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Adversarial robustness remains a signi�cant challenge in deploying deep neural networks for real-

world applications. While adversarial training is widely acknowledged as a promising defense

strategy, most existing studies primarily focus on balanced datasets, neglecting the fact that real-

world data often exhibit a long-tailed distribution, which introduces substantial challenges to

robustness. In this paper, we provide an in-depth analysis of adversarial training in the context of

long-tailed distributions and identify the limitations of the current state-of-the-art method, AT-BSL,

in achieving robust performance under such conditions. To address these challenges, we propose a

novel training framework, TAET, which incorporates an initial stabilization phase followed by a

strati�ed, equalization adversarial training phase. Furthermore, prior work on long-tailed robustness

has largely overlooked a crucial evaluation metric—Balanced Accuracy. To �ll this gap, we introduce

the concept of Balanced Robustness, a comprehensive metric that measures robustness speci�cally

under long-tailed distributions. Extensive experiments demonstrate that our method outperforms

existing advanced defenses, yielding signi�cant improvements in both memory and computational

ef�ciency. We believe this work represents a substantial step forward in tackling robustness

challenges in real-world applications. Our paper code can be found at

https://github.com/BuhuiOK/TAET-Two-Stage-Adversarial-Equalization-Training-on-Long-Tailed-

Distributions}{https://github.com/BuhuiOK/TAET-Two-Stage-Adversarial-Equalization-Training-on-

Long-Tailed-Distributions

Corresponding author: Jian Liu, jianliu@mail.hfut.edu.cn

Qeios

qeios.com doi.org/10.32388/9Z1LYW 1

https://github.com/BuhuiOK/TAET-Two-Stage-Adversarial-Equalization-Training-on-Long-Tailed-Distributions%7D%7Bhttps://github.com/BuhuiOK/TAET-Two-Stage-Adversarial-Equalization-Training-on-Long-Tailed-Distributions
https://github.com/BuhuiOK/TAET-Two-Stage-Adversarial-Equalization-Training-on-Long-Tailed-Distributions%7D%7Bhttps://github.com/BuhuiOK/TAET-Two-Stage-Adversarial-Equalization-Training-on-Long-Tailed-Distributions
https://github.com/BuhuiOK/TAET-Two-Stage-Adversarial-Equalization-Training-on-Long-Tailed-Distributions%7D%7Bhttps://github.com/BuhuiOK/TAET-Two-Stage-Adversarial-Equalization-Training-on-Long-Tailed-Distributions
mailto:jianliu@mail.hfut.edu.cn
https://www.qeios.com/
https://doi.org/10.32388/9Z1LYW


1. Introduction

In recent years, deep learning has achieved groundbreaking advancements in computer vision[1].

However, deep neural networks remain highly susceptible to adversarial attacks[2][3], a challenge that

continues to raise concerns in both academia and industry. These attacks introduce subtle perturbations

to input data, leading to erroneous predictions and revealing the vulnerabilities of neural networks to

malicious disturbances, which pose signi�cant security risks to the deployment of modern computer

vision models in real-world applications[4]. To address this issue, researchers have developed a variety of

techniques[5][6][7][8] aimed at enhancing adversarial robustness. Among these, Adversarial Training (AT)

[9] is widely regarded as one of the most effective strategies for improving model resilience. The central

concept of AT involves integrating adversarial examples into the training process, thereby fortifying the

model’s ability to recognize and counteract malicious perturbations and enhancing its generalization

capability in practical scenarios, ultimately improving both reliability and security.

qeios.com doi.org/10.32388/9Z1LYW 2

https://www.qeios.com/
https://doi.org/10.32388/9Z1LYW


Figure 1.Top: The distribution of accuracy and adversarial robustness across different classes

in a long-tail distributions, with gray bars representing the sample counts of each class. AT-

BSL (left) exhibits poorer performance on the tail classes (7, 8, 9) and Class 3. Bottom: The

evaluation includes both balanced accuracy and robustness, comparing long-tail recognition

methods, adversarial training, state-of-the-art defenses, and our proposed approach. The

results demonstrate that our method outperforms the others in both balanced accuracy and

performance on weak classes.

Adversarial training has shown strong performance on balanced datasets (e.g., MNIST, CIFAR-10[10],

ImageNet[11]). However, real-world data often follow long-tailed distributions[12][13][14], where certain

classes are overrepresented while others are underrepresented. This imbalance complicates tasks and

undermines model robustness, necessitating adversarial training strategies tailored for such

distributions. Long-tail learning addresses imbalanced datasets where a few head classes dominate, and

many tail classes are underrepresented, creating a skewed frequency distribution[15][16][17]. The

Imbalance Ratio (IR)[18]  quanti�es this imbalance, with higher values indicating greater scarcity of tail

class samples, exacerbating learning challenges. While long-tail learning aims to address these issues,

qeios.com doi.org/10.32388/9Z1LYW 3

https://www.qeios.com/
https://doi.org/10.32388/9Z1LYW


problems like model bias toward head classes and insuf�cient tail class data persist[12]. Existing

robustness methods struggle with suboptimal performance on tail classes[14][19][20], as shown in Fig. 1. In

adversarial training for long-tailed distributions, accuracy improves but adversarial robustness does not

scale proportionally, leading to robustness over�tting. This phenomenon results in models becoming

more vulnerable to adversarial attacks despite higher accuracy. To tackle this, we propose Hierarchical

Adversarial Robust Learning (HARL), a framework designed to optimize performance on

underrepresented classes and improve adversarial robustness in long-tailed distributions.

Our evaluation of robustness in long-tailed distributions reveals signi�cant limitations in current

assessment metrics[14][19][20]. Although balanced accuracy[12][13][21][22]  is commonly used for long-tail

recognition, traditional accuracy remains the dominant metric for evaluating long-tail robustness. To

address this gap, we introduce a novel metric—Balanced Robustness—which, alongside balanced

accuracy, provides a more comprehensive framework for evaluating robustness in long-tailed

distributions. To mitigate robustness over�tting[23] while optimizing training ef�ciency, we explore the

potential of using cross-entropy loss during the early stages of adversarial training. We hypothesize that

early-stage cross-entropy loss can improve both natural accuracy and adversarial robustness. Based on

this insight, we propose a two-stage adversarial balanced training approach that optimizes both

balanced robustness and accuracy, while minimizing memory usage and computational overhead,

thereby improving practical applicability.

Our contributions are summarized as follows:

We analyze adversarial training under long-tailed distributions and identify a key limitation: while

training accuracy improves, adversarial robustness lags behind. Our root-cause analysis informs

targeted enhancements to address this gap in real-world robustness.

We introduce Hierarchical Adversarial Robust Learning (HARL), a method designed to enhance

robustness for underrepresented classes in long-tail distributions, achieving competitive natural

accuracy and outperforming mainstream methods across multiple datasets.

We propose a new evaluation metric, Balanced Robustness, which, alongside balanced accuracy, offers

a more effective measure of robustness in long-tail scenarios.

We present a two-stage adversarial training framework that incorporates cross-entropy loss during

the early stages to improve both natural accuracy and adversarial robustness. Comparative results
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demonstrate that our approach optimizes memory ef�ciency and computational time, surpassing

alternative methods.

2. Related work

2.1. Long-Tailed Recognition

Long-tail distribution is a prevalent form of data imbalance in training datasets, characterized by a small

number of ”head” classes with abundant samples, contrasted with a majority of ”tail” classes that have

relatively few samples[12]. Models trained on such imbalanced distributions typically show high

con�dence in predicting head classes, leading to ”overcon�dence” that severely hampers generalization

to tail classes. This issue becomes particularly pronounced when evaluating rare categories in real-world

applications, as illustrated in Fig. 5. Effectively addressing this challenge remains a signi�cant research

hurdle[24].

To tackle the dif�culties of long-tail recognition, various strategies have been proposed, including

resampling[25], cost-sensitive learning[26], decoupled training[27], and classi�er design[28]. These

methods aim to mitigate data imbalance by altering data distributions, adjusting loss weights, and

enhancing feature learning. Recent innovations, such as Class-Conditional Sharpness-Aware

Minimization (CC-SAM)[29] and Feature Cluster Compression (FCC)[30], offer novel solutions to improve

model generalization and recognition accuracy by re�ning feature learning and classi�cation processes.

However, despite advancements in these areas, few studies have speci�cally addressed improving

adversarial robustness in long-tail distributions[14][19][20], highlighting a crucial gap that warrants

further investigation.

2.2. Adversarial Robustness

To mitigate adversarial vulnerability in deep learning models, a variety of defense strategies have been

proposed, including adversarial training[9], defensive distillation[31], ensemble methods[32], and data

augmentation[33], with adversarial training being one of the most robust and widely adopted approaches.

Techniques such as supervised learning[34], feature denoising[35], and statistical �ltering[36]  further

enhance model robustness by improving generalization and reducing the impact of adversarial

perturbations. Due to the high computational cost associated with adversarial training, recent

advancements have focused on improving its ef�ciency[37], making it more viable for deployment in
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real-world applications. The core principle of adversarial training involves generating the most

challenging adversarial samples internally and optimizing the model’s parameters based on these

samples, which inherently enhances its robustness[9]. The objective of adversarial training can be

formalized as follows:

 represents the adversarial risk for model   on dataset  . Here,   denotes the number of samples in 

, with each sample consisting of an input-output pair  , where   is the unperturbed input and   is

the ground truth label. The perturbation    is optimized within the constraint set  , de�ning

permissible modi�cations to  . The formula computes the loss    for each perturbed

sample, seeking the perturbation   that maximizes this loss.

Building upon the foundation of AT, subsequent works developed advanced adversarial training

techniques such as TRADES[5], ADT[38], MART[8], HE[6], GAIRAT[7], and LAS-AT[39].

2.3. Robustness under Long-Tailed Distribution

Although long-tail recognition and adversarial robustness have garnered signi�cant research interest,

the challenge of adversarial robustness under long-tail distributions remains relatively underexplored.

While real-world datasets often exhibit long-tail characteristics, only a limited number of studies have

systematically addressed this issue[14][19][20]. Wu et al.[14] were among the �rst to investigate the impact

of data imbalance on adversarial robustness, introducing the RoBal framework, which integrates a cosine

classi�er with a two-stage rebalancing strategy to enhance both natural and robust accuracy.

Building upon the RoBal framework, Yue et al.[19] proposed Adversarial Training with Balanced Softmax

Loss (AT-BSL), a streamlined method that achieves performance comparable to RoBal while signi�cantly

reducing both training time and memory consumption. This study provides an in-depth analysis of AT-

BSL, particularly focusing on the design of the Balanced Softmax Loss (BSL) in Sec.  3, offering novel

insights and strategies to improve adversarial robustness under long-tail distributions.

3. Analysis of AT-BSL

In this section, we present Adversarial Training with Balanced Softmax Loss (AT-BSL)[19] and clarify its

principles, along with de�ning the notation used.

= ( L( (x + δ),y)) .min
θ
R̂x′

1

|S|
∑

(x,y)∈S

max
δ∈B(x)

fθ (1)

R̂x′ fθ S |S|

S (x,y) x y

δ B(x)

x L( (x + δ),y)fθ

δ
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3.1. Preliminaries

Balanced Softmax Loss adjusts class logits to enhance performance on long-tail datasets. It modi�es the

logit   for each class, adding a term   for the target class   to control class in�uence[14]. The

formula is as follows:

Here,    denotes the linear classi�er,    is the feature representation of input  ,    is the true class

label,   the logit for class  ,   the bias for class  , and   a hyperparameter adjusting the logit range to

control the softmax output distribution.

Adversarial Training. We previously outlined the objective of adversarial training[9]. Here, we detail the

steps to generate adversarial samples in the AT-BSL[19] framework, as shown in the following formula:

Here,    represents the adversarial sample at step  , generated to mislead the model.    is the natural

sample, and   de�nes the   norm ball around   with radius  , limiting adversarial perturbations.

Proj is the projection,    the cross-entropy loss, and    the step size, controlling each perturbation’s

magnitude.    is the loss gradient with respect to the current adversarial sample at step  , and sign

applies the gradient’s sign to ensure updates align with gradient ascent.

zi = logby τb ny y

(g(f(x)),y)L0 = − log( )
e +zy by
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+zi bi

= − log( ).
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y ezy
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∇ t
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Figure 2.Top: Accuracy progression during training with AT-BSL (left) and under PGD-20 attack (right).

Bottom:Accuracy progression during training with our method (left) and under PGD-20 attack (right).

3.2. Limitations of AT-BSL

We conducted a thorough evaluation of AT-BSL[19], with a particular focus on the variations in both

accuracy and adversarial robustness across different classes throughout training. The key �ndings are as

follows:

The BSL method has substantial limitations in improving performance for underrepresented classes.

This method aims to enhance the performance of underrepresented classes by adjusting the output logits

according to the class distribution, speci�cally by suppressing the logits of dominant classes in order to

elevate those of minority classes. However, this straightforward approach fails to adequately improve the

robustness of the weaker classes(as shown in Fig.  2). In contrast, our TAET method introduces a

hierarchical equalization module that dynamically identi�es underrepresented classes and facilitates

targeted performance improvement. The experimental results indicate that our method signi�cantly

outperforms existing approaches in terms of adversarial robustness for underrepresented classes, as

evidenced in Tab. 2.

BSL is prone to robust over�tting. Due to its �xed loss function, the model converges rapidly during

training, as demonstrated in Figs.  2 and  3. The robustness of BSL peaks around the 25th epoch, after
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which it gradually declines, particularly as the natural accuracy increases. This decline becomes more

pronounced during the later training epochs (75-100), potentially causing instability when adjusting the

learning rate. Although BSL improves accuracy, its adversarial robustness does not increase accordingly,

and in some cases, it even decreases. As a result, it fails to achieve an optimal balance between accuracy

and robustness. In contrast, our proposed method signi�cantly improves both model robustness and

accuracy, effectively reducing performance discrepancies across different classes. To address robust

over�tting, we introduced a hybrid training strategy, which not only enhances model accuracy and

robustness but also ensures stability when handling diverse inputs.

Figure 3. t-SNE visualization of latent space logits extracted from (a) AT, (b) TRADES, (c) AT-

BSL, and (d) our proposed TAET method on tail classes (last �ve classes)
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Figure 4. The TAET framework includes an Initial Stabilization Module (upper left) and the HARL module

(right). The Initial Stabilization Module, based on cross-entropy loss, aims to stabilize accuracy in early

training and transfers the trained model to HARL. Our HARL module consists of three components: BCL,

HDL, and RCEL. A multi-step generation process creates perturbations (upper right), which are processed by

normalization components (lower right).

4. Methodology

In Sec.  3, we conduct a thorough analysis of existing long-tail robustness solutions and identify two

major limitations. First, current methods lack an effective mechanism for accurately identifying and

compensating for the tail classes. To address this, we propose a novel adversarial equalization module,

termed the Hierarchical Adversarial Robust Learning (HARL) framework, which consists of three key

components, as detailed in Sec.4.1. Second, existing methods are prone to over�tting during training. To

mitigate this issue, we introduce a two-stage adversarial equalization training approach, the steps of

which are elaborated in Sec. 4.2.

4.1. Hierarchical Adversarial Robust Learning

Our Hierarchical Adversarial Robust Learning (HARL) framework includes an adversarial sample

generation module and a hierarchical equalization component. The hierarchical equalization loss

integrates Balanced Cross-Class Loss (BCL), Hierarchical Deviation Loss (HDL), and Rare Class Emphasis

Loss (RCEL), working together with the adversarial sample generation module to balance accuracy and
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robustness. This design addresses long-tail dataset challenges, boosting minority class performance and

reducing over�tting, enhancing robustness in practical applications. Unlike BSL, which uses sample

count for tail class identi�cation, HARL identi�es weak classes based on mean loss during training,

strengthening both tail and weak classes. Sample-count methods often miss weak classes (e.g., Class 3 in

Fig.  1), where large sample counts don’t guarantee good performance, a limitation our method largely

overcomes.

Adversarial Sample Generation: We employ a multi-step adversarial sample generation process, which

begins with random perturbations and iteratively computes the gradient of the sample with respect to

the loss function. This gradient guides the direction for generating subsequent adversarial samples. A

primary challenge addressed in this study is the generation of balanced adversarial samples in long-tail

distributions. The transformation of adversarial samples is facilitated through hierarchical equalization

loss. The learning objective for this module is as follows:

Here,    represents the Hierarchical Equalization Loss[40][41], adjusting model logits for adversarial

samples[9].   is the long-tail dataset, and   denotes the allowable perturbation budget. The objective is

to keep perturbations near the input sample    while signi�cantly altering the model  ’s predictions.

This aligns with prior adversarial training methods, but our approach uniquely integrates long-tail

recognition with adversarial training. As shown in Fig.  4, we �rst generate adversarial samples, then

apply hierarchical equalization to enhance weak classes. With a �xed perturbation budget, our goal is to

minimize adversarial loss for long-tail recognition, with the loss de�ned as:

Here,  ,  , and    are hyperparameters for loss reweighting, tuned through validation. Each loss

component is detailed below.

Balanced Cross-Class Loss (BCL) ensures balanced losses across classes. By reweighting, it prevents

excessive focus on head classes in long-tail datasets, enabling more equal contribution to total loss. BCL

achieves this by averaging class losses, enhancing classi�er performance across all classes under long-

tail distribution, as shown below:

arg [ ( ( ),y)]min
θ

E( ,y)∼x0 Dlt
LHEl fθ x′

s.t. ∥ − ≤ ϵ, (4)x′ x0∥∞

LHEL

Dlt ϵ

x0 F

= α ⋅ + β ⋅ + γ ⋅ (5)LHEL LBCL LHDL LRCEL

α β γ

= (6)LBCL
1

Sc

∑
c=1

C

Lc
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Here,   is the total number of classes, and   represents the loss for class  . Averaging across all classes

helps the model maintain balanced attention in a long-tail setting, avoiding bias toward head classes.

Hierarchical Deviation Loss (HDL) adjusts the discrepancies in inter-class loss to mitigate extreme

imbalances. It quanti�es the deviation of each class’s loss from the mean and applies a quadratic penalty

to reduce this gap, thereby improving robustness against imbalanced data distributions. This hierarchical

framework allows the model to better accommodate the complexities inherent in different class

distributions, as illustrated below:

Rare Class Emphasis Loss (RCEL) addresses the challenge of long-tail distributions by focusing on rare

classes, which are typically more dif�cult to classify. By normalizing class-wise losses and assigning

higher weights to rare classes, RCEL ampli�es their loss contributions. This approach encourages the

model to prioritize learning from these underrepresented classes, thereby improving overall

classi�cation performance, as demonstrated below:

4.2. Two-Stage Adversarial Equalization Training

In Fig.  4, we present our long-tail robustness framework, which initially employs a cross-entropy loss

function. Our experiments show that cross-entropy loss[42] facilitates rapid convergence on unperturbed

samples, ensuring early-stage accuracy. It provides stable gradient signals, enhancing robustness against

adversarial attacks and mitigating robust over�tting. For a detailed experimental analysis, please refer to

Sec. 6.

n the later stages of training, we incorporate adversarial training along with the hierarchical equalization

component to improve model performance. To highlight the contribution of hierarchical equalization

within the TAET framework, we conduct an ablation study in Sec.  6.4 ,evaluating the impact of each

component individually. By selectively removing components, we examine how different con�gurations

affect both accuracy and robustness, thereby identifying the optimal con�guration. Fig. 6 illustrates the

training procedure and component interactions.

S Lc c

= ( − (7)LHDL
1

Sc

∑
c=1

C

Lc L
¯ ¯̄̄)2

=LRCEL ∑
c=1

C ⎛

⎝

Lc

∑
C
j=1Lj

⎞

⎠

2

(8)

= − log( )LCE
1

N
∑
n=1

N

∑
i

y(n,i) ŷ (n,i) (9)
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5. Revisiting Evaluation Metrics for the Long-Tail Robustness

Problem

Balanced Accuracy: In long-tail robustness research, common evaluation metrics include clean accuracy

and post-attack robustness. However, Balanced Accuracy (BA), an important metric for long-tail learning,

is often overlooked[12][13][22][15]. BA balances performance across classes by considering both true

positive and true negative rates, mitigating class bias. In imbalanced datasets, traditional accuracy

metrics may neglect minority classes due to the majority class’s dominance. In contrast, BA ensures fair

evaluation by capturing minority class performance, offering a comprehensive assessment of overall

model performance. The mathematical de�nition of BA[43] is as follows:

Where  ,    represents the number of true positives for class  , and    represents the

number of false negatives for class  . The following confusion matrix pro-vides additional detail.

Balanced Robustness: Balanced accuracy re�ects model performance across classes[43][44], mitigating

bias from class imbalance, which is crucial for long-tail recognition. In long-tail robustness, we aim for

consistent model performance across all classes under adversarial attacks. We extend balanced accuracy

to balanced robustness, quantifying the model’s average defense capability against attacks across classes.

Speci�cally, balanced robustness, under adversarial samples, is de�ned as follows:

We introduce balanced robustness, a novel metric in the context of long-tail learning, to the best of our

knowledge, marking its �rst application in this domain.We believe this metric can effectively measure

the adversarial robustness of methods under long-tail distributions and will have extremely important

applications in �elds such as medicine. We advocate for the adoption of this metric as a standardized

evaluation tool to promote consistency in the research and practical applications of long-tail robustness

and to drive its further development.

Balanced_Accuracy =
1

SC

∑
i=1

C

A
x0
i (10)

=Ai
TPi

T +FPi Ni
TPi i FNi

i

Balance_Robustness =
1

SC

∑
i=1

C

R
x′

i

=
1

SC

∑
i=1

C TPx′

i

+TPx′

i FNx′

i

(11)

qeios.com doi.org/10.32388/9Z1LYW 13

https://www.qeios.com/
https://doi.org/10.32388/9Z1LYW


Method Clean FGSM

PGD

CW AA

20 100

AT-BSL[19] 72.74 34.13 26.86 25.62 15.67 25.26

RoBal[14] 73.18 33.14 27.12 26.98 13.44 24.13

TRADES[5] 65.77 25.73 20.23 19.59 27.42 19.63

AT[9] 69.00 32.53 25.69 24.55 15.22 24.28

MART[8] 58.33 33.67 30.10 29.36 48.12 26.04

ADT[38] 68.08 32.70 26.00 25.27 10.05 25.06

REAT[20] 74.56 31.42 24.02 22.52 11.07 22.69

LAS-AT[39] 64.04 33.04 27.80 26.74 36.77 24.71

HE[6] 68.18 32.40 25.66 24.59 12.94 24.32

GAIRAT[7] 61.07 28.90 24.79 23.81 42.62 24.59

TAET (our) 74.67 39.59 35.15 34.29 57.59 30.57

Table 1. Balanced accuracy and balanced robustness of various algorithms using ResNet-18 on CIFAR-10-LT

with an imbalance ratio (IR) of 10. The best results are highlighted in bold.
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Method Clean Attacked (PGD-20)

Dog Frog Horse Ship Truck Dog Frog Horse Ship Truck

AT-BSL[19] 58.63 73.48 70.48 78.29 66 23.02 26.97 21.7 21.7 19

RoBal[14] 59.13 74.73 68.52 78.96 65 23.74 25.78 20.79 19.5 20

TRADES[5] 53.96 65.11 63.25 47.28 47 11.87 13.2 16.27 3.87 4

AT[9] 51.07 62.32 63.85 64.34 54 14.74 17.67 19.27 17.05 10

ADT[38] 52.15 65.58 65.66 56.59 55 16.18 16.74 18.67 10.07 10

MART[8] 37.76 52.09 58.43 47.25 41 17.62 19.06 25.3 8.52 9

REAT[20] 58.63 73.02 72.89 78.29 69 16.18 13.48 18.67 20.15 17

LAS-AT[39] 50.72 55.34 56.02 48.83 34 19.06 13.02 20.48 12.4 8

HE[6] 57.31 67.9 65.66 51.16 54 14.74 20 18.07 10.85 12

GAIRAT[7] 48.56 58.13 56.62 48.06 43 15.82 17.2 22.28 6.2 11

TAET (our) 56.11 79.06 72.28 80.6 77 23.74 34.83 32.53 36.34 27

Table 2. Performance of various methods on the last Tail classes (last �ve classes) under clean and attacked

conditions using ResNet-18 on CIFAR-10-LT(IR=10). The best results are highlighted in bold, and the second-

best results are underlined.
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Figure 5. Results after training the VIT-B/16 model on the DermaMNIST for 100 epochs. The left side of the

�gure shows balanced accuracy of different methods in a natural setting, while the right side presents

balanced robustness under a PGD-20 attack. The background section illustrates data distribution in

DermaMNIST.

Figure 6. (a) Memory usage and time per epoch for each method; (b) Robustness and clean accuracy

performance based on the effectiveness of each component in Eq. (5).
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6. Experiment

6.1. Settings

Following[14], we evaluated our approach on CIFAR-10-LT and CIFAR-100-LT, and extended experiments

to the MedMNIST[45] for real-world validation. MedMNIST consists of 12 medical image datasets across

various modalities (e.g., CT, X-ray, ultrasound, OCT), supporting tasks such as multi-label and binary

classi�cation. We selected DermaMNIST, a highly imbalanced dataset from HAM10000[46]  with an

imbalance ratio (IR) of 58.66, containing 10,015 images in 7 diagnostic categories.

The primary metrics used were Balanced Accuracy[43] and Balanced Robustness, with dataset imbalance

assessed by the imbalance ratio (IR). Model robustness was evaluated under   bounded perturbations

with a size of   using FGSM[3] and PGD[9] (20 and 100 steps, step size  ), as well as a 100-step

CW[47] attack and AutoAttack (AA)[48], a powerful ensemble method.

6.2. Main Results

The results in Tab. 1 show that on CIFAR-10-LT, our method achieves the highest balanced accuracy and

robustness on ResNet-18, with a 5.31% improvement in robustness against AA[48] attacks compared to the

AT-BSL[19] model. Overall, our method outperforms other methods in handling long-tail datasets.

Tab. 2 provides a detailed breakdown of clean accuracy and robustness in the Tail Class, demonstrating

that our method signi�cantly improves tail class performance. This is critical in real-world scenarios

where tail class accuracy is low, such as in rare disease research. Our method also improves robustness

for challenging classes like Class 3.

To validate our method on real-world long-tail datasets, Tab.  3 presents results on the DermaMNIST

subset of MedMNIST[45], showing optimal adversarial robustness and competitive balanced accuracy.

Fig.  5 compares clean accuracy and adversarially perturbed accuracy across classes. Our method

outperforms others on tail classes such as Class 0, 1, 2, and 4. For extremely rare classes like Class 3 and

Class 6, all methods show high variability. While TAET’s hierarchical equalization improves tail class

performance, weight adjustments for very rare classes may still be insuf�cient. Increasing the

hyperparameter   in Eq. (5) could enhance these classes, though it might impact overall performance.

l∞

8/255 1/255

γ
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Method Clean FGSM

PGD

CW AA

20 100

ADT 26.23 20.07 19.04 18.93 23.89 17.81

MART 18.37 17.71 16.59 16.07 17.61 15.09

TRADES 18.89 16.57 12.48 11.35 31.18 10.50

AT-BSL 48.55 38.81 27.85 26.72 43.44 21.04

TAET (our) 48.42 40.12 29.26 28.79 43.11 21.74

Table 3. Balanced accuracy and balanced robustness under Various Attack Methods on the MedMNIST , best

results are highlighted in bold, and the second-best results are underlined.

6.3. Initial Training Epochs and Model Robustness

To address robust over�tting[23][49], we hypothesize that limited model accuracy may constrain

robustness. Thus, improving accuracy on clean samples could also enhance robustness. Previous studies

used data augmentation with some success. In our approach, we apply cross-entropy loss for a set

number of epochs in the initial training phase. Experiments show that using cross-entropy loss[42] for 40

epochs increased clean sample accuracy by 7.19% and balanced robustness under AA attack by 1.04%,

compared to omitting cross-entropy loss. This strategy also reduces computational costs, improving both

model performance and training ef�ciency, as shown in Figure 7.
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Figure 7. Results of using different epochs of cross-entropy loss in the early training stages.

6.4. Ablation Study

We analyzed the proposed adversarial training on CIFAR-10-LT using ResNet-18[50] for more insights:

Contribution of HARL. Fig. 6 shows the impact of each component. BCL notably improves accuracy, as

expected. HDL and RCEL are designed to boost weak classes and perform best in combination.

Hyperparameter Importance Analysis. We examined the in�uence of hyperparameters  ,  , and    on

performance, adjusting their ratios to assess stability. Due to squared terms in the loss, value �uctuations

may impact training stability. Thus, we used a 40-epoch cross-entropy training period for stable

observation. Tab.  4 details results across hyperparameter settings, showing that equal weights (

) yield the best performance. This emphasizes the importance of balanced hyperparameters in

enhancing robustness and accuracy for long-tail datasets.

α β γ

α = β = γ
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35.15 34.7 33.14 31.24

34.44 34.97 33.56 35.04

Table 4. Balanced robustness results of ResNet-18 on CIFAR-10-LT (IR=10) under different hyperparameter

settings.

6.5. Results Across Long-Tail Imbalance Ratios

To evaluate the effectiveness of our method across different Imbalance Ratios (IR), we generated long-tail

versions of CIFAR-10-LT with varying IRs. The results shown in Tab.  5 demonstrate that our method

outperforms previous state-of-the-art techniques in terms of robustness under a variety of IR conditions.

This enhanced robustness not only improves class adaptability but also boosts overall accuracy in

imbalanced datasets, underscoring the practical potential of our approach for real-world applications.

α = 0.1 α = 0.1 α = 0.05 α = 0.05

γ = 0.1 γ = 0.05 γ = 0.1 γ = 0.05

β

= 0.1

β

= 0.05
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IR Method Clean FGSM PGD-20 CW AA

10 AT-BSL 72.74 34.13 26.86 15.67 25.26

TAET 74.67 39.59 35.15 57.59 30.57

20 AT-BSL 66.4 28.82 22.56 15.43 21.46

TAET 66.93 36.82 33.98 58.41 27.84

50 AT-BSL 58.23 26.37 20.87 16.74 19.79

TAET 59.37 31.69 29.35 50.15 25.3

100

AT-BSL 54.73 22.51 19.17 17.34 18.29

TAET 52.68 28.68 26.53 42.3 22.98

Table 5. Balanced accuracy and balanced robustness using ResNet-18 on CIFAR-10-LT under different long-tail

imbalance ratios(IRs). Better results are highlighted in bold.

7. Conclusion

In this study, we analyze the limitations of AT-BSL in addressing long-tail robustness. Through extensive

experiments, we show that the HARL strategy improves performance on both long-tail and weak classes.

We propose balanced robustness as a novel metric to assess long-tail robustness, extending the concept

of balanced accuracy. To mitigate robust over�tting, we introduce a two-stage adversarial equalization

training (TAET) approach, which reduces over�tting while improving both adversarial robustness and

clean accuracy. This method is computationally ef�cient and effective for practical applications. Our

analysis con�rms the generalizability and superiority of the proposed method. This work signi�cantly

advances adversarial training for real-world scenarios, enhancing adaptability to long-tail data. Future

work will optimizing performance for long-tail distributions. Additionally, we will conduct experiments

on real-world long-tail datasets to re�ne the model’s adversarial robustness.
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Appendix A. Implementation Details of Experiments

A.1. Training Details and Hyper-parameter Setting

We use ResNet-18 as the model architecture. The initial learning rate is set to 0.1, with decay factors of 10

at epochs 75 and 90, for a total of 100 epochs. We evaluate using the �nal epoch, and no methods employ

early stopping.We use the SGD optimizer with a momentum of 0.9 and weight decay set to 5e-4. In the

main paper, we set the batch size to 128.For adversarial training, the maximum perturbation is set to

8/255, the step size to 2/255, and the number of steps to 10. To ensure fairness in the comparison, we

adopt this same con�guration for adversarial training across all methods.There are several

hyperparameters involved, among which the most in�uential are  ,  ,  , and the number of epochs

during the initial phase of training. For CIFAR-10-LT, CIFAR-100-LT, and Dermamnist, we set   =   =   =

0.1 and use 40 epochs for training in the adversarial domain.

A.2. Training Details and Hyper-parameter Setting

For the defense methods compared in this paper, we use their of�cial implementations, including AT-

BSL[19]1, RoBAL[14]2, AT[9]3, TRADES[5]4, MART[8]5, GAIRAT[7]6, LAS-AT[39]7, and REAT[20]8. For the

attacks used in the evaluation, we implement them based on the of�cial code and the original papers,

including FGSM[3], PGD[9], CW[47], and AutoAttack[48].

Figure 8. Variations in clean accuracy (left) and adversarial robustness (right) during training with the

application or absence of two-stage training.

α β γ

α β γ
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Appendix B. Additional Experiments

B.1. Necessity and Bene�ts of the TAET Two-Stage Training

The comparison between the two-stage training method (TAET) and the single-stage approach (HARL)

is illustrated in the �gure. TAET employs a two-stage training strategy, where the �rst 40 epochs are

dedicated to optimizing cross-entropy (CE), followed by adversarial loss (HARL) optimization in

subsequent epochs. This methodology enables a dynamic equilibrium between natural accuracy and

adversarial robustness as shown in Figure 8.

The left graph compares TAET and HARL in terms of natural accuracy. During the initial 40 epochs of CE

training, TAET primarily concentrates on improving the classi�cation accuracy of natural samples. This

phase enables rapid convergence and leads to a signi�cant performance improvement over HARL, thus

establishing a strong baseline for natural performance. After completing the 40th epoch, TAET

transitions to HARL optimization. Although a transient �uctuation in natural accuracy occurs during this

transition, the model quickly adapts to the new training objective and ultimately achieves a natural

accuracy of approximately 0.8, clearly surpassing HARL. This outcome demonstrates that TAET’s two-

stage training approach provides suf�cient room for optimizing adversarial robustness while

maintaining high natural accuracy, all while offering a substantial reduction in resource requirements.

The right graph presents the comparison of adversarial robustness under PGD attacks. During the �rst

40 epochs of CE training, TAET predominantly focuses on optimizing natural accuracy, with minimal

attention to adversarial robustness, resulting in nearly zero PGD robustness. However, following the

switch to HARL optimization at epoch 40, TAET’s PGD robustness improves at an accelerated rate,

eventually surpassing HARL in the later stages of training and stabilizing around 0.36. This �nding

underscores that TAET’s strategy effectively prioritizes natural accuracy optimization before shifting

focus to adversarial robustness, achieving a dynamic balance between the two objectives. Additionally, by

combining CE and HARL in a complementary manner, TAET not only signi�cantly enhances the model’s

ability to generalize on natural samples but also demonstrates substantial potential for improving

adversarial robustness, while signi�cantly reducing the computational burden compared to HARL.These

advantages collectively result in nearly halving the time and memory consumption, as shown in Figure 6.
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Method Clean FGSM PGD CW AA

AT-BSL 77.74 43.56 36.53 22.77 34.99

TRADES 75.66 39.17 32.71 40.76 31.83

AT 77.96 44.98 37.7 24.41 36.09

MART 69.8 44.45 39.66 34.31 38.24

ADT 76.98 46.18 39.42 18.78 38.1

REAT 79.72 41.25 33.39 17.5 31.85

LAS-AT 76.02 44.16 38.27 51.73 36.15

HE 77.61 46.18 38.73 22.3 37.26

GAIRAT 71.49 41.77 36.87 54.6 33.79

TAET(ours) 76.31 45.1 40.8 62.21 39.24

Table 6. The standard accuracy performance of various methods ON CIFAR10-LT

B.2. Conventional Evaluation Metrics on CIFAR10-LT

The experimental results on CIFAR-10-LT using accuracy and robustness metrics are shown in Tab.  6.

From these results, it is evident that our method achieves high robustness while maintaining strong

performance in terms of conventional accuracy, demonstrating the best performance across multiple

adversarial attack scenarios, including PGD, CW, and AA. Additionally, we observe that the MART method

exhibits robust performance under the long-tail distribution, but its accuracy on clean samples is

relatively lower. This suggests that a promising avenue for further improvement could involve combining

the MART method with long-tail recognition approaches to enhance robustness in long-tail settings

while maintaining higher accuracy on natural samples.

B.3. Different IRs

We present the results on CIFAR-10-LT and CIFAR-100-LT datasets under different Imbalance Ratios (IR)

in Tabs. 7, 8. The results show that our method outperforms the previous state-of-the-art method, AT-

BSL, across all evaluation metrics, further con�rming the effectiveness of our approach. Notably, in the
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standard accuracy evaluation on the CIFAR-10 dataset, our method slightly underperforms AT-BSL[19] on

clean samples. This phenomenon can be attributed to the fact that our method places more emphasis on

optimizing the performance of the tail classes, which have relatively fewer samples in the overall dataset.

As a result, while the balanced accuracy might be higher, the standard accuracy could be lower.

Nevertheless, even under the standard accuracy evaluation, our method still demonstrates superior

adversarial robustness compared to previous methods, which further highlights the superiority of our

approach.

IR Method Clean FGSM PGD CW AA

10 AT-BSL 77.74 43.56 36.53 22.77 34.99

TAET 76.31 44.37 38.17 53.61 37.1

20 AT-BSL 78.3 45.4 37.96 27.99 36.4

TAET 77.57 47.66 41.69 55.51 39.9

50 AT-BSL 80.68 52.74 46.05 38.93 44.19

TAET 77.53 51.2 46.98 39.2 44.62

100

AT-BSL 81.92 54.52 49.03 43.66 47.78

TAET 74.09 51.98 49.95 66.71 45.88

Table 7. The standard accuracy performance under different Imbalance Ratios (IR) on CIRAR10-LT
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IR Method Clean FGSM PGD CW AA

10

AT-BSL 48.41 24.77 20.81 18.8 18.71

TAET 55.69 30.2 24.46 29.69 22.25

20

AT-BSL 48.27 24.98 20.23 20.05 18.12

TAET 57.31 30.07 23.19 32.79 20.56

50

AT-BSL 49.46 26.19 22.99 24.43 20.35

TAET 60.71 30.17 24.05 35.7 21.59

100

AT-BSL 48.48 28.13 24.34 28.2 21.58

TAET 59.56 32.91 26.52 40.22 23.17

Table 8. The standard accuracy performance under Different Imbalance Ratios (IR) on CIFAR100-LT

Figure 9. Time Cost Under Different Numbers of Steps
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B.4. Different PGD Steps

Through an analysis of the model’s accuracy on clean samples and its performance under various

adversarial attacks across different training steps in Tabs. 9, along with an evaluation of the associated

time cost, we observed that the number of steps signi�cantly impacts both adversarial robustness and

computational ef�ciency. Speci�cally, clean accuracy remained stable as the number of steps increased,

consistently ranging from 73% to 79%, indicating that the model retains strong robustness in the

absence of attacks. Under adversarial attacks, model accuracy improved with more steps, particularly

under FGSM and CW attacks, peaking at 30 steps. However, the associated training time increased

substantially, rising from 54 seconds at 5 steps to 208 seconds at 30 steps, and further to 270 seconds at

40 steps, which imposes signi�cant computational overhead. Notably, using 10 steps provided a

reasonable balance, achieving competitive adversarial robustness and clean accuracy while requiring

only 85 seconds per epoch, which is signi�cantly lower than the time cost for 30 or 40 steps. These

results suggest that selecting 10 steps offers a practical compromise between adversarial robustness,

clean accuracy, and computational ef�ciency.

Steps Clean FGSM PGD CW AA

5 78.86 31.21 22.7 30.52 19.77

10 74.25 40.64 35.11 60.22 31.17

20 73.27 40.21 36.62 60.25 31.36

30 73.24 41.82 37.55 61.14 33.17

40 73.89 41.00 36.43 59.90 32.20

Table 9. The Impact of Adversarial Training Steps on Adversarial Robustness

B.5. Different PGD Size

In Tabs.  10 we observed that step size adjustments signi�cantly in�uence the model’s adversarial

robustness while having a relatively minor effect on clean sample performance. Speci�cally, clean

accuracy remained stable across all step sizes, ranging between 73% and 74%, which highlights the

model’s robustness on natural samples. In contrast, adversarial robustness exhibited varying trends with

qeios.com doi.org/10.32388/9Z1LYW 27

https://www.qeios.com/
https://doi.org/10.32388/9Z1LYW


step size changes. Larger step sizes, such as 3/255, notably improved robustness against stronger attacks

like PGD and AA, with AA accuracy increasing from 31.17% to 37.74%. Meanwhile, robustness against

FGSM attacks remained relatively stable, whereas performance under CW attacks showed some

�uctuation as the step size increased. These �ndings suggest that increasing the step size can enhance

robustness in certain adversarial scenarios but may also introduce vulnerabilities in others (e.g., CW

attacks). Therefore, while appropriately increasing the step size can improve adversarial robustness

without compromising clean accuracy, the optimal step size should be carefully selected based on task-

speci�c requirements and the adversarial attack types encountered.

Size Clean FGSM PGD CW AA

1/255 74.25 40.64 35.11 60.22 31.17

2/255 73.13 39.88 35.60 58.26 31.05

3/255 73.29 40.58 36.20 58.56 37.74

Table 10. The Impact of Adversarial Training Step Size on Adversarial Robustness

B.6. Different model

In Tab. 11, we present a comparison between our method and the previous state-of-the-art method (AT-

BSL) across different models. The results indicate that our method not only surpasses the original

approach in terms of balanced accuracy but also in adversarial robustness, highlighting the superiority of

our method. Furthermore, it can be observed that when training on the long-tailed dataset with ViT-b/16

(without using a pre-trained model), the AT-BSL method has completely failed, which demonstrates the

effectiveness of our two-stage training approach in stabilizing model training.
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Model Method Clean FGSM PGD AA

ResNet50

AT-BSL 74.34 35.41 29.01 27.14

TAET 74.48 40.17 34.70 31.27

ViT-B/16

AT-BSL 10.00 10.00 10.00 10.00

TAET 22.65 18.45 18.56 14.72

Table 11. Comparison results with AT-BSL under different models on CIFAR-10-LT(IR = 10), with better results

highlighted in bold.

Appendix C. Time Ef�ciency Analysis

C.1. Total Training Time Comparison

The total time consumption for TAET (Two-Stage Adversarial Training) and standard AT (Adversarial

Training) can be expressed as:

where:

: Number of epochs for the Cross-Entropy (CE) stage.

: Number of epochs for the Adversarial Training (AT) stage.

: Total number of training epochs.

C.2. Acceleration Ratio Derivation

The time acceleration factor is de�ned as:

where:

: Relative ef�ciency during the CE stage

: Adversarial training time expansion coef�cient

TTAET

TAT

= ⋅ (F + B) + ⋅ [F + B + κ ⋅ (F + )]NCE NAT Badv

= ⋅ [F + B + κ ⋅ (F + )]Ntotal Badv

(12)

= 40NCE

= 60NAT

= 100Ntotal

η = =
TTAET

TAT

⋅ ρ + ⋅ (1 + κ ⋅ γ)NCE NAT

⋅ (1 + κ ⋅ γ)Ntotal

(13)

ρ = ≈ 0.139F+B

F+B+κ⋅(F+ )Badv

γ = ≈ 0.619
F+Badv

F+B
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Substituting the parameters, we get:

This indicates that TAET reduces the theoretical computational workload by approximately 39.2%.

Appendix D. Space Ef�ciency Analysis

D.1. Memory Requirement Model

The peak memory requirement during training is given by:

where:

: Memory for adversarial components

: Batch size.

: Number of channels.

: Height and width of the input data.

 bytes: Data type size.

: Adversarial training activation �ag.

D.2. Memory Requirement Comparison

The memory difference between TAET and AT can be quanti�ed as:

D.3. Effective Memory Savings

The memory saving ef�ciency is de�ned as:

This indicates that TAET reduces the memory occupation by 1629.42 MB during 40% of the training time.

η ≈ ≈ 0.608
40 × 0.139 + 60 × (1 + 10 × 0.619)

100 × (1 + 10 × 0.619)
(15)

M = + + + δ ⋅Mmodel Mdata Mgrad Mδ (15)

= b ⋅ c ⋅ h ⋅ w ⋅ d ≈ 1629.42MBMδ

b = 128

c = 3

h = w = 32

d = 4

δ ∈ {0, 1}

ΔM = − = {MTAET MAT
−1629.42MB
0

CE stage
AT stage

(16)

ξ = ⋅ = × 1629.42 = 651.77 MB
TCE

Ttotal
Mδ

40

100
(17)
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Appendix E. Algorithmic Framework for Two-Stage Adversarial

Training

The following pseudocode outlines the implementation of Two-Stage Adversarial Equalization Training

(TAET). This algorithm effectively balances natural accuracy and adversarial robustness through staged

optimization of cross-entropy and hierarchical adversarial loss. By initially focusing on natural accuracy

and later shifting to robustness objectives, TAET ensures a dynamic equilibrium between performance

and defense. Its ef�cient design also reduces computational overhead compared to single-stage

approaches, making it a practical solution for adversarial training.
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Appendix F. Adversarial Attacks

The Fast Gradient Sign Method generates adversarial examples by perturbing the input data in the

direction of the gradient of the loss function with respect to the input. The perturbation is controlled by a

small step size  . The formula for FGSM is given by:

where   is the original input image,   is the perturbation magnitude, and   is the gradient of

the loss function   with respect to the input  , where   represents the model parameters and   is

the true label. The adversarial example   is created by adding the perturbation   to the input.

Projected Gradient Descent (PGD) attack is an iterative version of FGSM, where perturbations are applied

multiple times in small steps. After each step, the perturbed image is projected back into a feasible region

to ensure that the perturbations stay within a speci�ed bound. The update rule for PGD is given by:

where   is the step size,   is the set of allowed perturbations (typically the   ball), and   denotes the

projection operator that ensures the adversarial example stays within the allowed perturbation space.

Carlini-Wagner (CW) attack is an optimization-based method that seeks the minimal perturbation

necessary to misclassify an input. It achieves this by minimizing a loss function that balances the

perturbation size and the model’s con�dence in the incorrect class. The objective function for the CW

attack is:

Here,   is the perturbation added to the original input  ,   denotes the   norm of the perturbation,

and   is a constant that balances the importance of the perturbation size against the attack success. The

function   is de�ned as:

In this function,    represents the logits (pre-softmax outputs) of the model for class  ,    is the

target class in a targeted attack, and    (kappa) is a con�dence parameter that controls the margin by

which the adversarial example’s logit for the target class must exceed that of any other class. The

constraint   ensures that the perturbed input remains within valid data bounds. The goal is

ϵ

= x + ϵ ⋅ sign( J(θ,x,y))x′ ∇x (18)

x ϵ J(θ,x,y)∇x

J(θ,x,y) x θ y

x′ ϵ

= ( + α ⋅ sign( J(θ, ,y)))xt+1 Πx+B xt ∇x xt (19)

α B L∞ Π

minδ

s.t.

∥δ + c ⋅ f(x + δ)∥2

x + δ ∈ [0, 1]n
(20)

δ x ∥δ∥2 L2

c

f(x + δ)

f(x + δ) = max( {Z(x + δ } − Z(x + δ , −κ)max
i≠t

)i )t (21)

Z(x + δ)i i t

κ

x + δ ∈ [0, 1]n
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to �nd the smallest perturbation   that causes the model to misclassify the input as the target class   with

high con�dence.

AutoAttack (AA) is a state-of-the-art adversarial attack method that combines multiple attack strategies

to generate robust adversarial examples. AA includes attack methods such as APGD, APGDT, FAB, and

Square. Each attack method in AutoAttack is designed to explore different adversarial strategies, making

it a versatile and powerful tool for generating adversarial examples across a wide range of models.
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