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Abstract

The family of bent functions is a known class of Boolean functions,

which have a great importance in cryptography. The Cayley graph

defined on Zn
2 by the support of a bent function is a strongly regular

graph srg(v, k, λ, µ), with λ = µ. In this note we list the parameters of

such Cayley graphs. Moreover, it is given a condition on (n,m)-bent

functions F = (f1, . . . , fm), involving the support of their components

fi, and their n-ary symmetric differences.

1 Introduction

A cryptosystem is an encryption and decryption algorithm for a message. If

Alice wants to send a message p to Bob, the encryption algorithm E com-

putes the cyphertext z starting from a key KA, i.e. z = E(p,KA). Bob uses

the decryption algorithm D to recover p from a key KB, i.e. p = D(z,KB).

Necessairily, for all p,KA, KB, D(E(p,KA), KB) = p. Cryptosystems are

called private key, if the parties know each other and have shared infor-

mations about their private keys, or public key if it is not necessary that

the two parties know each other, and they have two public keys. The best

known private key algorithms are DES (Data Encryption System) and its
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successor AES (Advanced Encryption System). The reader can find more

information on cryptography in [11]. One of the most importand features

for cryptographic algorithms is the confusion, i.e. the relation between any

bit and all the plaintext appearing random. After the linear cryptanalysis

techniques of A. Matsui [10], one of the research item in cryptograph was to

find functions as far as possible from the linear functions, i.e. maximizing the

Hamming distance, in order to resist to linear attacks, see [3]. Among the

family of Boolean functions, such functions are called bent functions. In [1, 2]

it is given a characterization of bent functions in terms of strongly regular

graphs. Here, we give considerations on parameters of such strongly regular

graphs, and a first characterization of (n,m)-bent functions.

2 Preliminaries

Let Z2 be the binary field. A Boolean function is a function f : Zn
2 −→ Z2

and to denote f we will use two different notations: the classical notation,

where the input string is given by n binary variables, and the 2n-tuple vector

representation f = (f0f1 . . . f2n−1) where fi = f(b(i)) and b(i) is the binary

expansion of the integer i. We will denote by Ωf the support of f , i.e.

Ωf = {w ∈ Zn
2 |f(w) ̸= 0} = {w ∈ Zn

2 |f(w) = 1}.

Definition 2.1. Let l be a Boolean function.

• We say that l is a linear function if ∀x, y ∈ Zn
2 , l(x+ y) = l(x) + l(y).

• We say that l is an affine function if it is a linear function plus a

constant in Z2.

We denote with A the set of all affine functions

The nonlinearity of a Boolean function f is the minimum Hamming dis-

tance between f and an affine function, i.e.

Nl(f) = minϕ∈A|{x ∈ Zn
2 |f(x) ̸= ϕ(x)}|.
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Definition 2.2. A Boolean function f is called bent function if Nl(f) =
2n−2

n
2

2
.

Here we define the Abstract Fourier Transform of a Boolean function f

as the rational valued function f ∗ which defines the coefficients of f with

respect to the orthonormal basis of the group characters Qw(x) = (−1)(w·x),

when ” · ” is the standard inner product and w · x =
∑n

i=1 xiwi = Trn1 (wx).

Then

f ∗(w) =

∑
x∈Zn

2
(−1)Trn1 (wx)f(x)

2n
.

Note that f ∗(b(0)) =
|Ωf |
2n

. The Walsh spectrum is the set of values of f ∗(w).

Here we investigate the spectrum in terms of a graph eigenvalue problem.

3 The Cayley graph Cay(Zn
2 ,Ωf)

Definition 3.1. Let Γ be a group with identity e.

• A Cayley subset, is a subset C ⊆ Γ such that e /∈ C and whenever

g ∈ C, then g−1 ∈ C.

• The Cayley graph G = Cay(Γ, C) of Γ with respect to C is the graph

whose vertex set is Γ, when two vertices g and h are adjacent if and

only if gh−1 ∈ C.

We modify this definition by dropping the condition e /∈ C, allowing loops

in the Cayley graph.

Consider now the additive group (Zn
2 ,⊕), where ⊕ is the component-

wise sum. For all w ∈ Zn
2 , w−1 = w, then each subset of Zn

2 is a Cay-

ley subset. We can associate each Boolean function f to the Cayley graph

Gf = Cay(Zn
2 ,Ωf ). The vertex-set V (Gf ) is the whole Zn

2 , while the edge-set

is E(Gf ) = {(u, v) ∈ Zn
2 |u⊕v ∈ Ωf} = {(u, v) ∈ Zn

2 |f(u⊕v) = 1}. The graph
has 2n−dim⟨Ωf ⟩ vertices which are the cosets of ⟨Ωf⟩ in Zn

2 . Since eigenvectors

of the Cayley graph are exactly the group characters Qw(x) = (−1)Trnm(wx),
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see [13],the following two results give a characterization of the spectrum of

Gf from the Walsh spectrum of f .

Result 3.2. [1, Theorem 1] The i-th eigenvalue λi of the Cayley graph, which

corresponds to the eigenvector Qb(i), is given by

λi =
∑
x∈Zn

2

(−1)Trn1 (b(i)x)f(x) = 2nf ∗(b(i)).

Result 3.3. [1, Proposition 2]

1. The largest spectral coefficients is λ0 = 2nf ∗(b(0)) = |Ωf |, with multi-

plicity 2n−dim⟨Ωf ⟩.

2. The number of non zero spectral coefficients is the rank of the adjacency

matrix of Gf .

3. If Gf is connected, f has a spectral coefficient equal to −λ0 if and only

if its Walsh spectrum is symmetric with respect to 0.

4 Strongly regular graphs

A strongly regular graph with parameters (v, k, λ, µ), denoted by srg(v, k, λ, µ),

is a graph with v vertices, each vertex lies on k edges, any two adjacent ver-

tices have λ common neighbours and any two non-adjacent vertices have µ

common neighbours. We give now some folklore results on strongly regular

graphs, see [4] for more details.

Result 4.1. k(k − λ− 1) = µ(v − k − 1).

The spectrum of the adjacency matrix of an srg(v, k, λ, µ) is fully deter-

mined by its parameters.

Result 4.2. A strongly regular graph G with parameters (v, k, λ, µ) has ex-

actly three eigenvalues: k, θ1 and θ2 of multiplicity, respectively, 1, m1 and

m2, where:

θ1 =
1

2

[
(λ− µ) +

√
(λ− µ)2 + 4(k − µ)

]
,
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θ2 =
1

2

[
(λ− µ)−

√
(λ− µ)2 + 4(k − µ)

]
,

m1 =
1

2

[
(v − 1)− 2k − (v − 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)

]
,

m2 =
1

2

[
(v − 1) +

2k − (v − 1)(λ− µ)√
(λ− µ)2 + 4(k − µ)

]
.

We write the spectrum as k, θm1
1 , θm2

2 . On the other hand, we can express the

parameters of a strongly regular graph starting from its spectrum

v = 1 +m1θ1 +m2θ2,

λ = k + θ1θ2 + θ1 + θ2,

µ = k + θ1θ2 = λ− θ1 − θ2,

Corollary 4.3. Consider a srg(v, k, λ, µ), with spectrum k, θm1
1 , θm2

2 . Then

λ = µ if and only if θ1 = −θ2.

Result 4.4. The parameters λ and µ of a srg(v, k, λ, µ) may be derived from

its spectrum, since: λ = k + θ1 + θ2 + θ1θ2

µ = k + θ1θ2.
(1)

In [1, 2] is given a characterization of bent functions in a graph theoretical

point of view.

Result 4.5. [1, Lemma 12] If f is a bent function, the graph Gf is a strongly

regular graph with λ = µ.

Result 4.6. [2, Theorem 3] Bent functions are the only functions whose

associated Cayley graph Gf is a strongly regular graph with λ = µ.

Proposition 4.7. The Cayley graph Gf of a bent function is exactly one of

the following:

• srg(2n, 2
n+2

n
2

2
, 2

n+2
n
2 −2n−1

2
, 2

n+2
n
2 −2n−1

2
);
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• srg(2n, 2
n−2

n
2

2
, 2

n−2
n
2 −2n−1

2
, 2

n−2
n
2 −2n−1

2
).

Proof. From [1, Definition 4] we know the three eigenvalues k, θ1, θ2 = −θ1 of

Gf . From 4.4 we get the parameters λ and µ, while 4.1 allows us to compute

v = 2n = |Zn
2 |.

Example 4.8. The first strongly regular graph defined by bent functions are

n = 2 • srg(4, 3, 1, 1), i.e. the complete graph K4.

• srg(4, 1, 0, 0), i.e. a trivial strongly regular graph made of 2 dis-

connected edges.

n = 4 • srg(16, 10, 6, 6).

• srg(16, 10, 2, 2).

n = 6 • srg(64, 36, 20, 20).

• srg(64, 28, 12, 12).

n = 8 • srg(256, 136, 72, 72).

• srg(256, 120, 56, 56).

n = 10 • srg(1024, 528, 272, 272).

• srg(1024, 496, 240, 240).

Note that in each case graphs have the parameters of the complements of the

affine polar graphs V O∓(2n, 2), which is the graph arising from a quadric Q

in the vector space V = V (2n, 2) and two points u, v ∈ V represent adjacent

vertices if and only if Q(u − v) = 0. Note that the quadric is elliptic or

hyperbolic while we consider the first or the second example, respectively. See

the table of strongly regular graphs in [5] for more details.
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5 Vectorial bent function

Consider now functions F : Zn
2 −→ Zm

2 , F (x1, . . . , xn) = (f1, . . . , fm), where

for each i, fi : Zn
2 −→ Z2. The set of affine vectorial functions An,m is

defined as in the case m = 1. We can introduce two different way to express

the nonlinearity of a vectorial Boolean function:

nl(F ) = minv∈Zn
2 \{0}Nl(F · v) (2)

Nl(F ) = minϕ∈An,m|{x ∈ Zn
2 |F (x) ̸= ϕ(x)}| (3)

Definition 5.1. A (n,m)-bent function, or vectorial bent function, is a func-

tion F = (f1, . . . , fm) such that nl(F ) = 2n−2
n
2

2
, or equivalently each linear

combination of f1, . . . , fm is a bent function.

In order to give graph based properties of (n,m)-bent functions we need

now to define the set operation symmetric difference, which is the equivalent

of the logical operation XOR.

Definition 5.2. The symmetric difference between two sets A and B is

A△B = (A \B) ∪ (B \ A) = (A ∪B) \ (A ∩B).

Proposition 5.3. The power set of any set X is an elementary abelian 2-

group under the operation of symmetric difference.

Proof. The symmetric difference is commutative and associative:

• A△B = B△A;

• (A△B)△C = A△(B△C).

Moreover the empty set is the identity and each element has order two:

• A△∅ = A;

• A△A = ∅.
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An elementary abelian 2-group is also called Boolean group, see [8] for

more details.

The symmetric difference of a collection of sets is made of elements con-

tained in an odd number of sets. The n-ary symmetric difference is defined

as follows;

△M =
{
a ∈

⋃
M

∣∣∣♯{A ∈ M |a ∈ A} = 2k + 1, k ∈ N
}
.

Proposition 5.4. Consider a vectorial Boolean function F = (f1, . . . , fm),

with fi : Zn
2 −→ Z2, and let Ωi = Ωf(i) be the support of fi, of i = 1, . . . ,m.

If the function F is (n,m)-bent, then the Cayley graphs Cay(Zn
2 ,△i∈IΩi) are

strongly regular with λ = µ for all index subset I ⊆ [1, . . . ,m].
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