

RefCOCO[43], TAO[45]

Object365[46], CustomConcept101[23]

CelebA[47]

LLaVA-Instruction LLaVA-Instruct-665K[16]

Table 9. Data source.

D.2. Instructions

In this section, we present the instruction templates used to create our dataset:

Table 20 contains instructions for visual grounding and recognition.

Table 21 includes example instructions for image captioning.

Table 22 presents example instructions for image description.

Table 23 presents example questions used for question answering synthesis.

E. Additional Demonstrations

In this section, we provide more qualitative results obtained by various models.

In Table 10, we demonstrate how our models achieve real-time editing of concepts by modifying the database.

In Table 11, we demonstrate the real-time addition of new concepts by updating the database.

In Table 12, we present qualitative results on personalized conversation of RAP-LLaVA.

In Table 13, we present qualitative results on personalized conversation of RAP-Phi3-V.

In Table 14, we present additional image captions generated by RAP-LLaVA and other methods.

In Table 15, we present additional image captions generated by RAP-Phi3-V and other methods.
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In Table 16, we provide demonstrations of image description generated by RAP-LLaVA and LLaVA.

In Table 17, we provide demonstrations of image description generated by RAP-Phi3-V and Phi3-V.

In Table 18 and 19, we provide results on visual recognition of RAP-LLaVA. It also has the ability to give precise

bounding box of specific concept in the image.

Table 10. Examples of Concept Editing.  Based on the information recorded in the database, our RAP-LLaVA can provide reliable and accurate

answers.

Table 11. Examples of Concept Updating.  The first caption is generated when toy2 not yet stored in the database. Once the new concept is

added, RAP-LLaVA can recognize both toy1 and toy2.
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Table 12. Examples of personalized conversations obtained by RAP-LLaVA.
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Table 13. Examples of personalized conversations obtained by RAP-Phi3-V.
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Table 14. Additional qualitative comparison on image captioning between RAP-LLaVA and other methods.
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Table 15. Additional qualitative comparison on image captioning between RAP-Phi3-V and other methods.
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Table 16. Qualitative results of personalized image description obtained by RAP-LLaVA.
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Table 17. Qualitative results of personalized image description obtained by RAP-Phi3-V.
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Table 18. Qualitative results of personalized concept recognition obtained by RAP-LLaVA. We use green rectangle to show the bounding box in the

image.
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Table 19. Qualitative results of personalized concept recognition obtained by RAP-LLaVA. We use green rectangle to show the bounding box in the

image.

Table 20. Instructions for visual grounding and recognition.
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Visual recognition:

Is ⟨V⟩ visible in this picture?
Is ⟨V⟩ in this image?
Do you see ⟨V⟩ in the photo?
Is ⟨V⟩ present in this photograph?

Can you identify if ⟨V⟩ is captured in this picture?
Is ⟨V⟩ depicted in this image?
Does the picture feature ⟨V⟩?
Can you confirm if ⟨V⟩ appears in this photo?
Is ⟨V⟩ included in this shot?
Is ⟨V⟩ shown in this image?
Can you tell if ⟨V⟩ is part of this photograph?
Is there any sign of ⟨V⟩ in this picture?
Can you detect ⟨V⟩ in the photo?
Is ⟨V⟩ captured in this image?
Do you recognize ⟨V⟩ in this picture?

Visual grounding:

Give ⟨V⟩’s bounding box in the image.
Describe ⟨V⟩’s position in the image.
Please provide the coordinates of the bounding box for ⟨V⟩ in the given
image.
Specify the rectangular boundaries of ⟨V⟩ in the image.
Give ⟨V⟩’s position in the following image.
Please provide ⟨V⟩’s bounding coordinates in the image.
Indicate the bounding box for ⟨V⟩ in the image.
Show the bounding box for ⟨V⟩ in the picture.
Specify ⟨V⟩’s bounding box in the photograph.
Mark ⟨V⟩’s bounding box within the image.

 

Image caption:

Give a caption of the image.
Give a personalized caption of this image.
Provide a brief caption of the image.
Summarize the visual content of the image.
Create a short caption of the image.
Offer a short and clear interpretation of the image.
Describe the image concisely.
Render a concise summary of the photo.
Provide a caption of the given image.
Can you provide a personalized caption of this
photo?
Could you describe this image concisely?

Table 21. Instructions for image captioning.

Table 22. Instructions for image description.
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Image description:

Describe the image.
Give a description of the image.
Give a description of the image in detail.
Give a short description of the image.
Describe the image in detail.
Please provide a description of the image.
Can you give me details about the image?
Could you explain what’s shown in the
image?

Person:

What is ⟨H⟩’s hair color?
What is ⟨H⟩’s height (estimated)?
What is ⟨H⟩’s skin tone?
What is ⟨H⟩’s eye color?
What style of clothing is ⟨H⟩ wearing?
Does ⟨H⟩ have any visible tattoos?
Does ⟨H⟩ wear glasses or contact lenses?
Does ⟨H⟩ have any facial hair?
What is ⟨H⟩’s approximate age?
What is ⟨H⟩’s build or body type?
What is ⟨H⟩ doing?

Object:

What color is ⟨O⟩?
What pattern is on ⟨O⟩?
What shape does ⟨O⟩ have?
What size is ⟨O⟩?
What is the texture of ⟨O⟩?
Is ⟨O⟩ shiny or matte?
What material is ⟨O⟩ made of?
Does ⟨O⟩ have any patterns or designs on it?
Is ⟨O⟩ new or worn?
Does ⟨O⟩ have any visible brand or logo?
Is ⟨O⟩ functional or decorative?

Multi-concept question:

What do ⟨C1⟩ and ⟨C2⟩ have in common?
What activity are ⟨C1⟩ and ⟨C2⟩ engaged in?
Where could ⟨C1⟩ and ⟨C2⟩ be located?
What is the most noticeable difference between ⟨C1⟩ and
⟨C2⟩?
What are they doing?

Table 23. Seed questions used for question answering

synthesis.

Appendix F. Limitation

Our proposed RAP framework is a retrieval-based method. The limitations of RAP mainly concern the additional

computational cost of generation and the precision of the retriever. While incorporating external information effectively
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generates more specific answers, it inevitably increases the context length for MLLMs, leading to additional computational

overhead during the generation process. We will further explore ways to mitigate this computational burden. Another

limitation is the personalization performance of our RAP-MLLMs depends on the retriever’s capability This proposes need

for a robust multi-modal retriever that can discern intricate features to enhance retrieval precision. Despite these

limitations, RAP offers a timely solution for MLLM personalization. By retrieving from a user’s specific database, RAP

facilitates reliable and flexible personalized generation, which is valuable in practical applications.

Appendix G. Examples of the personalized database

We give some visualized examples of our database in Table 24. For each concept in the database, users need to provide

an image with its name and an optional personalized description to give additional information. During inference, the

images, names and other information of retrieved concepts are integrated into the input for the MLLM. Users have the

flexibility to define the name and personalized description based on their preferences, and our RAP-MLLMs will generate

answers according to the provided information.
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Table 24. Examples of our database. A concept should be provided with an image and its personalized description.
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