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We tackle the problem of localizing the tra�c surveillance cameras in cooperative perception. To overcome the lack of

large-scale real-world intersection datasets, we introduce Carla Intersection, a new simulated dataset with 75 urban

and rural intersections in Carla. Moreover, we introduce a novel neural network, Tra�cLoc, localizing tra�c cameras

within a 3D reference map. Tra�cLoc employs a coarse-to-�ne matching pipeline. For image-point cloud feature

fusion, we propose a novel Geometry-guided Attention Loss to address cross-modal viewpoint inconsistencies. During

coarse matching, we propose an Inter-Intra Contrastive Learning to achieve precise alignment while preserving

distinctiveness among local intra-features within image patch-point group pairs. Besides, we introduce Dense

Training Alignment with a soft-argmax operator to consider additional features when regressing the �nal position.

Extensive experiments show that our Tra�cLoc improves the localization accuracy over the state-of-the-art Image-

to-point cloud registration methods by a large margin (up to 86%) on Carla Intersection and generalizes well to real-

world data. Tra�cLoc also achieves new SOTA performance on KITTI and NuScenes datasets, demonstrating strong

localization ability across both in-vehicle and tra�c cameras. Our project page is publicly available at https://tum-

luk.github.io/projects/tra�cloc/.
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Figure 1. Localization accuracy on the proposed Carla Intersection and KITTI dataset. The point cloud is projected into a 2D view

and shown above the image, with point colors indicating distance. The proposed Tra�cLoc achieves better performance, with

more correct (green) and fewer incorrect (red) point-to-pixel pairs. The �rst column presents the input point cloud and input

image.

1. Introduction

Tra�c surveillance cameras, as a�ordable and easy-to-install roadside sensors in cooperative perception, o�er a broad,

global perspective on tra�c. Integrating this data with onboard sensors enhances situational awareness, supporting

applications like early obstacle detection[1][2]  and vehicle localization[3]. Localizing the 6-DoF pose (i.e. position and

orientation) of each tra�c camera within a 3D map is thus essential for cooperative perception.

Recent advances in 3D sensors have enhanced visual localization[4][5] and LiDAR-camera registration methods[6][7][8][9]

[10], as LiDAR-acquired point clouds provide accurate and detailed 3D information[11][12]. However, unlike these

methods, tra�c camera registration focuses on determining �xed camera poses within the point cloud scene. The main

challenge of localizing the tra�c cameras lies in several aspects: 1) Images and 3D reference point clouds are captured at

di�erent times and from di�erent viewpoints, making it di�cult to obtain the precise initial guess required for

traditional registration methods[13]. 2) Directly projecting reference point clouds onto the images can lead to a ’bleeding

problem’[7]. 3) Variable focal length cameras are generally used as tra�c cameras for easy installation, causing the

intrinsic parameters to be frequently changed during operation[14].

To date, only a few methods have been proposed for localizing tra�c cameras in the 3D reference scene.[14]  employs

manual 2D-3D feature matching followed by optimization using distance transform.[3] uses panoramic images for point

cloud reconstruction and then aligns tra�c camera images with the resulting point cloud.[13]  proposes to automate

tra�c image-to-point cloud registration by generating synthesized views from point clouds to reduce modality gaps.

Although these methods achieve promising results, the requirement for manual intervention or panoramic/rendering

image acquisition complicates their deployment. It is therefore important to develop the capability to perform tra�c

camera localization directly.
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However, most of the existing datasets (i.e. KITTI[15]  and NuScenes[16]) are limited to the in-vehicle cameras, lacking

su�cient intersections and tra�c cameras. To address this gap, we �rst introduce Carla Intersection, a new intersection

dataset using the Carla simulator. Carla Intersection provides 75 intersections across 8 worlds, covering both urban and

rural landscapes. Furthermore, we propose Tra�cLoc, a novel neural network for localizing tra�c cameras within a 3D

global reference map. Tra�cLoc follows a coarse-to-�ne localization strategy, beginning with image patch-to-point

group matching and re�ning localization through pixel-to-point matching.

We �nd that simply applying transformers for cross-modal feature fusion in current image-to-point cloud registration

methods[10][9] struggle with limited geometric awareness and weak robustness to viewpoint variations. To address these

challenges, we propose a novel Geometry-guided Feature Fusion (GFF) module, a Transformer-based architecture

optimized by a novel Geometry-guided Attention Loss (GAL). GAL directs the model to focus on geometric-related

regions during feature fusion, signi�cantly improving performance in scenarios with large viewpoint changes. Another

observation is that, when registering image patch and point group features in the coarse matching stage, the widely used

contrastive learning in previous methods ignores one fact: The pixel features within the same image patch and the point

features within the same 3D point group should be di�erentiated, even though they are inherently similar. To address

this issue, we propose a novel Inter-Intra contrastive learning to preserve distinctiveness among local intra-features.

Moreover, we �nd that only aligning features with sparsely paired image patch-point groups potentially neglects

additional global features. Therefore, we introduce a dense training alignment strategy to back-propagate the calculated

gradients to all spatial locations using a soft-argmax operator. These operations enable one-stage training to directly

estimate accurate pixel-point correspondences.

To summarize, the main contributions of this work are:

We set up a new simulated intersection dataset, Carla Intersection, to study the tra�c camera localization problem in

varying environments. Carla Intersection includes 75 intersections across 8 worlds, covering both urban and rural

landscapes.

We propose a novel neural network, Tra�cLoc, following a coarse-to-�ne localization pipeline.

We propose a novel Geometry-guided Attention Loss to direct the model to focus on the geometric-related regions

during cross-modality feature fusion.

We propose a novel Inter-Intra contrastive learning and a dense matching alignment with a soft-argmax operator to

achieve more precise image patch-point group alignment.

We conduct extensive experiments on the proposed Carla Intersection, USTC intersection[13], KITTI[15]  and

NuScenes[16]  datasets, showing the proposed Tra�cLoc greatly improves over the state-of-the-art methods and

generalizes well to real intersection data and in-vehicle camera localization task.

2. Related Work

The research of camera localization in 3D scenes has a long history starting in the early days of computer vision and

robotics. We outline the typical solutions here, including visual localization and image-point cloud registration.
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Visual localization. Visual localization aims to estimate the 6-DoF camera pose from a query image with respect to a 3D

reference map. Structure-based methods[17][18][19][20][21][22][23][24]  extract 2D local descriptors[25][26][27][28]  from

database images to build a 3D map via Structure-from-Motion (SfM), storing descriptors at each 3D point. Given a query

image, they match its 2D descriptors with the 3D map to form 2D-3D correspondences, estimating the  -DoF camera

pose using a PnP solver[29] with RANSAC[30]. The image retrieval-based methods[31][32] are used to reduce search space

for speed-up. Some Absolute Pose Regression (APR) methods[5][33][34][35] directly predict the 6 DoF camera pose from a

single image but reply on uniformly sampled training images and cannot generalize to unknown scenarios. PCLoc[4] and

FeatLoc[5]  address viewpoint di�erences between query and database images by synthesizing new views using RGB-D

images, enabling more accurate pose estimation. In this work, we aim to estimate the 6-DoF camera pose given a single

image in unseen scenarios, especially for tra�c surveillance cameras without o�ine calibrations in the intersections.

Image-to-Point cloud registration. To estimate the relative pose between an image and a point cloud, methods like

2D3D-MatchNet[36] and LCD[37] use deep networks to learn descriptors jointly from 2D image patches and 3D point cloud

patches. 3DTNet[38] learns 3D local descriptors by integrating 2D and 3D local patches, treating 2D features as auxiliary

information. Cattaneo et al.[39] establish a shared global feature space between 2D images and 3D point clouds using a

teacher-student model. Recent VXP[40]  improves the retrieval performance by enforcing local similarities in a self-

supervised manner. DeepI2P[41] reformulates cross-matching as a classi�cation task, identifying if a projected point lies

within an image frustum. FreeReg[42]  employs pretrained di�usion models and monocular depth estimators to unify

image and point cloud features, enabling single-modality matching without training. EP2P-Loc[43] performs 2D patch

classi�cation for each 3D point in retrieved sub-maps, using positional encoding to determine precise 2D-3D

correspondences. CorrI2P[8]  directly matches dense per-pixel/per-point features in overlapping areas to establish I2P

correspondences, while CoFiI2P[9]  and CFI2P[10]  employ a coarse-to-�ne strategy, integrating high-level

correspondences into low-level matching to �lter mismatches. Recent VP2P[44]  proposes an end-to-end Image-to-

Point Cloud registration network with a di�erentiable PnP solver. However, all methods are limited to in-vehicle camera

images. In this work, our approach generalizes well to various viewpoints, including car and tra�c perspectives.

3. Problem Statement

Given a query RGB image   with a resolution of   and a reference 3D point cloud  , where   is

the number of points, our goal is to estimate the 6-DoF relative transformation   between the image   and point

cloud  , including rotation matrix    and translation vector  , as well as the camera intrinsic matrix 

.

According to the camera projection geometry, our localization problem can be formulated as follows:

where   is 2D pixel coordinates,   is 3D point coordinates,   is the set of ground-truth 2D-3D correspondences and 

  means the Euclidean distance.    is transformed into homogeneous coordinates implicitly when calculating  .

Function   is used for planar projection:

6
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4. Methodology

Fig. 2 shows our Tra�cLoc architecture. Given a query image and a reference 3D point cloud, we �rst extract 2D patch

features and 3D group features respectively, describied in Section 4.1. Next, we fuse the 2D patch and 3D group feature via

a carefully designed GFF module, which will be explained in Section 4.2. Section 4.3 describes the coarse matching stage,

establishing 2D patch-3D group correspondence. Furthermore, we match each 3D group center feature and the patch

features generated from coarse matching in �ne matching (Section. 4.1). Lastly, the RANSAC+EPnP module in Section.

4.5 exploits the point-pixel correspondences set to optimize the relative transformation.

Figure 2. Pipeline of our proposed Tra�cLoc for relocalization. Taking a pair of 3D point cloud and a 2D image as input,

Tra�cLoc �rst performs feature extraction to obtain features in point group level and image patch level. The Geometry-guided

Feature Fusion (GFF) module strengthens the feature and then match them based on similarity rule. Fine features are extracted

based on the coarse matching results and �ne matching is performed between the point group center and the extracted image

window with a soft-argmax operation. The �nal generated 2D-3D correspondences are utilized to optimize the camera pose

with RANSAC+EPnP[29][30] algorithm.

4.1. Feature Extraction

Following[43], we explore a dual branch to extract image and point cloud features using Transformer-based encoders.

2D patch descriptors. Following CFI2P[10], we �rst utilize ResNet-18[45]  to extract multi-level features of image   and

then use the feature at the coarsest resolution to generate 2D patch descriptors  , where s is the

resolution of non-overlapping patches and    is the number of image patches. To further enhance the spatial

relationships within these image patches, we leverage the pre-trained ViT encoder in DUSt3R[46] to obtain 128-dim 2D

patch descriptors owing to its strong capability in regressing 3D coordinates.

3D point group descriptors. We �rst utilize a standard PointNet[47] to extract point-wise features   for each

point. Then, we conduct Farthest Point Sampling (FPS) to generate    super-points    and assign

every point in    to its nearest center in  , formulating   point groups   and their associated

F ([x,y, z ) = [ , = [x/z,y/z .]⊤ u′ v′ ]⊤ ]⊤ (2)

I

∈Fpatch R
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feature sets  . Following CFI2P[10], we then use the Point Transformer[48]  to enhance local

geometry features and incorporate global contextual relationships for each point group.

4.2. Geometry-guided Feature Fusion

Although the Image-to-Point cloud registration approaches[9][10] achieved notable fusion success using a Transformer-

based architecture, the inherent di�erences between di�erent modalities and viewpoints are not well-explored. To

address this issue, we introduce a novel Geometry-guided Feature Fusion (GFF) module to enhance the network’s

robustness to viewpoint variations during cross-modal feature fusion. Speci�cally, we design a Fusion Transformer

architecture guided by a novel geometry-guided attention loss (GAL). Fig. 3 shows the detailed architecture of the GFF

module.

Fusion Transformer. Similar to[10], we adopt a Transformer-based architecture with self-attention and cross-attention

layers for cross-modal feature fusion. Given the image feature    and point cloud feature  , we begin by adding

sinusoidal positional embeddings to retain the spatial information within both modalities. In the self-attention module,

a transformer encoder enhances features in each modality individually using standard scalar dot-product attention. The

cross-attention layer is designed to fuse image and point cloud features by applying the attention mechanism across

modalities. This design allows for the exchange of geometric and textural information between image and point cloud

features, enabling a richer, modality-aware feature representation. More details are in Supp.

Geometry-guided Attention Loss (GAL). We �nd that directly applying Transformers for cross-modal feature fusion

su�ers from limited geometric awareness and weak robustness to viewpoint variations. We thus propose a novel

geometry-guided attention loss that supervises cross-modal attention map during training based on geometric

alignment, encouraging features to focus on their geometrically corresponding parts, as shown in Fig. 3 (right).

Figure 3. The pipeline of Geometry-guided Feature Fusion (GFF) module. GFF �rst use   layers of self and cross-attention

module to enhance the feature across di�erent modalities (left). The Geometry-guided Attention Loss is applied to the cross-

attention map of the last fusion layer based on camera projection geometry (right).

Inspired by[49], we apply supervision to the cross-attention layer at the �nal stage of the Fusion Transformer, leveraging

camera projection geometry as guidance. In I2P attention, we encourage the network to focus on relevant 3D point

= { , , … , }GF ′
GF ′

1 GF ′

2 GF ′

M
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groups for each 2D patch feature  . This is achieved by penalizing attention values that have high values outside the

target region and encouraging high attention within the desired area. We implement this through a Binary Cross Entropy

(BCE) loss on the raw cross-attention map  :

where   is a sigmoid function, and   is a special indicator function de�ned as:

The angular radius Rad  is given by  . Here,   assigns a value of 1 when the angle

between the camera ray   (formed by the patch   and the camera center  ) and the line to the 3D point center   is

below a threshold  . If this angle exceeds an upper threshold  , the value is set to 0, indicating that the point is

outside the target region. Points with angles between these thresholds are assigned a value of -1, allowing the network to

�exibly learn the relationship between attention in these intermediate cases. Similarly, in P2I attention, we encourage

each point group to focus on image patches within its target area of in�uence:

where Dist   represents the distance from point center    to the camera ray   (formed by the camera center 

 and the patch  ) in the 3D space. Since all point groups share a similar receptive �eld during feature extraction, the

distance threshold is set the same for each. This ensures point groups farther from the camera focus on a smaller target

area within the image, aligning with the natural physical principle that closer objects appear larger while distant ones

appear smaller.

The �nal geometry-guided attention loss is:

Note that the relative GT transformation matrix   is required only during training. Experiments in Section 5.4 shows

the e�ectiveness of GAL, leading to signi�cant improvements in scenarios with large viewpoint changes.
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Figure 4. Coarse matching mechanism of Tra�cLoc. The positive feature pairs are generated based on ground-truth

transformation matrix. The coarse image feature   is reshaped to compute its similarity map with each coarse point

feature.

4.3. Coarse Matching

Here we aim to match the point group with the image patch at the coarse level given the fused 2D patch features 

 and 3D point group features  . Since a monocular camera can only capture a part of the 3D point

cloud scene due to the limited �eld of view (FoV), we �rst apply a simple super-points �lter with binary classi�cation

MLP head to predict super-points in or beyond the frustum. For each predicted in-frustum point group  , we estimate

its corresponding coarse pixel    based on feature similarity to get the predicted coarse correspondence set 

, we use cosine similarity   to denote the similarity between two features:

Inter-Intra Contrastive Learning. To establish pixel-to-point correspondences, we �nd that the pixel features within

the same image patch and the point features within the same 3D point group should be di�erentiated, even though they

are inherently similar. Inspired by this, we propose a novel Inter-Intra contrastive learning objective to address the

limitations of the widely used contrastive learning in[9][10]. The objective is not only to bring the features of 3D point

groups and their corresponding image patches closer together, but also to ensure that the features within the same image

patches and 3D point groups remain as di�erentiated as possible. This balance enhances more precise alignment while

preserving distinctiveness among local intra-features. The loss details are in Sec. 4.6, and experimental results in Sec. 5.4

show its e�cacy.
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Dense Training Alignment. Moreover, we �nd that the Inter-Intra contrastive learning can only align features with

sparsely paired patch-point groups, neglecting additional global features. Inspired by[50], we propose a dense training

alignment strategy to back-propagate the calculated gradients to all spatial locations using a soft-argmax operator.

Speci�cally, for each sampled point group feature  , we compute its similarity map 

  with the target image feature  , as shown in Figure 4. Then, we take soft-

argmax over the similarity map to compute the predicted pixel position  . We penalize the distance

between the predicted position   and the target position   with a L2 norm loss (See Sec. 4.6 for details).

4.4. Fine Matching

After the coarse matching, we aim to generate point-to-pixel pairs in �ne matching.

We �rst generate the image feature    and the point feature    in �ne-resolution via

applying the two upsample networks, ResNet[45]  and PointNet[47], for image and point cloud respectively. We then

extract the local feature from the �ne-resolution image patch,  , centered on the predicted coarse pixel

coordinate  . Additionally, we extract the corresponding feature   of the center point   within the point

group. The �ne matching process is de�ned as:

where    is the �ne similarity map between the point center and extracted image patch, and    is the �nal

predicted 2D pixel corresponding to 3D point  .

4.5. Pose Estimation

Following[9], we use the RANSAC+EPnP[29][30]  algorithm to �lter out incorrect pixel-point pairs and estimate the

relative pose of the camera based on the set of predicted pixel-point correspondence after the �ne matching.

4.6. Loss Function

Our training loss includes three components:

In-frustum Detection Loss. We use a standard binary cross-entropy (BCE) loss   to supervise the in-frustum super-

points classi�cation.

Coarse Matching Loss. In coarse matching, we �rst sample    pairs from the ground-truth 2D-3D corresponding set 

, where   is the ground-truth transformation matrix from point cloud coordinate

system to image frustum coordinate system, and    denotes the mapping function that convert points from camera

frustum to image patch position. We determine the negative pairs by checking whether the distance between the location

of    and the projection of    on the image is larger than a threshold    or not. The process is the same within each

individual modality.

The Inter-Intra contrastive learning loss is de�ned as:
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Fine
x

Px

Ldet

K

= {( , )| = F ( )}C∗
coarse Px Ix Ix TGTPx TGT

F

Ix Px r

qeios.com doi.org/10.32388/97AHJL 9

https://www.qeios.com/
https://doi.org/10.32388/97AHJL


where   and   are the adaptive weighting factors for positive and negative pairs, respectively:

in which   is the scale factor and   and   are positive and negative margin for better similarity separation.

In addition, the loss in dense training alignment is de�ned as the L2 norm distance between the predicted position and

the target position  :

and we combine the Inter-Intra contrastive learning loss to form our �nal coarse matching loss 

.

Fine Matching Loss. Since the �ne image patch has a small region, we utilize Cross Entropy (CE) loss to sparsely

supervise the �ne matching process and apply dense L2 norm loss similar to  :

where    equals to 1 when the 3D point    is corresponded with the    pixel in the �atten image patch, else 0. To

avoid over�tting, we randomly shift the centered position of the extracted �ne patch by up to   pixels, preventing

the ground-truth pixel from always being at the center of the patch.

We combine the sparse and dense loss to form our �nal �ne matching loss  . Overall, our loss

function is:

where   regulate the losses’ contributions.

5. Experiments

5.1. Proposed Carla Intersection Dataset

The proposed Carla Intersection Dataset comprises 75 intersections across 8 worlds within the Carla[51]  simulation

environment, encompassing urban and rural landscapes. We use on-board LiDAR sensor to capture point cloud scans,

which are then accumulated and downsampled to get the 3D point cloud of the intersection. For each intersection, we

captured 768 training images and 288 testing images with known 6-DoF pose at a resolution of 1920x1080 pixel and a

horizontal �eld of view (FOV) of  . In consideration of real-world tra�c surveillance camera installations, our image

collection spans heights from 6 to 8 meters, with camera pitch angles from 15 to 30 degrees. This setup re�ects typical
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positioning to capture optimal tra�c views under varied monitoring conditions. More details and visualization of our

dataset are in the Supplementary Materials.

To access the model’s generalization capability, we trained on 67 intersections from worlds    to  , and

tested on one unseen intersection from each of the 8 worlds. We divided the testing data into three sets:

 contains 7 unseen intersections from world   to  , with 288 testing images each, matching

the training pitch angles (15 or 30 degree).

 contains 7 same intersection scenes as in  , with images at pitch angles of 20 or 25 degrees, to

evaluate robustness against viewpoint variations.

  contains 1 unseen intersection scene from unseen world  . This split sets a high standard for

evaluating the model’s generalization ability, assessing its performance in unseen urban styles and intersections.

5.2. Experimental Setup

Datasets. We conduct experiments on the proposed Carla Intersection Dataset. In addition, we evaluate our Tra�cLoc on

one real USTC intersection dataset[13], and two in-vehicle camera benchmarks, KITTI Odometry[15] and Nuscenes[16]. For

fair comparisons, we use the same training and evaluation pairs of image and point cloud data on KITTI and Nuscenes

following previous image-point cloud registration methods[8][41].

Implementation Details. The training details and others are in the Supplementary Materials.

Evaluation Metrics. Following previous works[9][8][41], we evaluate the localization performance with relative rotation

error (RRE), relative translation error (RTE) and registration recall (RR). RRE and RTE are de�ned as:

where    is the Euler angle vector of  ,    and    are the ground-truth rotation and translation matrix, 

  and    represent the estimated rotation and translation matrix. RR denotes the fraction of successful

registrations among the test dataset. A registration is considered as successful when the RRE is smaller than   and the

RTE is smaller than  , i.e.  .

5.3. Evaluation Results

We �rst evaluate Tra�cLoc on our Carla Intersection Dataset and compare with other baseline methods. Table

1summarizes the results. Our method outperforms all baseline methods by a large margin in all three test splits, which

indicates that Tra�cLoc is robust to viwepoint changes and has great generalization ability on unseen tra�c scenarios.

Speci�cally, the RRE reduces 85%, 66%, 86% and the RTE reduces 82%, 78%, 64% compared to the previous state-of-

the-art CoFiI2P[9] in three test splits respectively. Even in entirely unseen city-style environments and unseen scenes (

), our model maintains robust localization capability, while other baseline methods fail. Additionally, our model

achieves high accuracy while maintaining e�cient inference time. When intrinsic parameters   are unknown, we use

intrinsics predicted by DUSt3R[46]  to initialize the intrinsics for RANSAC+EPnP[29][30], which slightly decreases

Town01 Town07

TestT1−T7 Town01 Town07
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performance and inference speed but still yields strong results. The result of VP2P[44] on Carla Intersection Dataset and its

RR on Nuscenes are unavailable since the training code is not provided.

 

KITTI Odometry Nuscenes Runtime

RRE(°) RTE  RRE(°) RTE  RRE(°) RTE  RRE(°) RTE  RR(%) RRE(°) RTE  RR(%) (sec)

DeepI2P-

Cls[41]
9.02 6.31 9.10 6.12 18.30 11.46 5.88 1.13 80.18 7.37 2.22 62.67 0.23

DeepI2P-

2D[41]
20.31 7.01 33.43 7.93 49.93 17.09 3.87 1.42 74.50 3.02 1.95 92.53 8.78

DeepI2P-

3D[41]
17.97 7.29 34.86 9.49 43.11 17.41 6.08 1.21 38.34 7.06 1.73 18.82 18.62

CorrI2P[8] 20.08 12.63 27.95 13.97 32.23 14.45 2.72 0.90 92.19 2.31 1.7 93.87 1.33

VP2P[44] / / / / / / 2.39 0.59 95.07 2.15 0.89 / 0.76

CFI2P[10] 4.46 1.92 8.56 2.48 10.81 7.15 1.38 0.54 99.44 1.47 1.09 99.23 0.33

CoFiI2P[9] 4.24 2.82 7.87 5.34 17.78 7.43 1.14 0.29 100.00 1.48 0.87 98.67 0.64

Ours with 
2.04 1.72 4.56 2.19 4.61 4.80 / / / / / / 1.74

Ours with
0.66 0.51 2.64 1.13 2.53 2.69 0.87 0.19 100.00 1.38 0.78 99.45 0.85

Table 1. Quantitative localization results on the proposed Carla Intersection, KITTI[15] and Nuscenes[16] datasets. We report

median RRE and median RTE for Carla Intersection and mean RRE and mean RTE for KITTI and Nuscenes following previous

Image-to-Point cloud registration methods[9][8][41]. Our model achieves the best performance on all datasets, especially on

unseen scenarios.

Besides Carla Intersection Dataset, we evaluate our Tra�cLoc on KITTI and Nuscenes benchmarks. Tra�cLoc achieves the

best performance on both datasets, achieving 34% RTE improvement compared to the previous state-of-the-art

CoFiI2P[9] and   RRE �rst-time on KITTI, indicating its strong ability also on in-vehicle view cases.

To test the generalizability of our Tra�cLoc, we evaluate it on real-world intersection from the USTC dataset[13], using a

model trained on the Carla Intersection. Note that the test intersection is totally unseen and the tra�c camera is

uncalibrated. Figure 5 shows the qualitative localization result. Since ground-truth data is unavailable, we project the

point cloud onto the image plane with predicted transformation matrix    and intrinsic parameters  . The

projection image shows a clear overlap with the input image, validating the accuracy of our localization.

TestT1−T7 TestT1−T7hard TestT10
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Figure 5. Localization performance of our Tra�cLoc on the USTC intersection dataset[13].

Note that the model is trained on the Carla Intersection dataset.

5.4. Ablation Study

We evaluate the e�ectiveness of di�erent proposed components in our Tra�cLoc here.

Matching mechanism. Table 2 presents the quantitative results of di�erent matching loss functions across all three test

splits of the Carla Intersection Dataset. When only using normal contrastive loss    in coarse matching, the model

exhibits relatively high error across all test splits, particularly on dataset   with an unseen world style. Both the

Inter-Intra contrastive learning loss   and dense training alignment   signi�cantly improve the performance,

and the �ne matching loss further enhances the model’s ability to handle seen world styles. The model equipped with the

Geometry-guided Attention Loss    outperforms its counterpart without GAL on all metrics (see the last two rows),

showing a particularly notable improvement of 20.4% in the RTE metric on dataset  , which highlights the

robustness of GAL to viewpoint variations.
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RRE(°) RTE( ) RRE(°) RTE( ) RRE() RTE( )

Baseline

/ / 1.53 0.82 3.79 1.98 7.35 7.47

/ / 1.27 0.74 3.72 1.87 4.09 3.26

/ ✓ 0.95 0.64 3.12 1.46 3.03 2.86

+ / / 1.01 0.62 3.23 1.65 2.99 2.80

+ ✓ / 0.84 0.62 3.17 1.42 2.98 2.83

Ours + ✓ ✓ 0.66 0.51 2.64 1.13 2.53 2.69

Table 2. Ablation Study on loss function and model design. We report median RRE and median RTE results on all three test

splits of Carla Intersection Dataset.   denotes Coarse Matching and   denotes Fine Matching.   means using Inter-Intra

contrastive learning loss   and   means using dense training alignment loss  .   means using normal

contrastive loss instead of  .   represents applying the Geometry-guided Attention Loss (GAL).

As displayed in Figure 6, when using normal contrastive loss without intra mechanism, the similarity map exhibits

generally high values throughout. After incorporating the Inter-Intra contrastive learning loss, the distinction within the

similarity map increases, indicating a more pronounced distributional di�erence among features within the same

modality. However, due to the sparse supervision during training, multiple peaks (red regions) remain. With the addition

of Dense Loss, which provides global supervision across the entire image during training, the similarity map displays a

single peak region, demonstrating strong robustness in matching.

Figure 6. Visualization result of using di�erent loss function. (a), (b) denote the point group center 

 and its corresponding pixel  . (c), (d), (e) show the similarity map between point group and

image feature. Blue means low similarity and red means high.
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Attention map visualization. Figure 7 displays the cross-attention map between two modalities. With the use of  , the

P2I attention map of point group   tends to concentrate more on the image region where the point group is projected,

while the I2P attention map for patch   assigns greater weights to the area traversed by the camera ray of this patch.

Both observations highlight the geometry-awareness of the proposed geometry-guided attention loss.

Figure 7. Visualization result of P2I and I2P attention map when using

Geometry-guided Attention Loss   or not. Red color indicates high attention

value and blue means low value.

Geometry-guided Attention Loss. The ablation results for the Geometry-guided Attention Loss (GAL) are summarized in

Table 3. We conducted experiments on the Carla Intersection Dataset with GAL using di�erent threshold parameters and

applying GAL across di�erent layers of the Geometry-guided Feature Fusion (GFF) module.

Latt
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  Layer

RRE(°) RTE  RRE(°) RTE  RRE(°) RTE 

Baseline

/ / / / / 0.84 0.62 3.17 1.42 2.98 2.83

10 10 3 5 Last 1.24 0.80 3.49 1.53 6.07 7.45

10 20 3 3 Last 1.27 0.83 3.05 1.46 3.55 2.95

20 30 3 5 Last 0.91 0.59 2.71 1.27 3.05 2.78

10 20 5 7 Last 0.85 0.55 2.63 1.15 3.08 2.75

10 20 3 5 First 1.00 0.59 2.68 1.14 4.30 3.23

10 20 3 5 All 1.02 0.62 3.01 1.19 3.45 3.33

Ours 10 20 3 5 Last 0.66 0.51 2.64 1.13 2.53 2.69

Table 3. Ablation Study on Geometry-guided Attention Loss (GAL).   and   denote the angular threshold for I2P attention,

while   and   represent the distance threshold for P2I attention. “Layer” speci�es the fusion layer within the Geometry-

guided Feature Fusion (GFF) module where GAL is applied.

When the lower and upper threshold are set to the same value (see the second and third row), the model performs worse

than not applying GAL, which highlights the importance of de�ning a tolerant region that enables the network to �exibly

learn attention relationships for intermediate cases between the lower and upper thresholds. With thresholds  ,  , 

  and    set to 10∘, 20∘,    and  , our model consistently outperforms the baseline without GAL across all

metrics. Moreover, we observed that applying GAL to either the �rst layer or all layers of the GFF module yields worse

localization results compared to applying it only to the last layer. This is mostly because such con�gurations constrain

the network’s ability to capture global features during the early stages (or initial layers) of multimodal feature fusion.

Feature extraction backbone. Table 4 illustrates the results under di�erent image and point cloud feature extraction

backbone. Our model performs best when using DUSt3R[46]  and Point Transformer[48]  as backbones, bene�ting from

DUSt3R’s strong generalization ability. Even with a frozen DUSt3R, the model achieves comparable performance. In

contrast, when using ResNet[45]  or PiMAE[52], the model’s performance declines due to the lack of attentive feature

aggregation during the feature extraction stage. When utilizing PiMAE, we load the pretrained weights of its point

encoder.

)θlow(∘ )θup(
∘ dlow(m
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  Img Enc PC Enc RRE(∘) RTE( )

Baseline

ResNet[45] PiMAE[52] 1.25 0.87

ResNet[45] PT[48] 0.85 0.58

DUSt3R[46] PiMAE[52] 1.03 0.75

DUSt3R∗[46] PT[48] 0.77 0.59

Ours DUSt3R[46] PT[48] 0.66 0.51

Table 4. Ablation Study on Model Backbone. We report median RRE and median RTE resuls on test split  . DUSt3R∗

means using frozen DUSt3R backbone during training.

E�ectiveness of DTA and GAL. To verify the e�ectiveness of the Dense Training Alignment (DTA) and Geometry-guided

Attention Loss (GAL), we conducted further experiments on the KITTI Odometry dataset[15] using the existing state-of-

the-art network CoFiI2P[9]  as the base model. Since CoFiI2P also adopts a coarse-to-�ne matching approach with a

similar transformer-based feature fusion module, but only employs a standard contrastive circle loss, DTA and GAL can

be integrated into the network straightforwardly. The experimental results shown in Table 5 demonstrate that CoFiI2P

achieves improved performance on both RRE and RTE metrics when equipped with DTA or GAL. Notably, with both

components applied, CoFiI2P achieves improvements of 25.4% and 24.1% in RRE and RTE, respectively.

Base Model DTA GAL RRE(∘) RTE( ) RR(%)

CoFiI2P 1.14 0.29 100.00

CoFiI2P ✓ 0.94 0.24 100.00

CoFiI2P ✓ 1.01 0.27 100.00

CoFiI2P ✓ ✓ 0.85 0.22 100.00

Table 5. Experimental results on KITTI Odometry dataset[15] based on current SOTA model CoFiI2P[9]. “DTA” and “GAL”

means whether we add Dense Training Alignment mechanism and Geometry-guided Attention Loss   into CoFiI2P during

the training, respectively. We report the mean RRE, mean RTE, and RR metrics for comparison.

Localization with unknown intrinsic parameters. Ablation results of localization with predicted intrinsic parameters are

shown in Table 6. In the absence of ground-truth intrinsic parameters during inference, we leverage DUSt3R[46]  to

predict the focal length of the images. The camera is assumed to follow a simple pinhole camera model, with the

m
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principle point �xed at the center of the image. When using predicted intrinsic parameters instead of ground-truth focal

length, the localization accuracy shows a signi�cant decline. However, enabling focal length re�nement during RANSAC

+ EPnP[29][30]  yields notable improvement on  , while maintaining similar performance on other two test

splits. This suggests that re�ning predicted focal length during pose estimation is more e�ective when the

correspondences are of higher quality.

 

GT Re�ne

Focal Focal RRE(°) RTE( ) RRE(°) RTE( ) RRE(°) RTE( )

Ours

2.04 1.72 4.56 2.19 4.61 4.80

✓ 0.95 0.80 3.74 2.36 3.88 5.06

✓ 0.66 0.51 2.64 1.13 2.53 2.69

Table 6. Ablation study on localization with intrinsic parameters predicted by DUSt3R[46]. We report the median RRE and

median RTE across all three test splits of the Carla Intersection Dataset. “GT Focal” refers to using the ground-truth focal length

during inference, and “Re�ne Focal” enables focal length optimization as part of the RANSAC + EPnP[29][30] process.

Fusion transformer block number. Table 7 shows the experimental results of using di�erent numbers of feature fusion

layers   in Geometry-guided Feature Fusion (GFF) module. Our model achieves the best performance when utilizing a

four-layer structure.

  RRE(°) RTE( )

Baseline

2 0.96 0.55

6 0.73 0.59

8 0.88 0.58

Ours 4 0.66 0.51

Table 7. Ablation study on the number of feature fusion layers   in Geometry-guided Feature Fusion (GFF) module. We report

median RRE and median RPE on test split   of Carla Intersection Dataset.

Input point cloud size. We conducted ablation studies to investigate the e�ect of input point cloud size on the

representation learning process. The number of coarse point groups was �xed to  , as these groups were

generated using Farthest Point Sampling (FPS), ensuring uniform sampling across the point cloud. As shown in Table 8,
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the localization accuracy decreases with lower point cloud densities, as overly sparse point cloud lose local critical

structural details. On the other hand, higher-density point clouds place a heavy computational burden. To balance

computational e�ciency and accuracy, we selected an input size of 20,480 points.

Point Number RRE(∘) RTE( ) FLOPs

5120 0.86 0.68 126.73G

10240 0.81 0.62 146.38G

20480 0.66 0.51 185.73G

40960 0.59 0.52 264.35G

Table 8. Ablation study on the input point cloud size. We report median RRE and median RPE on test split   of Carla

Intersection Dataset. The FLOPs is calculated during the inference process.

6. Conclusion

In this work we focus on the under-explored problem of tra�c camera localization, which is an important capability for

fully-integrated spatial awareness among city-scale camera networks and vehicles. Such large-scale sensor fusion has

the potential to enable more robustness, going beyond the limitations of a single vehicle’s point of view. We proposed a

novel method, Tra�cLoc, which we show to be e�ective. To facilitate training and evaluation we propose the novel Carla

Intersection dataset, focusing on the case of intersections, which is a common placement for tra�c cameras and a focal

point for tra�c safety. We hope that this dataset will facilitate more research into integrated camera networks for robust,

cooperative perception.

Appendix A. Overview

In this supplementary material, we provide a detailed explanations of our Tra�cLoc and the proposed Carla Intersection

Dataset. In Sec. B, we outline the data collection process and provide visualizations of our Carla Intersection Dataset. Sec. C

describes the elements of the Fusion Transformer in the GFF module, followed by Sec. D with implementation details of

our network architecture and training procedure. Finally, Sec. E o�ers additional visualizations of our localization results

across di�erent datasets.

Appendix B. Carla Intersection Dataset

Our proposed Carla Intersection Dataset consists of 75 intersections across 8 worlds (   to    and  )

within the Carla  [51]  simulation environment, encompassing both urban and rural landscapes.    to 

 include multiple intersections for training and testing, while   contains only one intersection for testing.

m
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Speci�cally, we utilize the �rst Intersection scenario from each world (e.g.    ,    , …,   

,    ) for testing, with all remaining intersections reserved for training.

Images. For each intersection, we captured 768 training images and 288 testing images with known ground-truth 6-DoF

pose at a resolution of 1920x1080 pixel and a horizontal �eld of view (FOV) of  , equals to a focal length of 960. To

generate these images, we sampled camera positions in a grid-like pattern with di�erent heights at the center of each

intersection. For each position, we captured images at 8 yaw angles (spaced at 45∘ intervals) and 2 pitch angles. Figure 8

shows the sampled poses for example intersections.

Figure 8. Sampled testing image poses of (a) Town01 Intersection1 and (b) Town02 Intersection1.

Table 9 summarizes the image data collection details for our Carla Intersection Dataset. All training images were captured

with downward pitch angles of    and    at heights of  ,  , and  . Testing images in the test splits 

 and   share the same pitch angles as the training images, but were captured at heights of   and 

. Additionally, for the test split  , we captured 288 additional testing images for each intersection

using the same positions as in  , but with di�erent pitch angles of   and  , at heights of   and  .

These data capture settings closely re�ect the real-world tra�c surveillance camera installations following

HIKVISION[53], ensuring typical positioning to provide optimal tra�c views under varied monitoring conditions. The

di�erences between three distinct test splits also allow us to evaluate the model’s generalization ability across unseen

intersections and unseen world styles. Note that all testing intersections were not seen during the training.

Town01 Int1 Town02 Int1 Town07

Int1 Town10 Int1

90∘

15∘ 30∘ 6 m 7 m 8 m

TestT1−T7 TestT10 6.5 m

7.5 m TestT1−T7hard

TestT1−T7 20∘ 25∘ 6.5 m 7.5 m
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  Training

worlds - - -

# intersections 67 7 7 1

# images per scene 768 288 288 288

height (m) 6 / 7 / 8 6.5 / 7.5 6.5 / 7.5 6.5 / 7.5

pitch (∘) 15 / 30 15 / 30 20 / 25 15 / 30

seen intersection

seen world ✓ ✓

Table 9. Image data collection details of the proposed Carla Intersection Dataset. “# intersections” means the number of

intersection scenes in each split dataset and “# images per scene” means the number of images in each intersection scene.

“Seen intersection” and “seen world” represent whether the testing intersections are seen and whether the testing

intersections are from the seen world during the training process, respectively.

Point Clouds. To capture the point cloud of each intersection, we utilize a simulated LiDAR sensor in the

Carla[51] environment, which emulates a rotating LiDAR using ray-casting. The LiDAR operates at a rotation frequency of

10 frames per second (FPS), with a vertical �eld of view (FOV) ranging from 10∘ (upper) to -30∘ (lower). The sensor

generates 224,000 points per second across all lasers. Other parameters of the simulated LiDAR follow the default

con�guration in Carla. As shown in Figure 9, the LiDAR scans were captured in an on-board manner. Then, we

accumulated all scans into a single point cloud and downsampled it with a resolution of  . Finally, the point cloud for

each intersection was cropped to a region measuring  , focusing on the area of interest for our study.

Figure 9. Point cloud capturing example from  . (a1) and (a2) depict the LiDAR scan from a single frame. (b) shows

the aggregated and downsampled point cloud. (c) presents the �nal cropped point cloud with dimensions of 

.
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During the data capturing process, we disabled dynamic weather variations and set the weather condition in Carla

simulation environment to the default weather parameters of world  . Some examples of our Carla Intersection

Dataset are shown in Figure 11. Our data collection codes and datasets will be publicly available upon acceptance.

Appendix C. Geometry-guided Feature Fusion

Our Geometry-guided Feature Fusion (GFF) module comprises of   transformer-based fusion blocks, each consisting of

a self-attention layer followed by a cross-attention layer.

Given the image feature    and point cloud feature  , both enriched with positional embeddings, the self-attention

layer enhances features within each modality individually using standard multi-head scalar dot-product attention:

where   denotes the Query, Key and Value matrices, and   represents either   or   depending

on the modality. Within the MHA layer, the attention operation is conducted by projecting   and   using   heads:

where   denote the learnable parameters of linear projection matrices and the   operation is de�ned as:

where   is the dimension of latent feature.

The cross-attention layer fuses image and point cloud features by applying the attention mechanism across modalities,

following the same formulation as Equation 15. However, the Query, Key and Value matrices di�ers based on the direction

of attention. Speci�cally, for I2P (Image-to-Point Cloud) attention, we use    and  , while for P2I

(Point Cloud-to-Image) attention, we set   and  .

Layer Normalization is applied to ensure stable training. For our GFF module, we set   and  . Both the input

channel   and the latent dimension   are set to 256.

Appendix D. Implementation Details

In Carla Intersection Dataset, each intersection point cloud represents a region of   and contains over

200,000 points. Following[54], as a preprocessing step, we �rst divide each intersection point cloud into several 

 voxels with a stride of  . For each voxel  , we assign an associated set of images   based on the

overlap ratio between the image frustum and the voxel. Speci�cally, a voxel   is associated with an image   if more than

30% projected points lie within the image plane. During each training epoch, we uniformly sample    images for each

voxel from its associated image set, resulting in    training image-point cloud pairs, where    denotes the total

number of voxels.

The input images are resized to 288   512, and the input point cloud size is 20480 points. We utilize a pre-trained Vision

Transformer from DUSt3R_ViT Large[46] to extract the image feature. For coarse matching, we use a resolution of 1/16 of
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the input resolution for both the image and point cloud ( , with a coarse feature channel size of  .

For �ne matching, we adopt a resolution of    for �ne image feature and    for �ne point

feature, where  ,   and   equal to input dimensions and the �ne feature channel size is set to  . As part of data

augmentation, we apply random center cropping to the input images before resizing operation to simulate images

captured by di�erent focal lengths. The input point cloud is �rst normalized into a unit cube, followed by random

rotations around the z-axis (up to 360∘) and random shifts along the xy-plane (up to  ).

The whole network is trained for 25 epochs with a batch size of 8 using the Adam optimizer[55]. The initial learning rate

is set to 0.0005 and is multiplied by 0.5 after every 5 epochs. For the joint loss function, we set   and add

the Geometry-guided Attention Loss  . The safe radius  , positive margin  , negative margin   and scale factor   in

loss function are set to 1, 0.2, 1.8 and 10, respectively. For the Geometry-guided Attention Loss (GAL), the angular

thresholds    and    are set to 10∘ and 20∘, while the distance thresholds    and    are set to 3m and 5m,

respectively. The training is conducted on a single NVIDIA RTX 6000 GPU and takes approximately 40 hours.

During inference, we utilize the super-point �lter to select reliable in-frustum point groups from the fused coarse point

features  , using a con�dence threshold of 0.9. In the coarse matching stage, we compute the coarse similarity map

between each point group and the image. Following[50], a window soft-argmax operation is employed on similarity map

to estimate the corresponding coarse pixel position. This involves �rst identifying the target center with an argmax

operation, followed by a soft-argmax within a prede�ned window (window size set to 5). In the �ne matching stage,

with the predicted coarse pixel position, we �rst extract a �ne local patch feature of size    from the �ne image

feature and select the �ne point feature of each point group center, and then compute the �ne similarity map between

each point group center and the extracted local patch. Since the extracted local �ne image patch has a relative small size (

), a soft-argmax operation is applied over the entire �ne similarity map to determine the �nal corresponding 2D

pixel for each 3D point group center. Finally, we estimate the camera pose using RANSAC + EPnP[29][30]  based on the

predicted 2D-3D correspondences. For cases where one single image is associated with multiple point clouds, an

additional RANSAC + EPnP step is performed using all inliers from each image-point cloud pair to compute the �nal

camera pose.

For experiments on the KITTI Odometry[15] and Nuscenes[16] datasets, we ensure a fair comparison by adopting the same

procedures as in previous works[41][8][9] to generate image-point cloud pairs.

In the KITTI Odometry dataset[15], there are 11 sequences with ground-truth camera calibration parameters. Sequences

0-8 are used for training, while sequences 9-10 are reserved for testing. Each image-point cloud pair was selected from

the same data frame, meaning the data was captured simultaneously using a 2D camera and a 3D LiDAR with �xed

relative positions. During training, the image resolution was set to 160 512 pixels, and the number of points was �xed at

20480. The model was trained with a batch size of 8 until convergence. The initial learning rate is set to 0.001 and is

multiplied by 0.5 after every 5 epochs.

For the NuScenes dataset[16], we utilized the o�cial SDK to extract image-point cloud pairs, with the point clouds being

accumulated from the nearby frames. The dataset includes 1000 scenes, of which 850 scenes were used for training and

s = 16,M = 512) C = 256

(H/2 × W/2 × )C ′ (N × )C ′

H W N = 64C ′

0.1 m

= = = 1λ1 λ2 λ3

Latt r mp mp γ

θlow θup dlow dup

Fcoarse
P

w × w

w = 8

×
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150 for testing, following the o�cial data split. The image resolution was set to 160 320 pixels, and the number of

points was �xed at 20480.

Appendix E. More Visualization Results

In this section, we present more localization results. Figure 10 and Figure 12 compare the localization performance of

Tra�cLoc with other baseline methods on the KITTI Odometry dataset[15] and all three test splits of the Carla Intersection

Dataset. Our Tra�cLoc predicts a higher number of correct point-to-pixel correspondences, and the point cloud

projected with the predicted pose exhibits greater overlap with the image, demonstrating superior alignment.

Figure 10. Qualitative results of our Tra�cLoc and other baseline methods on the KITTI Odometry dataset[15]. (a1) shows

predicted correspondences and (a2) visualizes the point cloud projected onto the image plane. The �rst column provides the

input point cloud, the input image and the ground-truth projection for reference.

×
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Figure 11. Example point clouds and images data of our Carla Intersection Dataset. T1 means   and Int1 means 

. Since all instances of the   scenario across di�erent worlds are included in the test set, we focus on

showcasing their testing images (e.g. T1 Int1 and T10 Int1). For other intersections, we present the training images instead.

T own01

Intersection1 Intersection1
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Figure 12. Qualitative results of our Tra�cLoc and other baseline methods on the Carla Intersection Dataset. The point cloud is

projected onto a 2D view and displayed above the image, with point colors indicating distance. The proposed Tra�cLoc

achieves superior performance, with more correct (green) and fewer incorrect (red) point-to-pixel pairs. (a1) shows predicted

correspondences on   and (a2) visualizes the point cloud projected onto the image plane. Similarly, (b1) and (b2) show

results on  , (c1) and (c2) show results on  . The �rst column provides the input point cloud, the input

image and the ground-truth projection for reference.

TestT1−T7

TestT1−T7hard TestT10
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