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The growing importance of textual and relational systems has driven interest in enhancing large

language models (LLMs) for graph-structured data, particularly Text-Attributed Graphs (TAGs),

where samples are represented by textual descriptions interconnected by edges. While research has

largely focused on developing specialized graph LLMs through task-speci�c instruction tuning, a

comprehensive benchmark for evaluating LLMs solely through prompt design remains surprisingly

absent. Without such a carefully crafted evaluation benchmark, most if not all, tailored graph LLMs

are compared against general LLMs using simplistic queries (e.g., zero-shot reasoning with LLaMA),

which can potentially camou�age many advantages as well as unexpected predicaments of them. To

achieve more general evaluations and unveil the true potential of LLMs for graph tasks, we introduce

Graph In-context Learning (GraphICL) Benchmark, a comprehensive benchmark comprising novel

prompt templates designed to capture graph structure and handle limited label knowledge. Our

systematic evaluation shows that general-purpose LLMs equipped with our GraphICL outperform

state-of-the-art specialized graph LLMs and graph neural network models in resource-constrained

settings and out-of-domain tasks. These �ndings highlight the signi�cant potential of prompt

engineering to enhance LLM performance on graph learning tasks without training and o�er a

strong baseline for advancing research in graph LLMs.
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1. Introduction

Text-Attributed Graphs (TAGs), which integrate textual descriptions as node attributes with relational

edges, form the foundation for understanding modern complex systems and relationships[1][2]. Deep

learning-based graph reasoning (GR) approaches, exempli�ed by graph neural networks (GNNs)[3][4]

[5][6][7][8], have achieved remarkable success in many TAG-related reasoning tasks, such as node

classi�cation[9][10][11] and link prediction[7][8][12][13].

However, most GNN-based approaches face two major hurdles: 1. Limited generalization across

di�erent graphs, particularly in cross-domain scenarios. GNN models are typically tailored to

speci�c graph structures they were originally trained on, and when applied to novel or cross-domain

reasoning tasks, they exhibit a marked decline in performance[14][15]. Resolving this often requires

�ne-tuning or full retraining, resulting in substantial computational overhead and deployment

e�orts. 2. Performance depends heavily on labeled training graphs. While GNNs perform well in

supervised settings, their e�cacy drastically diminishes in limited-label scenarios. Although graph

few-shot learning[16] has been introduced to mitigate this issue, it still requires a signi�cant number

of related learning tasks to adequately train the model for transfer to unseen tasks.

To address these challenges, recent research has shifted from GNNs to graph LLMs[17][18][19][20][21]

[22][23], most of them leverage LLMs’ strong generalization capabilities for graph-related tasks

through in-context learning (ICL)[24]. Recent research on knowledge graph foundation models has

also explored the idea of in-context learning for reasoning tasks[25][26]. The key challenge for graph

LLMs is incorporating graph structures into queries. Current approaches tackle this by either

heuristically converting graphs into node sequences[18][27] or embedding graph structures into hidden

tokens via an auxiliary GNN[17][19][20][21], which are then integrated into query templates for graph

reasoning. By �ne-tuning additional neural components or the general LLM backbones using graph-

speci�c instruction tuning, these specialized methods have demonstrated superior zero-shot ICL

capabilities compared to standard GNN studies.

Despite the promising advances in specialized graph LLMs, their evaluation often relies on overly

simplistic LLM baselines[17][18], such as zero-shot reasoning with models like LLaMA or ChatGPT.

Moreover, these models are typically assessed in in-domain scenarios and struggle to fully utilize

limited labeled data (i.e., few-shot ICL), a capability that general-purpose LLM can readily support
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through e�ective prompt design. In the absence of a well-constructed evaluation benchmark,

comparisons between specialized graph LLMs and general LLMs remain underexplored and poorly

designed, potentially camou�aging many advantages as well unexpected predicaments of graph

LLMs. This raises important questions: Can general-purpose LLMs be e�ectively adapted to tackle real-

world graph reasoning tasks (e.g., node classi�cation and link prediction) solely through in-context

learning? Have we truly made progress in the development of graph LLMs?

To address these questions, we propose GraphICL: Benchmarking Large Language Models for Graph

Reasoning via In-Context Learning. In our framework, GraphICL refers to the design of task-speci�c

prompts following a uni�ed GraphICL template across diverse graph reasoning tasks. GraphICL

facilitates graph reasoning in LLMs by leveraging four core components: task description, anchor

node text, structure-aware information, and labeled demonstrations. By incorporating anchor nodes

and their  -hop neighbors, we enable zero-shot graph reasoning, utilizing the inherent relationships

between proximate nodes. Through strategical selection of neighbors and demonstrations, such as the

top   most similar or in�uential nodes, we optimize few-shot reasoning, releasing the potential of

LLMs. GraphICL pushes the boundaries of LLMs’ capabilities in graph tasks, enabling performance

that was previously unattainable. Our key contributions are summarized as follows:

Novel Research Problem. We investigate whether better graph reasoning (GR) results can be

achieved by simply prompting LLMs through GraphICL, without additional training, and whether

this approach can outperform both supervised GNNs and specialized Graph LLMs in both in- and

cross-domain scenarios.

A Comprehensive Prompt Benchmark for LLM in Graph Reasoning. Previous comparisons

between general LLMs and specialized graph models have been biased by underdeveloped prompts,

which fail to harness the full potential of LLMs. We propose GraphICL, a comprehensive prompt set

that encompasses graph structure, labeled demonstration, and diverse evaluation tasks.

Systematic Evaluation. We conducted extensive experiments on 9 datasets, encompassing both in-

domain and cross-domain scenarios, and benchmarked our approach against state-of-the-art

graph LLMs as well as traditional supervised GNN models. Additionally, we performed

comprehensive ablation studies to assess the impact of various prompt con�gurations within the

GraphICL framework.

Promising Observations. Our extensive evaluation yielded several valuable insights that can inform

the future application of LLMs in graph reasoning, particularly through in-context learning. These
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�ndings also establish a solid foundation for advancing research in graph LLMs.

2. Related Work

Specialized Graph LLMs. Building on the success of large language models (LLMs), the application of

LLMs to graph reasoning tasks has gained considerable attention. The core idea is to incorporate

graph structures into queries and then instruction-tune the LLMs using graph-related tasks. Based on

graph transformation strategies, existing e�orts can be broadly categorized into two approaches:

heuristic and learnable. The heuristic approach[18][28][27] converts graphs into node sequences using

manually designed transformation rules[27]  or random walks[18]. In contrast, the learnable

approach[17][19][20][21]  encodes graph structures into hidden sequences through additional GNN

encoders, which are either pre-trained[21][29][17] or jointly �ne-tuned[19][20] with the LLM backbone

during instruction tuning. While these specialized graph LLMs inherit the zero-shot in-context

learning (ICL) capabilities of general LLMs, they struggle to fully utilize few-shot demonstrations for

performing few-shot ICL on graphs. This limitation hinders their ability to adapt e�ectively to tasks

requiring additional contextual information.

General-purpose LLM for Graph Reasoning. In parallel, another line of research represents graph

structures using natural language descriptions, combining them with task-speci�c templates to query

general-purpose LLMs. Notable works such as[30][14][31][32][33][34][35]  have advanced this area,

primarily focusing on using LLMs for graph augmentations[36][32][35]. While some e�orts[30]  have

explored graph structure’s role in LLM inference through both zero-shot and few-shot ICL, they

remain limited in terms of prompt template diversity, neighborhood and labeled demonstration

selection, evaluation scenarios, and the breadth of GR tasks.

In contrast, we introduce a comprehensive prompt template design for graph reasoning tasks, where

the prompts in[30][33] can be seen as a subset of our approach. More importantly, we benchmark the

performance of specialized graph LLMs and general-purpose LLMs equipped with our prompt suite,

o�ering a timely and fair comparison of recent specialized graph LLM studies while providing insights

into their strengths and weaknesses relative to general LLMs utilizing prompt design.
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3. Problem Statement

Given a Text-Attributed Graph  , where   represents nodes,    is the adjacency matrix,

and   contains the node texts, along with a LLM  , this paper aims to leverage Graph In-Context

Learning (GICL) to generate relevant GICL-Prompts  , which are the outputs of  , as inputs for

the LLM   to solve two classic graph reasoning tasks: node classi�cation (NC) and link prediction

(LP).

Node Classi�cation via GICL. For node classi�cation, we can use two di�erent GICL methods to

predict the label   of node   in Graph  .

i. NC-Zero-shot: Use only the anchor node text  , or include neighboring node texts  , as the

main content to generate the GICL-Prompt, where  . This prompt is then fed into

the LLM to obtain the prediction,  .

ii. NC-Few-shot: Building upon the zero-shot template, we further incorporate neighboring nodes’

texts    and their labels  , or additionally include demonstration texts    and labels  , to

form a more informative GICL-Prompt, where  . This enriched

prompt is then input into the LLM to generate the �nal prediction,  .

Link Prediction via GICL. For link prediction between nodes   and  , we can also utilize these two

approaches:

i. LP-Zero-shot: We begin by using the textual information of the two nodes,    and  , and

optionally incorporate neighboring node texts    to construct a GICL-Prompt, 

. This prompt is then passed into the LLM to predict the existence of a link, 

.

ii. LP-Few-shot: To further improve performance, we introduce demonstration texts    and

corresponding link relationships to enrich the Prompt,  . This more

comprehensive prompt is then used by the LLM to generate a re�ned link prediction,  .

4. Prompt Design Driven by Graph In-Context Learning

In this section, we will explain how each type of graph in-context learning method is implemented

within our framework. Our GraphICL prompt template consists of 4 fundamental components: anchor

node text, task description, structure-aware information, and demonstrations, as shown in Figure  1. By

G = (V, A, T ) V A

T f(⋅)

P GP (⋅)

f(⋅)

yi Vi G

Ti T ′

P = GP ( , )Ti T ′

= f(P )yp

T ′ Y ′ T ′′ Y ′′

P = GP ( , , , , )Ti T ′ Y ′ T ′′ Y ′′

= f(P )yp

Vm Vn
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T ′
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= f(P )yp
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combining these 4 components, we can generate 55 di�erent prompt templates. These templates are

applied to 2 classic graph reasoning tasks on 9 datasets. By comparing with multiple models, we

demonstrate the signi�cant boost our GICL template provides to various of LLMs. Section 4.1and 4.2

explain the generation and function of each component of the prompt respectively. Section 4.3 shows

how di�erent modules of the prompt are combined to form the �nal input for the LLMs.

Figure 1. The overall framework of our GraphICL. We implement various graph in-context learning

templates by combining basic content with optional enhancing content. These templates are then input as

prompts into large language models to obtain relevant prediction results.

4.1. Basic Content

The basic content primarily conveys the information speci�c to the anchor node, ensuring that the

LLM comprehends the graph reasoning task it is expected to execute. It constitutes a critical

component of the general prompt and serves as the foundational text in GraphICL.

Text of Anchor Nodes. The text associated with the anchor node can vary, such as the title and

abstract of a paper[37] or the description of a product[38]. In the context of link prediction, however,

the anchor nodes refer to both the source and target nodes of the predicted edge. The corresponding

text in this case is the concatenated text of these two nodes.

Task Description. For di�erent graph reasoning tasks, it is crucial to explicitly de�ne the task

objectives for the LLMs. This guiding piece of text is referred to as the task description. In node
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classi�cation tasks, for instance, LLMs may not inherently recognize the speci�c names of categories

within the dataset. Therefore, we explicitly provide the names of all labels within the task description.

Typically, the task description serves as the system prompt[39] for LLMs.

4.2. Optional Enhancing Content

While the basic content provides the essential information needed for LLMs to perform fundamental

graph zero-shot learning, it alone is insu�cient. To enhance the LLM’s ability to reason e�ectively,

additional structural information and other relevant data must be integrated. This supplementary

layer of information, known as Enhancing Content, serves to deepen the LLMs’ understanding and

reasoning capabilities.

Structure-Aware Information. Graph structures exhibit complex dependencies, prompting GNNs to

employ message passing for gathering and updating node information from neighbors, enriching

node representations[5]. In graph in-context learning, we simulate this by providing textual

information from an anchor node’s neighbors for a well-established LLM, e�ectively enabling

message passing at the textual level. We focus on 1-hop neighbors for capturing immediate, direct

in�uences on the target node, representing short-term dependencies, and 2-hop neighbors due to

their importance in graph reasoning, as GNNs typically utilize two layers[32]. By incorporating 1-hop

or 2-hop neighbors’ text, our framework enriches structure-aware information and enhances the

�exibility of prompt design.

The strategy for selecting neighbors is also crucial, as there is typically no one-size-�ts-all approach

that achieves optimal results across all graph reasoning tasks. Below, we will introduce three selection

strategies employed in our work:

1. Random Selection: Randomly selecting   nodes from the  -hop neighbors of the anchor node,

treating each neighbor as equally contributing to the reasoning process.

2. Similarity-based Selection: Calculating cosine similarity between the anchor node and  -hop

neighbors, selecting the Top    most similar neighbors, prioritizing those with higher textual

relevance to the anchor node.

3. PageRank-based Selection: Computing PageRank scores[40]  for each  -hop neighbor, selecting

the Top   based on their importance within the graph structure.

M k
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M
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Few-shot Demonstrations. Demonstrations are a crucial component of few-shot learning for LLMs,

with their design tailored to speci�c downstream tasks. These demonstrations are intended to aid

LLMs in gaining a deeper understanding of the tasks and enhancing their reasoning abilities[41]. For

tasks such as node classi�cation and link prediction, additional text from other nodes, along with

their corresponding labels, must be provided to facilitate the LLMs’ inference.

When selecting demonstrations, we employ the same three strategies used for neighbor selection:

random selection, similarity-based selection, and PageRank-based selection. The selection scope for

demonstrations can be either "Global", where    demonstrations are chosen from the training set

using these selection methods, or "Class-Aware", where one demonstration is provided for each class

label. In the latter case, the selection method for each demonstration of each label follows one of the

aforementioned three strategies.

4.3. Graph In-Context Learning Prompting

This section discusses how to integrate the four components of the graph in-context learning prompt

for di�erent graph reasoning tasks. Examples are provided in Figure 2 for further illustration.

NC-Graph Zero-shot Prompting: The zero-shot prompt includes the Basic Content, which consists of

the anchor node’s text and a description of the classi�cation task. Structure-aware information can be

optionally added as enhanced content but without including labels of  -hop neighbors.

NC-Graph Few-shot Prompting: Similar to zero-shot, the few-shot prompt also includes Basic

Content.Additionally, it provides non-neighbor labeled demonstrations as enhanced content;

moreover, the enhanced content can also include neighbor information with labels. Alternatively,

labeled neighbor information can also be used as a demonstration for few-shot learning, where

structure-aware information is omitted to avoid redundancy.

LP-Graph Zero-shot Prompting: Providing the textual information of both the start and end nodes of

the target relationship, with the option to include neighbor information for one of the nodes.

LP-Graph Few-shot Prompting: Building on zero-shot template, it adds connection relationships

between node pairs from the training set, along with their textual information. The selection of these

relationships follows the three methods outlined in section 4.2. Here, the PageRank score of an edge is

de�ned as the average PageRank of its two end nodes, while the edge embedding is computed as the

average of their embeddings. Unlike in node classi�cation, the relationships between a node and its

M

k
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neighbors cannot be directly used as demonstrations, as they are implicitly encoded within the

structure-aware information.

Figure 2. Examples of graph in-context learning prompting in di�erent graph reasoning tasks.

5. Experiments

In this section, we present a rigorous evaluation of specialized graph LLMs and general-purpose LLMs

equipped with our GraphICL. The experiments are divided into two key parts: a comparative analysis

of GraphICL against state-of-the-art graph LLMs across various scenarios, and an exploration of how

di�erent GraphICL con�gurations impact the performance of general-purpose LLMs. Addtional

details (hyperparameter settings and results) can be found in Appendix A.3.
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Table 1. In-domain node classi�cation results: For MLP, GCN[1], RevGAT[3], and SAGE[4], we uniformly

use BERT embeddings[42]. Acc(%) is used as the evaluation metric, and we calculate the relative di�erence

between the best results of our method and others. For each LLaMA model in GraphICL, S1 and S2 denote

the �rst- and second-best GraphICL prompts. "NA" indicates that the result is unavailable. The results in

blue and red respectively represent the best baseline results under the semi-supervised and supervised

settings. For further explanation and settings, please refer to the Appendix A.3.4.

5.1. Experiment Con�gurations

Datasets. We conducted experiments on two major types of datasets: Citation Networks and Amazon

Review Datasets. The Citation Networks include PubMed[43], Cora[44], and OGB-Arxiv[45], while the

Amazon review datasets include OGB-Products[45], Amazon-Photo, Amazon-History, Amazon-

Computers, Amazon-Sports-Fitness and Amazon-Children-Book[46]. For speci�c data splits, please

refer to Appendix  A.3.1. For the results of Amazon-Photo, Amazon-History and Amazon-Children-

Book, please refer to Table 10 and Table 12 in Appendix.
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Large Language Models. We utilized a total of three language models for testing: LLaMA2-13B-Chat1,

LLaMA3-70B-Instruct2, and GPT-4o3. Due to budget constraints, we did not conduct comprehensive

experiments with GPT-4o.

Baselines. In our performance evaluation, we take into account a range of state-of-the-art methods

for a thorough assessment. (i) The �rst category consists of MLP, which utilizes a Multilayer

Perception for prediction. (ii) The second category includes prominent GNN encoders, such as

GraphSAGE[3], GCN[1], RevGAT[3]. (iii) The third category encompasses in�uential specialized Graph

LLMs, including LLaGA (ND, HO)[47], GraphGPT[17], GraphTranslator[19], and GraphPrompter[20]. (iv)

The last category consists of pure zero-shot LLMs, which can also be viewed as methods that input

basic content into LLMs for reasoning. In our experiments, all the settings used for GraphICL are

explained in detail in the Appendix A.2.

5.2. Multi-scenario Graph Reasoning Testing

We begin by analyzing the node classi�cation results, focusing on two scenarios: in-domain and

cross-domain. In the in-domain scenario, testing is performed on datasets used during training,

whereas in the cross-domain scenario, the test datasets have no overlap with the training data.

5.2.1. In-Domain Node Classi�cation

RQ 1. Can GICL-prompted LLMs outperform state-of-the-art GNNs and specialized GraphLLMs in the in-

domain scenario?

Experiment Settings. We used six datasets (see Table 1) to evaluate our GraphICL method combined

with LLaMA2 and 3 (as described in Section 5.1), comparing it against various GNNs, Graph LLMs, and

LLM methods. For LLM-based methods, only the single most likely label was predicted, and accuracy

was calculated accordingly.

Observation 1. Equipped with GraphICL, general-purpose LLMs can achieve competitive or even superior

performance compared to specialized graph LLMs in both semi-supervised and supervised settings in the

in-domain scenario. Speci�cally, in the semi-supervised setting, GraphICL achieves an average

relative improvement of around 20% across datasets, with a signi�cant 39.88% increase on the

Computers dataset compared to GraphPrompter, showcasing its robust performance. Even in the

supervised setting, GraphICL continues to outperform most graph LLMs and all GNNs, consistently

demonstrating its superiority. Moreover, it exhibits a marked improvement in reasoning capabilities
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over zero-shot LLMs, further solidifying its e�ectiveness and adaptability across di�erent learning

paradigms and graph reasoning tasks.

Table 2. Cross-Domain results of node classi�cation. In this setting, none of the Graph LLM methods were

trained or �ne-tuned on the training set of the corresponding dataset being tested. Below, "NA" indicates

"Not Applicable," meaning the corresponding dataset is part of the training set. The results in red

represent the best baseline results.

5.2.2. Cross-Domain Node Classi�cation

RQ 2. Can GICL-prompted LLMs excel over top GNNs and GraphLLMs in Cross-Domain tasks with

mismatched training and testing data?

Experiment Settings. We used the same six datasets as the in-domain testing phase. Given that GNNs

lack robust cross-domain capabilities, this experiment focused on directly comparing GraphICL with

tailored and specialized GraphLLMs.

Observation 2. In the cross-domain scenario, GraphICL enables LLaMA to outperform tailored Graph LLMs

without requiring additional training, demonstrating a signi�cant advantage. For the Graph LLM

methods, we employed a diverse combination of mixed training sets to enhance their cross-domain

capabilities. However, despite these e�orts, both Graph LLM and zero-shot LLM methods fall

considerably short, with the former showing a relative performance gap exceeding 101%, showcasing

its potential to adapt LLMs to unseen graph data and broader applications.
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5.2.3. Link Prediction Testing

For link prediction, the substantial increase in text data signi�cantly extends the testing time, making

it impractical to perform exhaustive evaluations across all datasets. Therefore, we selected Cora for

multi-scenario testing, similar to the approach used for node classi�cation, to maintain consistency

and ensure a thorough evaluation. As shown in Table  3, our GraphICL method consistently achieves

the best performance compared to other models. Notably, in the supervised setting, it outperforms the

best result from the remaining methods, including LLaGA-HO, by 1.26%, highlighting its robustness.

This further con�rms the observations made in the node classi�cation task, showcasing GraphICL’s

superior generalization and reasoning capabilities across various graph-related tasks.
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Train → Test Method Accuracy

Cora (Semi-Supervised)

↓

Cora

GCN 58.97

GraphSAGE 67.68

GraphGPT -

LLaGA-ND 58.38

LLaGA-HO 59.12

LLaMA2 75.00

LLaMA3 84.11

GraphICL (Ours) 88.08

Cora (Supervised)

↓

Cora

GCN 81.59

GraphSAGE 79.15

GraphGPT 80.26

LLaGA-ND 83.79

LLaGA-HO 86.82

LLaMA2 75.00

LLaMA3 84.11

GraphICL (Ours) 88.08

Arxiv+PubMed

↓

Cora

GCN 56.73

GraphSAGE 58.92

GraphGPT 50.74

LLaGA-ND 86.47

LLaGA-HO 87.35

LLaMA2 75.00

LLaMA3 84.11

GraphICL (Ours) 88.08
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Table 3. Link prediction results in Cora. For GCN and GraphSAGE, we use sbert embeddings[48].

5.3. Impact of GraphICL Con�guration

Factors such as the type of LLMs using the GICL method and the inclusion of structural information

can a�ect performance. In this section, we will explore these main in�uencing factors.

5.3.1. LLMs Comparison with GraphICL

RQ 3. How does the performance vary when di�erent LLMs are paired with the same GICL method across

various diverse datasets or tasks?

Experiment Settings. We selected the Cora and Sports datasets to compare the results of three

di�erent LLMs presented in Table  4 for node classi�cation. To reduce testing costs, we randomly

sampled 1,000 data points from the test set of each dataset, and for each dataset, we chose one GICL

method for evaluation.

Observation 3. Based on the results, it is reasonable to infer that more capable LLMs tend to perform better

when integrated with GICL for graph reasoning (GR). We also anticipate that future large language models

will be incorporated into our GICL benchmark, enabling a deeper investigation of their potential in GR tasks.

These di�erences in LLMs’ capabilities are re�ected in the consistent ranking of results across both

datasets in Table 4, where GPT-4o outperforms the other models by 1%-16% on both datasets. This

demonstrates the signi�cant advantage of GPT-4o in handling graph-related reasoning tasks more

e�ectively. Such performance highlights its superior ability to generalize across varying datasets

compared to other competing LLMs.
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Dataset LLM

GraphICL

Acc(%)

Cora

GPT-4o 1-hop Similarity global Pagerank 76.60

LLaMA3-70B-Instruct 1-hop Similarity global Pagerank 75.40

LLaMA2-13B-Chat 1-hop Similarity global Pagerank 70.60

Sports

GPT-4o 1-hop Random global Random 91.00

LLaMA3-70B-Instruct 1-hop Pagerank global Random 84.80

LLaMA2-13B-Chat 1-hop Pagerank global Random 75.90

Table 4. The node classi�cation accuracies of di�erent LLMs under several di�erent GraphICL methods on

two dataset.   represents speci�c neighborhood information in structure-aware,   denotes the

neighbor selection method,   denotes the type of demonstrations, and   denotes the method of

selecting demonstrations.

5.3.2. The Impact of Structural Information

RQ 4. How critical is structural information in graph reasoning tasks?

Experiment Settings. We conducted evaluations on both node classi�cation and link prediction tasks,

selecting the most popular dataset for each task as shown in Table 5. The test sets for both datasets

were the same as those described in Section 5.1. We employed LLaMA3-70b-Instruct as the backbone

for our GraphICL framework.

Observation 4. Structural information via GraphICL signi�cantly boosts performance, particularly in

datasets where neighbor relationships play a crucial role, such as citation networks. As illustrated in

Table  5, graph prompts that incorporate structure-aware neighbor information consistently yield

better results compared to those that omit such information. This trend is observed across both graph

reasoning tasks, highlighting the importance of leveraging structural context in improving

performance. Furthermore, the degree of improvement varies depending on whether 1-hop or 2-hop

neighbors are selected, with di�erent levels of structural depth contributing uniquely to the reasoning

S − A SSM Demo DSM

S − A SSM

Demo DSM
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process. These �ndings underscore the value of integrating graph structure into prompts, enabling

models to capture richer contextual relationships and make more informed predictions.

Dataset Task GraphICL Acc(%)

Arxiv NC

XXGR 30.36

+107.83% +111.85%1SGR 63.10

2SGR 64.32

Cora LP

XXCR 71.91

+4.29% +10.83%1RCR 75.00

2RCR 79.70

Table 5. Comparison of results with and without structure-aware information. For GraphICL, we adopted

the abbreviation format(shown in GraphICL column) as presented in Table 4, with further details available

in the Appendix A.2.

5.3.3. Further Analysis

Similar Neighbors Boost Node Classi�cation. GraphICL provides three neighbor selection strategies:

random, pagerank-based, and similarity-based. To evaluate their e�ectiveness, we employed

LLaMA3-70B-Instruct across four diverse datasets and calculated the average accuracy achieved by

each method. As presented in Table 6, the similarity-based method consistently delivered the highest

accuracy among the three strategies. This superior performance can be attributed to its focus on text

similarity, which e�ectively identi�es neighbors with similar content that often share the same labels.

This alignment allows LLMs to extract and leverage meaningful textual cues, facilitating more precise

predictions and improving reasoning capabilities within graph-based tasks. Furthermore, by

emphasizing content-related connections, the similarity-based approach ensures that the model

considers the most relevant information, enhancing its ability to generalize across datasets and

scenarios.

Chain-of-Thought: Not Always Bene�cial. We incorporated Chain-of-Thought (CoT) prompting into

GraphICL by appending "Let’s think step by step" to the prompt[49], intending to improve the model’s

↑1−hop ↑2−hop
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reasoning capabilities by guiding it through a structured thought process. However, the results

indicate that the impact of CoT is inconsistent and varies depending on the speci�c method employed.

As shown in Table 7, for the 1RGR template, CoT led to a notable improvement in accuracy, increasing

it from 75.46% to 78.41% (+2.95%), highlighting its potential to enhance reasoning in certain

scenarios. In contrast, the 1SCR template experienced a signi�cant decline in performance, with

accuracy dropping from 70.85% to 67.16% (-3.69%) when CoT was applied. When considering the

overall results across all 55 settings, the average accuracy without CoT was 65.53%, while with CoT it

decreased slightly to 65.10% (-0.43%). These �ndings suggest that while CoT prompting is not

universally e�ective and may even hinder performance in other cases. This variability underscores the

importance of understanding task-speci�c and method-speci�c dynamics when integrating CoT

strategies into graph-related tasks.

Mechanism Cora PubMed Photo History

Random 68.45 67.25 50.30 40.13

Pagerank 68.40 67.16 46.66 38.10

Similarity 68.76 67.63 59.06 41.97

Table 6. The average accuracy of di�erent neighbor selection mechanisms across four datasets.
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GraphICL CoT Acc(%)

1RGR No 75.46

+2.95%

1RGR Yes 78.41

1SCR No 70.85

-3.69%

1SCR Yes 67.16

Average No 65.53

-0.43%

Average Yes 65.10

Table 7. Accuracy comparison of di�erent GraphICL Methods on Cora with and without CoT. "Average"

represents the mean accuracy of all 55 settings.

6. Conclusions

We introduce GraphICL, a comprehensive and versatile prompt benchmark designed for graph in-

context learning using LLMs across a diverse range of graph inference tasks. Through extensive

experimental evaluations, we demonstrate that GraphICL empowers LLMs to achieve exceptional

performance across multiple datasets, often surpassing state-of-the-art supervised GNNs and

specialized graph LLMs in various scenarios. These results highlight the potential of in-context

learning to advance graph reasoning. Looking ahead, we aim to expand our benchmark by

incorporating additional LLMs and extending the scope of graph-related tasks, with the goal of

pushing the boundaries of LLM capabilities in tackling increasingly complex and nuanced graph-

based challenges.

7. Limitation

We introduce GraphICL, which leverages graph in-context learning to enhance the performance of

LLMs in graph reasoning. In terms of breadth, we acknowledge the need to test our template on more

classic graph tasks. Additionally, to expand our benchmark, incorporating more large language

models is essential for further enrichment. As for depth, given the complexity of graph structures, we

↑CoT
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need to explore how to better integrate structural information with demonstrations in the prompts,

especially for text graphs of varying natures, such as molecular graphs, to achieve better results.

Appendix A.

A.1. General Prompt Template

The prompt inputted into LLMs consists of a system prompt, user content, and some special

characters. In this section, we will showcase the system prompts and user content we designed for

various tasks and datasets.

System Prompt Design. The system prompt is often used to make the LLMs aware of the task they are

about to perform. Table  13 presents the system prompts used for node classi�cation tasks across

di�erent datasets, while Table  14 shows the system prompts for link prediction tasks in two major

types of datasets.

User Content Design. In GraphICL, user content is used to record information other than the task

description, such as structure-aware text information, anchor node text information, and

demonstrations. The speci�c templates are shown in Table 16 and Table 15.

A.2. Methodology

For the zero-shot setting, we �rst provide the text information of the anchor nodes and implement

seven di�erent structure-aware methods: "XX," "1R," "1P," "1S," "2R," "2P," and "2S." In this

context, "1" and "2" represent one-hop and two-hop neighbor information, respectively, which is

incorporated into the structure-aware content.

In the few-shot setting, there are multiple approaches to implementing demonstrations. In the

structure-aware con�guration, six methods are used: "1’R," "1’P," "1’S," "2’R," "2’P," and "2’S."

Here, "1’" and "2’" indicate that one-hop and two-hop neighbors are used as demonstrations. In the

non-structure-aware con�guration, seven methods are applied: "GR," "GP," "GS," "CR," "CP,"

"CS," and "XX."

The absence of "XX" in the structure-aware category is due to the fact that "XX" in the structure-

aware context is equivalent to "XX" in the non-structure-aware context. Therefore, "XX" is counted

only in the non-structure-aware group. Additionally, "G" and "C" refer to the demonstration

selection scope: "G" indicates that demonstrations are selected without regard to labels, while "C"
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ensures that one demonstration is selected per label from the training set. The letters "R," "P," and

"S" indicate the selection mechanisms—random, PageRank, and similarity, respectively.

In total, there are 55 possible combinations: 7 structure-aware methods combined with 7

demonstrations, plus 1 structure-aware "XX" combined with 6 non-structure-aware demonstrations,

resulting in   methods.

For the GICL settings we used in Table 1 and Table 2, please refer to Table 8. The GICL setting we used

in the link prediction test (Table 3) is "1SXX".

Model Computers Sports PubMed Cora Arxiv Products

GraphICL-LLaMA3-S1 1RCP 1RGP 2SCS 1RGR 1RCP 1RGS

GraphICL-LLaMA3-S2 1RGP 1RGS 2SCR 1SCP 1RGR 1RGR

GraphICL-LLaMA2-S1 1'SXX 2SXX 2'SXX 2SGR 2SCP 2SCP

GraphICL-LLaMA2-S2 1'RXX 1SGS 2'RXX 1SGR 1SCP 1'SXX

Table 8. The GICL settings of in-domain node classi�cation results.

A.3. Experiments

A.3.1. Evaluation Datasets

The statistics for all TAG datasets used in this study can be found in Table 9. In our node classi�cation

experiments, data splitting was rigorously conducted according to established protocols to ensure

consistency and comparability of the results. For the Cora, PubMed and OGB-Products datasets, we

followed the splits speci�ed by TAPE[50]. For OGB-Arxiv dataset, we used the standard split provided

by the OGB framework[45], ensuring strict compliance with the benchmark’s guidelines. For the other

Amazon datasets, we applied a 6:2:2 ratio for training, validation, and testing sets.

7 × 7 + 1 × 6 = 55
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Dataset #Nodes #Edges #Classes

Cora 2,708 5,429 7

PubMed 19,717 44,338 3

OGB-Arxiv 169,343 1,166,245 40

OGB-Products (subset) 54,025 74,420 47

Amazon-Sports 173,055 1,946,555 13

Amazon-Computers 87,229 721,107 10

Amazon-Photo 48,362 500,939 12

Amazon-Children 76,875 1,631,453 24

Amazon-History 41,551 358,574 13

Table 9. Statistics of the TAG datasets.

In the supervised setting, the splits for Cora and PubMed were based on TAPE’s guidelines. For OGB-

Products, we sampled 5000 instances from the testing set based on the TAPE split. Similarly, we also

sampled 5000 instances from the standard testing set. For other Amazon datasets, we followed the

6:2:2 split strategy.

In the semi-supervised setting, for Cora and PubMed, we adopted the standard semi-supervised

splits[51], while for OGB-Products, we applied a 20-shot split. For all Amazon datasets, a 300-shot

split was used. Additionally, we ensured that the testing sets in the semi-supervised setting were

consistent with those in the supervised setting.

For the link prediction evaluation, in the supervised setting, we followed the same splits as used in

LLaGA[47]. In the semi-supervised setting, we randomly sampled 5% of the examples from the

supervised training set, ensuring an equal number of positive and negative samples, while keeping the

test set unchanged.
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A.3.2. Computing Environment and Resources

We leveraged the vLLM package[52] for inference of large language models. Locally, we deployed the

LLaMA2-13B-Chat model on a single NVIDIA A100 80GB GPU and the LLaMA3-70b-Instruct model on

two of these GPUs to accommodate its greater computational requirements. For GPT-4o inference, we

utilized the OpenAI API.

A.3.3. Number of Neighbors and Examples

There is a length constraint on the LLMs’ input window. Within this constraint, we determined that a

maximum of 6 neighbors or demonstrations can be included in node class�cation. In link prediction,

we select one of the nodes and provide information about up to six of its neighbors, along with three

additional demonstrations (if available). We utilize GIA[53] embeddings to compute similarity.

A.3.4. Node Classi�cation Results

In Table 1, we report results for the supervised setting of GraphGPT, as the available checkpoints only

support joint supervised training on the PubMed and OGB-Arxiv datasets, preventing us from

evaluating its semi-supervised performance. And for Table  3, the checkpoint for semi-supervised

training on cora is also missing. Similarly, GraphTranslator’s self-supervised training does not

involve label information from the dataset, making it unsuitable for division into supervised or semi-

supervised categories. Therefore, we include its results both under the semi-supervised and

supervised setting. For all datasets listed in Table  1, in addition to using BERT embeddings for MLP

and GNN models, we also employed BoW[54]  and GIA[53]  embeddings in both semi-supervised and

supervised settings, as shown in Table 10.

For LLaGA, GraphPrompter, GraphTranslator, and GraphGPT, we utilized Vicuna-7b-v1.5-16k,

LLaMA2-13b-Chat-HF, ChatGLM6B, and Vicuna-7B-v1.5 as their respective LLM backbones.

Additionally, for LLaGA, GraphTranslator, and GraphGPT, we used the same types of embeddings as in

the original works, while for GraphPrompter, we tested using GIA embeddings[32]. In the in-domain

experiments, we adopted a ’single focus’ training approach for all models except GraphGPT, meaning

that each model was trained on an individual training set and tested on its corresponding test set. For

GraphGPT, we directly loaded the model parameters from its mixed training setup for testing. In the

cross-domain experiments, all models were trained on multiple training sets jointly. Apart from
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LLaGA, which followed its original mixed training strategy, other models combined training sets at a

1:1 ratio.

For the three Amazon review datasets (Amazon-Photo, Amazon-Children, and Amazon-History),

which are not included in Table  1, we provide both in-domain and cross-domain results in Table  11

and Table 12, respectively.

We selected PubMed to showcase the best results from the 55 con�gurations tested with our GraphICL

combined with LLaMA3-70B-Instruct, comparing them to supervised GNN methods. Detailed

comparisons can be found in Figure 3.

Figure 3. The comparison heat map between the GraphICL method based on LLaMA3-70B-Instruct and

the best Supervised GNNs results (SAGE-90.18%) in the table 10 in PubMed. The results of the GNNs are

used as the baseline, with higher performance relative to the baseline shown in red and lower performance

shown in blue.
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Method Embedding Computers Sports PubMed Cora Arxiv Products

Semi-Supervised In-Domain Results

MLP

BoW 49.69 67.17 67.14 52.95 27.38 56.80

BERT 44.56 58.74 59.38 47.23 37.10 65.36

GIA 66.80 81.80 74.82 64.02 48.39 70.23

GCN

BoW 72.58 64.76 80.07 74.58 50.31 71.65

BERT 70.24 59.12 59.38 68.82 55.27 74.47

GIA 81.40 76.80 77.62 69.45 51.36 74.95

SAGE

BoW 73.16 63.23 77.72 67.23 45.73 69.21

BERT 69.53 58.52 64.66 64.58 54.05 72.35

GIA 83.18 76.36 76.06 70.85 55.20 73.66

RevGAT

BoW 69.05 59.41 73.28 71.40 39.41 67.99

BERT 64.63 55.48 64.10 65.31 48.86 71.45

GIA 81.55 74.78 78.09 72.88 50.94 73.78

Supervised In-Domain Results

MLP

BoW 64.90 84.12 71.88 74.72 55.59 58.83

BERT 61.74 85.58 82.28 60.89 66.07 67.56

GIA 75.72 90.97 90.04 77.12 71.64 70.91

GCN

BoW 77.99 88.87 86.76 88.19 71.31 72.06

BERT 74.84 88.33 85.51 86.90 72.82 75.56

GIA 82.74 91.97 88.82 88.39 73.56 75.36

SAGE

BoW 76.86 88.81 85.46 88.93 70.43 70.25

BERT 73.62 89.21 85.66 83.39 72.54 73.44

GIA 82.98 92.64 90.18 82.95 74.07 74.38

RevGAT BoW 77.91 89.76 89.56 86.90 70.59 70.93

BERT 72.87 88.70 86.01 82.66 73.21 73.62
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Method Embedding Computers Sports PubMed Cora Arxiv Products

GIA 83.43 92.94 88.92 82.47 74.74 74.88

Results of GraphICL

GraphICL-LLaMA3-S1 - 87.37 91.39 93.18 83.58 73.68 81.48

GraphICL-LLaMA3-S2 - 87.37 91.12 93.05 83.21 73.54 81.04

Table 10. Extended in-domain Results from Table 1 using di�erent embedding types for MLP and GNN

models.
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Method Embedding Photo Children History

Semi-Supervised In-Domain Results

MLP

BoW 51.07 25.96 58.47

BERT 42.08 31.54 69.41

GIA 66.70 36.70 74.21

GCN

BoW 63.05 30.77 64.60

BERT 59.78 35.06 69.51

GIA 69.80 34.13 71.67

SAGE

BoW 63.20 30.84 68.09

BERT 59.75 35.61 73.79

GIA 71.44 40.01 75.75

RevGAT

BoW 60.03 29.97 61.41

BERT 54.07 34.60 70.99

GIA 70.08 36.96 73.22

Supervised In-Domain Results

MLP

BoW 68.50 49.71 77.37

BERT 67.93 51.46 82.41

GIA 79.73 55.96 84.13

GCN

BoW 77.05 53.56 81.12

BERT 77.08 54.53 83.45

GIA 82.62 55.23 84.27

SAGE

BoW 77.41 54.86 80.82

BERT 76.40 55.27 84.06

GIA 83.28 58.41 85.12

RevGAT BoW 77.84 52.96 80.97

BERT 75.87 53.10 83.09

qeios.com doi.org/10.32388/9EEUFO 27

https://www.qeios.com/
https://doi.org/10.32388/9EEUFO


Method Embedding Photo Children History

GIA 83.33 55.73 84.38

Results of GraphICL

GraphICL-LLaMA3-S1 - 79.35 47.96 80.89

GraphICL-LLaMA3-S2 - 77.78 47.63 79.18

Table 11. In-domain results of amazon-photo, amazon-children, and amazon-history. For the Amazon-

Photo dataset, S1 is "1RGS" and S2 is "1RCS". For Amazon-History, S1 is "1SGS" and S2 is "1PGS". For

Amazon-Children, S1 is "1RGP" and S2 is "1RGS".

Method Photo Children History

Supervised Cross-Domain Results (GraphLLMs)

LLaGA-ND 19.83 7.49 6.45

LLaGA-HO 6.16 11.14 7.94

GraphGPT 6.18 14.56 10.94

GraphPrompter 25.01 10.35 14.62

GraphTranslator 38.96 16.13 6.64

Results of GraphICL

GraphICL-LLaMA3-S1 79.35 47.96 80.89

GraphICL-LLaMA3-S2 77.78 47.63 79.18

Table 12. Cross-Domain Results of Amazon-Photo, Amazon-Children, and Amazon-History. S1 and S2 are

the same as Table 11
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Dataset System Prompt Content

Cora

I’m starting a node classi�cation task. Please predict the most appropriate category for the target

node (paper). Choose from the following categories: \n Rule Learning \n Neural Networks \n Case

Based \n Genetic Algorithms \n Theory \n Reinforcement Learning \n Probabilistic Methods.

PubMed

I’m starting a node classi�cation task. Please predict the most likely type of the target node

(paper). Your answer should be chosen from: \n Type 1 diabetes.  \n Type 2 diabetes. \n

Experimentally induced diabetes.

OGB-Arxiv

I’m starting a node classi�cation task. Please predict the most appropriate Arxiv Computer

Science (CS) sub-category for the target node (paper). The predicted sub-category should be in

the format ’cs.XX’.

Amazon-

History

I’m starting a node classi�cation task. Using the provided history-related book’s title and

description, categorize the target node (book) into one of the following categories: [’Americas’,

’Asia’, ’Australia & Oceania’, ’World’, ’Europe’, ’Middle East’, ’Historical Study & Educational

Resources’, ’Arctic & Antarctica’, ’Ancient Civilizations’, ’Africa’, ’Russia’, ’Military’]. Respond in

this format: The book belongs to the [Category] category due to [evidence from the book product

descriptions].

Amazon-

Computers

I’m starting a node classi�cation task. Given the product review provided, please categorize the

target node (product) into one of the following categories: [’Tablet Replacement Parts’,

’Monitors’, ’Networking Products’, ’Computers & Tablets’, ’Computer Accessories & Peripherals’,

’Tablet Accessories’, ’Laptop Accessories’, ’Computer Components’, ’Data Storage’, ’Servers’].

Your classi�cation should be based on the content of the review. Please support your answer with

evidence from the review. Response Format: The product falls under the category of [Category].

This determination is based on the product review, where [speci�c details from the review

supporting the classi�cation].

Amazon-

Photo

I’m starting a node classi�cation task. Given the product review provided, please categorize the

target node (product) into one of the following categories: [’Flashes’, ’Film Photography’,

’Accessories’, ’Lighting & Studio’, ’Video Surveillance’, ’Underwater Photography’, ’Digital

Cameras’, ’Tripods & Monopods’, ’Lenses’, ’Video’, ’Binoculars & Scopes’, ’Bags & Cases’] Your

classi�cation should be based on the content of the review. Please support your answer with

evidence from the review. Response Format: The product falls under the category of [Category].

This determination is based on the product review, where [speci�c details from the review

supporting the classi�cation].
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Dataset System Prompt Content

Amazon-

Book

I’m starting a node classi�cation task. Using the provided children book’s title and description,

categorize the target node (book) into one of the following categories: [’Literature & Fiction’,

’Animals’, ’Growing Up & Facts of Life’, ’Humor’, ’Cars, Trains & Things That Go’, ’Fairy Tales,

Folk Tales & Myths’, ’Activities, Crafts & Games’, ’Science Fiction & Fantasy’, ’Classics’,

’Mysteries & Detectives’, ’Action & Adventure’, ’Geography & Cultures’, ’Education & Reference’,

’Arts, Music & Photography’, ’Holidays & Celebrations’, ’Science, Nature & How It Works’, ’Early

Learning’, ’Biographies’, ’History’, ’Children’s Cookbooks’, ’Religions’, ’Sports & Outdoors’,

’Comics & Graphic Novels’, ’Computers & Technology’]. Please provide your reasoning. Respond

in this format: The book belongs to the [Category] category due to [evidence from the book

product descriptions].

Amazon-

Sports

I’m starting a node classi�cation task. Using the provided item’s title in the Sports & Fitness

category, categorize the target node (item) into one of the following categories: [’Other Sports’,

’Exercise & Fitness’, ’Hunting & Fishing’, ’Accessories’, ’Leisure Sports & Game Room’, ’Team

Sports’, ’Boating & Sailing’, ’Swimming’, ’Tennis & Racquet Sports’, ’Golf’, ’Airsoft & Paintball’,

’Clothing’, ’Sports Medicine’]. Please provide your reasoning. Respond in this format: The item

belongs to the [Category] category due to [evidence from the item descriptions].

OGB-

Products

I’m starting a node classi�cation task. Using the provided amazon product’s title and description,

please predict the most likely category of this node (product) from Amazon. Your answer should

be chosen from the following categories: (Categories omitted due to length)

Table 13. System prompts for node classi�cation tasks across various datasets.
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Dataset

Type
System Prompt Content

Citation

Network

I’m starting a link prediction task. Please predict whether there’s a link between the following 2

nodes. In this graph, links between nodes represent the citation relationships between papers.

Your answer should be ’0’ or ’1’. ’0’ means there’s no link and ’1’ means there’s a link.

Amazon

Review

Dataset

I’m starting a link prediction task. Please predict whether there’s a link between the following 2

nodes. In this graph, links between nodes represent that 2 <speci�c type> products are

frequently purchased or browsed together. Your answer should be ’0’ or ’1’. ’0’ means there’s no

link and ’1’ means there’s a link.

Table 14. System prompts for link prediction tasks across two types of datasets (Citation Networks and

Amazon Datasets).
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GraphICL User Content

Zero-Shot

without

Structure-Aware

Information

Below I will provide you with target node information. (Please reason step by step.) \n

Target node content: <Target Node Text>.

Zero-Shot with

Structure-Aware

Information

Below I will provide you with target node information and target node neighbor

information. You need to use target node neighbor information to help you predict the

category of target node. (Please reason step by step.) \n Target node content: <Target Node

Text>. \n It has following neighbor <products(co-purchase) / books / papers> at hop

<Number of Hops>: [Neighbors’ Text>.

Few-Shot

without

Structure-Aware

Information

Below I will provide you with target node information and some other examples in order.

You need to use examples to help you predict the category of target node. (Please reason step

by step.) \n Target node content: <Target Node Text>. \n I will give you some other

examples to help you predict the category: <Example’s Text, Example’s Label>.

Few-Shot with

Structure-Aware

Information

Below I will provide you with target node information, target node neighbor information

and some other examples in order. You need to use target node neighbor information and

some other examples to help you predict the category of target node. (Please reason step by

step.) \n Target node content: <Target Node Text>. \n It has following neighbor

<products(co-purchase) / books / papers> at hop <Number of Hops>: [Neighbors’ Text>.

\n I will give you some other examples to help you predict the category: <Example’s Text,

Example’s Label>.

Table 15. User Content for node classi�cation tasks across two types of datasets (Citation Networks and

Amazon Datasets).
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GraphICL User Content

Zero-Shot

without

Structure-Aware

Information

Below I will provide you with target 2 nodes information. \n The 2 target nodes content: <2

Target Nodes Text>

Zero-Shot with

Structure-Aware

Information

Below I will provide you with target 2 nodes information and the �rst node’s neighbor

information in order. You need to use the �rst node’s neighbor information to help you

predict the link between the 2 target nodes. \n The 2 target nodes content: <2 Target Nodes

Text> \n For the �rst node: It has following neighbor papers at hop <Number of Hops>:

<Neighbors’ Text>.

Few-Shot

without

Structure-Aware

Information

Below I will provide you with target 2 nodes information and some other examples of node

pairs and connections in order. You need to use the other examples to help you predict the

link between the 2 target nodes. \n The 2 target nodes content: <2 Target Nodes Text>. \n

The following are the some other examples of node pairs and connections: <Examples of

Node Pairs’ Text, Connected: Yes/No>

Few-Shot with

Structure-Aware

Information

Below I will provide you with target 2 nodes information, the �rst node’s neighbor

information and some other examples of node pairs and connections in order. You need to

use the �rst node’s neighbor information and other examples to help you predict the link

between the 2 target nodes. \n The 2 target nodes content: <2 Target Nodes Text>. \n For the

�rst node: It has following neighbor papers at hop <Number of Hops>: <Neighbors’ Text>.

\n The following are the some other examples of node pairs and connections: <Examples of

Node Pairs’ Text, Connected: Yes/No>

Table 16. User Content for link prediction tasks across two types of datasets (Citation Networks and

Amazon Datasets).

Footnotes

1 https://llama.meta.com/llama2/

2 https://llama.meta.com/llama3/

3 https://platform.openai.com/docs/models/gpt-4o

qeios.com doi.org/10.32388/9EEUFO 33

https://llama.meta.com/llama2/
https://llama.meta.com/llama3/
https://platform.openai.com/docs/models/gpt-4o
https://www.qeios.com/
https://doi.org/10.32388/9EEUFO


References

1. a, b, cKipf TN, Welling M (2016). "Semi-supervised classi�cation with graph convolutional networks". a

rXiv preprint arXiv:1609.02907. Available from: https://arxiv.org/abs/1609.02907.

2. ^Hamilton W, Ying Z, Leskovec J (2017). "Inductive representation learning on large graphs". Advances i

n neural information processing systems. 30.

3. a, b, c, dLi G, M\u00fcller M, Ghanem B, Koltun V (2021). "Training graph neural networks with 1000 lay

ers". In: International conference on machine learning. PMLR. pp. 6437--6449.

4. a, bSun C, Gu H, Hu J (2021). "Scalable and adaptive graph neural networks with self-label-enhanced tr

aining". arXiv preprint arXiv:2104.09376.

5. a, bZhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M (2020). "Graph neural networks: A r

eview of methods and applications". AI open. 1: 57–81.

6. ^Tan Q, Liu N, Hu X (2019). "Deep representation learning for social network analysis". Frontiers in Big

Data. 2: 2.

7. a, bWu S, Sun F, Zhang W, Xie X, Cui B (2022). "Graph neural networks in recommender systems: a surve

y". ACM Computing Surveys. 55 (5): 1–37.

8. a, bReiser P, Neubert M, Eberhard A, Torresi L, Zhou C, Shao C, Metni H, van Hoesel C, Schopmans H, So

mmer T, et al. Graph neural networks for materials science and chemistry. Communications Materials. 3

(1):93. 2022.

9. ^Fan W, Ma Y, Li Q, He Y, Zhao E, Tang J, Yin D (2019). "Graph neural networks for social recommendati

on." In: The world wide web conference. pp. 417–426.

10. ^Shi Y, Dong Y, Tan Q, Li J, Liu N (2023). "Gigamae: Generalizable graph masked autoencoder via collab

orative latent space reconstruction". Proceedings of the 32nd ACM International Conference on Informa

tion and Knowledge Management. pp. 2259–2269.

11. ^Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2020). "A comprehensive survey on graph neural networ

ks". IEEE Transactions on Neural Networks and Learning Systems. 32(1): 4–24.

12. ^Tan Q, Liu N, Huang X, Choi SH, Li L, Chen R, Hu X (2023). "S2gae: Self-supervised graph autoencoder

s are generalizable learners with graph masking". Proceedings of the sixteenth ACM international confe

rence on web search and data mining. pp. 787–795.

13. ^Kipf TN, Welling M (2016). "Variational graph auto-encoders". arXiv preprint arXiv:1611.07308. Availa

ble from: https://arxiv.org/abs/1611.07308.

qeios.com doi.org/10.32388/9EEUFO 34

https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1611.07308
https://www.qeios.com/
https://doi.org/10.32388/9EEUFO


14. a, bZhao J, Zhuo L, Shen Y, Qu M, Liu K, Bronstein M, Zhu Z, Tang J (2023). "Graphtext: Graph reasoning

in text space". arXiv preprint arXiv:2310.01089.

15. ^Xu Y, Liu X, Duan K, Fang Y, Chuang YN, Zha D, Tan Q (2024). "GraphFM: A Comprehensive Benchmar

k for Graph Foundation Model". arXiv preprint arXiv:2406.08310.

16. ^Garcia V, Bruna J (2017). "Few-shot learning with graph neural networks". arXiv preprint arXiv:1711.0

4043.

17. a, b, c, d, e, fTang J, Yang Y, Wei W, Shi L, Su L, Cheng S, Yin D, Huang C (2023). "Graphgpt: Graph instruc

tion tuning for large language models". arXiv preprint arXiv:2310.13023.

18. a, b, c, d, eChen R, Zhao T, Jaiswal AK, Shah N, Wang Z (2024). "LLaGA: Large Language and Graph Assis

tant". In: Forty-�rst International Conference on Machine Learning.

19. a, b, c, d, eZhang M, Sun M, Wang P, Fan S, Mo Y, Xu X, Liu H, Yang C, Shi C (2024). "GraphTranslator: Al

igning Graph Model to Large Language Model for Open-ended Tasks". Proceedings of the ACM on Web

Conference 2024. pages 1003–1014.

20. a, b, c, d, eLiu Z, He X, Tian Y, Chawla NV (2024). "Can we soft prompt LLMs for graph learning tasks?" I

n: Companion Proceedings of the ACM on Web Conference 2024. pp. 481–484.

21. a, b, c, dHe Y, Hooi B (2024). "UniGraph: Learning a Cross-Domain Graph Foundation Model From Natu

ral Language". arXiv preprint arXiv:2402.13630.

22. ^Hu Z, Li Y, Chen Z, Wang J, Liu H, Lee K, Ding K (2024). "Let's Ask GNN: Empowering Large Language

Model for Graph In-Context Learning". arXiv preprint arXiv:2410.07074.

23. ^Li Y, Yang Y, Zhu J, Chen H, Wang H (2024). "LLM-Empowered Few-Shot Node Classi�cation on Inco

mplete Graphs with Real Node Degrees". In: Proceedings of the 33rd ACM International Conference on I

nformation and Knowledge Management. pp. 1306–1315.

24. ^Dong Q, Li L, Dai D, Zheng C, Wu Z, Chang B, Sun X, Xu J, Sui Z (2022). "A survey on in-context learnin

g". arXiv preprint arXiv:2301.00234.

25. ^Cui Y, Sun Z, Hu W (2024). "A Prompt-Based Knowledge Graph Foundation Model for Universal In-Co

ntext Reasoning". arXiv preprint arXiv:2410.12288.

26. ^Galkin M, Yuan X, Mostafa H, Tang J, Zhu Z (2023). "Towards foundation models for knowledge graph

reasoning". arXiv preprint arXiv:2310.04562.

27. a, b, cYe R, Zhang C, Wang R, Xu S, Zhang Y (2023). "Natural language is all a graph needs". arXiv prepri

nt arXiv:2308.07134.

qeios.com doi.org/10.32388/9EEUFO 35

https://www.qeios.com/
https://doi.org/10.32388/9EEUFO


28. ^Liu Y, Ding S, Zhou S, Fan W, Tan Q (2024). "MolecularGPT: Open Large Language Model (LLM) for Fe

w-Shot Molecular Property Prediction". arXiv preprint arXiv:2406.12950.

29. ^Fang Y, Fan D, Ding S, Liu N, Tan Q (2024). "UniGLM: Training One Uni�ed Language Model for Text-

Attributed Graphs". arXiv preprint arXiv:2406.12052. Available from: https://arxiv.org/abs/2406.12052.

30. a, b, cHuang J, Zhang X, Mei Q, Ma J (2023). "Can llms e�ectively leverage graph structural information:

when and why". arXiv preprint arXiv:2309.16595.

31. ^Guo J, Du L, Liu H, Zhou M, He X, Han S (2023). "Gpt4graph: Can large language models understand gr

aph structured data? an empirical evaluation and benchmarking". arXiv preprint arXiv:2305.15066.

32. a, b, c, dChen Z, Mao H, Li H, Jin W, Wen H, Wei X, Wang S, Yin D, Fan W, Liu H, et al. (2024). "Exploring t

he potential of large language models (llms) in learning on graphs". ACM SIGKDD Explorations Newslet

ter. 25 (2): 42–61.

33. a, bLi R, Li J, Han J, Wang G (2024). "Similarity-based Neighbor Selection for Graph LLMs". arXiv prepri

nt arXiv:2402.03720.

34. ^Shi Y, Tan Q, Wu X, Zhong S, Zhou K, Liu N (2024). "Retrieval-enhanced knowledge editing for multi-

hop question answering in language models". arXiv preprint arXiv:2403.19631.

35. a, bFang Y, Fan D, Zha D, Tan Q (2024). "Gaugllm: Improving graph contrastive learning for text-attrib

uted graphs with large language models". Proceedings of the 30th ACM SIGKDD Conference on Knowle

dge Discovery and Data Mining. pp. 747–758.

36. ^He X, Bresson X, Laurent T, Hooi B, et al. (2023). "Explanations as features: Llm-based features for tex

t-attributed graphs". arXiv preprint arXiv:2305.19523. 2 (4): 8.

37. ^Shibata N, Kajikawa Y, Sakata I (2012). "Link prediction in citation networks". Journal of the America

n society for information science and technology. 63 (1): 78–85.

38. ^Hasan MA, Zaki MJ (2011). "A survey of link prediction in social networks". Social network data analyti

cs. Springer. pp. 243–275.

39. ^Giray L (2023). "Prompt engineering with ChatGPT: a guide for academic writers". Annals of Biomedic

al Engineering. 51 (12): 2629–2633.

40. ^Page L. The PageRank citation ranking: Bringing order to the web. Technical Report; 1999.

41. ^Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Ask

ell A, et al. (2020). "Language models are few-shot learners". Advances in neural information processi

ng systems. 33: 1877--1901.

qeios.com doi.org/10.32388/9EEUFO 36

https://arxiv.org/abs/2406.12052
https://www.qeios.com/
https://doi.org/10.32388/9EEUFO


42. ^Devlin J, Chang MW, Lee K, Toutanova K (2018). "Bert: Pre-training of deep bidirectional transformers

for language understanding". arXiv preprint arXiv:1810.04805.

43. ^Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T (2008). "Collective classi�cation in net

work data". AI magazine. 29 (3): 93–93.

44. ^McCallum AK, Nigam K, Rennie J, Seymore K (2000). "Automating the construction of internet portals

with machine learning". Information Retrieval. 3: 127--163.

45. a, b, cHu W, Fey M, Zitnik M, Dong Y, Ren H, Liu B, Catasta M, Leskovec J (2020). "Open graph benchmar

k: Datasets for machine learning on graphs". Advances in neural information processing systems. 33: 22

118–22133.

46. ^Shchur O, Mumme M, Bojchevski A, G\u00fcnnemann S (2018). "Pitfalls of graph neural network eval

uation". arXiv preprint arXiv:1811.05868.

47. a, bChen R, Zhao T, Jaiswal A, Shah N, Wang Z (2024). "Llaga: Large language and graph assistant". arX

iv preprint arXiv:2402.08170.

48. ^Reimers N (2019). "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks". arXiv pre

print arXiv:1908.10084.

49. ^Wei J, Wang X, Schuurmans D, Bosma M, Xia F, Chi E, Le QV, Zhou D, et al. (2022). "Chain-of-thought

prompting elicits reasoning in large language models". Advances in neural information processing syste

ms. 35: 24824–24837.

50. ^He X, Bresson X, Laurent T, Perold A, LeCun Y, Hooi B (2023). "Harnessing explanations: Llm-to-lm in

terpreter for enhanced text-attributed graph representation learning". In: The Twelfth International Co

nference on Learning Representations.

51. ^Wang Z, Ding H, Pan L, Li J, Gong Z, Yu PS (2024). "From cluster assumption to graph convolution: Gra

ph-based semi-supervised learning revisited". IEEE Transactions on Neural Networks and Learning Sys

tems. 2024. Published by IEEE.

52. ^Kwon W, Li Z, Zhuang S, Sheng Y, Zheng L, Yu CH, Gonzalez JE, Zhang H, Stoica I (2023). "E�cient Me

mory Management for Large Language Model Serving with PagedAttention". Preprint, arXiv: 2309.061

80.

53. a, bChien E, Chang WC, Hsieh CJ, Yu HF, Zhang J, Milenkovic O, Dhillon IS (2021). "Node feature extracti

on by self-supervised multi-scale neighborhood prediction". arXiv preprint arXiv:2111.00064.

54. ^Harris ZS (1954). "Distributional structure". Word. 1954.

qeios.com doi.org/10.32388/9EEUFO 37

https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://www.qeios.com/
https://doi.org/10.32388/9EEUFO


Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/9EEUFO 38

https://www.qeios.com/
https://doi.org/10.32388/9EEUFO

