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Object detection is a signi�cant �eld in autonomous driving. Popular sensors for this task include

cameras and LiDAR sensors. LiDAR sensors o�er several advantages, such as insensitivity to light

changes, like in a dark setting (Figure 2) and the ability to provide 3D information in the form of

point clouds, which include the ranges of objects. However, 3D detection methods, such as

PointPillars[1], typically require high-power hardware. Additionally, most common spinning LiDARs

are sparse and may not achieve the desired quality of object detection in front of the car. In this

paper, we present the feasibility of performing real-time 3D object detection of cars using 3D point

clouds from a LiDAR sensor, processed and deployed on a low-power Hailo-8 AI accelerator[2]. The

LiDAR sensor used in this study is theInnovizOne sensor[3], which captures objects in higher quality

compared to spinning LiDAR techniques, especially for distant objects. We successfully achieved

real-time inference at a rate of approximately 5Hz with a high accuracy of 0.91% F1 score, with only 

-0.2% degradation compared to running the same model on an NVIDIA GeForce RTX 2080 Ti[4]. This

work demonstrates that e�ective real-time 3D object detection can be achieved on low-cost, low-

power hardware, representing a signi�cant step towards more accessible autonomous driving

technologies. The source code and the pre-trained models are available at

https://github.com/AIROTAU/PointPillarsHailoInnoviz/tree/main.

1. Introduction

In the �eld of autonomous driving, 3D object detection is crucial for understanding the environment

and making informed navigation and safety decisions. Traditional approaches often rely on high-

power, expensive hardware to achieve real-time performance, posing challenges for scalability and
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cost-e�ectiveness. This study investigates the use of the InnovizOne LiDAR sensor in conjunction

with the Hailo AI Accelerator, a low-power alternative, to perform real-time 3D object detection.

InnovizOne LiDAR provides high-resolution 3D point cloud data, essential for accurately detecting

and classifying objects in various environments. The Hailo-8 AI chip (Figure 3) , designed for edge

devices, o�ers a cost-e�ective and energy-e�cient solution for deploying deep learning models. By

leveraging the OpenPCDet framework[5], we adapted state-of-the-art detector, PointPillars, to work

with InnovizOne LiDAR data and optimized them for real-time inference on the Hailo chip.

2. Methodology

PointPillars accepts point clouds as input and estimates oriented 3D boxes for objects such as cars,

pedestrians and cyclists. It consists of three main stages: (1) A feature encoder network that converts a

point cloud to a sparse pseudo-image; (2) a 2D convolutional backbone to process the pseudo-image

into a high-level representation; and (3) a detection head that detects and regresses 3D bounding

boxes.

2.1. Data Collection

Our autonomous lab vehicle (Figure 1), equipped with an InnovizOne LiDAR, was used by Yasmin

Tsiprun in her work[6]  to record data in diverse environments, including both static and dynamic

scenes across Tel-Aviv University campus and its surrounding roads. This type of LiDAR captures

high-resolution 3D point clouds, providing detailed information about the area in front of the car.

Unlike cameras, which can struggle in low light, LiDAR o�ers signi�cant advantages by delivering

detailed information about the surroundings in high-resolution 3D (Figure 2).
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Figure 1. Left image: The lab vehicle equipped with a multi-sensor kit, including the InnovizOne LiDAR

mounted at the front of the roof. Right image: A close-up of the InnovizOne LiDAR mounted on the

vehicle’s roof

Figure 2. The image shows a traditional camera view at night, where pedestrians are di�cult to spot

due to poor lighting. The bottom image, generated using Innoviz LiDAR data, reveals a much clearer

and detailed scene, detecting pedestrians and vehicles even in complete darkness. This demonstrates

how LiDAR technology excels in low-light environments, o�ering critical advantages for autonomous

systems.[7]
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2.2. Data Annotation

The raw LiDAR data was divided into segments, with each frame labeled to identify cars. The labeled

data was converted into a format compatible with the OpenPCDet framework, speci�cally preparing it

for the PointPillars detector model. For each object, the annotated data include the 3D center of the

objects (cx, cy and cz), the orientation of the objects in relation to the LiDAR (theta) and a 3D

bounding box size (width, height and depth). We chose to utilize this dataset in our project.

2.3. Real-Time Inference on Hailo AI Accelerator

To achieve real-time performance, we integrated the trained detector with the Hailo AI accelerator.

This involved several steps and optimizations to ensure that the model performed e�ciently and

accurately on the device, given its computational constraints compared to more powerful but costly

alternatives like NVIDIA Jetson[8].

The Hailo-8 AI chip is designed for e�cient edge computing, o�ering low power consumption, which

makes it suitable for deployment in resource-constrained environments, and high computational

e�ciency, enabling real-time processing of high-resolution sensor data.

Figure 3. Hailo-8 AI Accelerator.
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3. Pipeline Overview

To integrate the PointPillars model with the Hailo-8 AI accelerator, we utilized Hailo’s proof-of-

concept (POC)[9], which demonstrated the o�oading of computationally intensive 2D-convolutional

layers of a 3D object detection network operating on point clouds from the KITTI dataset[10]. We

adapted this POC to process data captured by our InnovizOne LiDAR. The pipeline for this POC involves

the following steps:

3.1. Data Preparation and Preprocessing

Conversion to Compatible Formats: The raw InnovizOne LiDAR data was converted into a format

compatible with the PointPillars model and the Hailo hardware. This involved segmenting the data

into frames and labeling objects within each frame for the model training phase.

Normalization and Augmentation: The PCDet framework performs data normalization and

augmentation in order to improve model robustness. This included transformations such as

random �ips and rotations to simulate di�erent environmental conditions.

3.2. Model Adaptation for Hailo

To leverage the Hailo hardware for accelerating the 2D-convolutional parts of the PointPillars

network, the model architecture and execution �ow was adapted. This involves several critical steps:

exporting the PyTorch model to ONNX[11], translating the ONNX model to a Hailo-compatible format,

and creating a new PyTorch module that integrates the Hailo-inferred operations. The process

included the following kep steps:

3.2.1. Extracting the 2D Backbone and Dense Head

The 2D convolutional layers and the detection head were isolated from the PointPillars network. These

components are responsible for most of the computational load and are well-suited for o�oading to

the Hailo hardware (Figure 4). A new PyTorch module was created to encapsulate these components.

This module takes the spatial features as input and produces intermediate features, classi�cation

predictions, and bounding box predictions.
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Figure 4. The diagram shows in orange the part of the PointPillars model architecture that is processed

by the CPU and in purple the part that is being o�oaded to the Hailo-8 accelerator.

3.2.2. Exporting to ONNX

The newly created module was exported to the ONNX format. This format serves as an intermediary

representation that can be parsed and optimized by Hailo tools. The ONNX model was simpli�ed using

onnxsim to ensure compatibility and e�ciency in subsequent steps.

3.2.3. Translating to Hailo Internal Representation

Using the Hailo SDK, the simpli�ed ONNX model was translated into Hailo’s internal format (HAR).

This process involves parsing the ONNX model and mapping its operations to Hailo’s hardware

capabilities. The resulting HAR �le encapsulates the 2D convolutional layers and the detection head,

ready for execution on Hailo hardware.

3.2.4. Creating a PyTorch Module for Hailo Execution

A new PyTorch module was de�ned to replace the original 2D backbone and dense head in the

PointPillars network. This module integrates with Hailo’s hardware to perform the 2D convolution

and detection head operations. It handles the conversion of data formats and interfaces with the Hailo

SDK. This ensures that the spatial features are processed by the Hailo hardware and the results are

seamlessly integrated back into the PyTorch model �ow.
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The system architecture was designed to maximize the e�ciency of real-time 3D object detection

while maintaining low power consumption. Key components included:

Data Acquisition Module: Captures LiDAR data and converts it into a format suitable for the

processing pipeline.

Preprocessing Module: Applies necessary transformations and augmentations to the raw data,

ensuring it is ready for inference.

Inference Engine: Runs the optimized PointPillars model on the Hailo-8 AI chip, performing real-

time 3D object detection.

Post-Processing Module: Re�nes the model output, �ltering and merging detections to provide

accurate and reliable results.

4. Integration and Testing

Overview: After adapting the model for Hailo, we integrated it into the overall inference pipeline and

performed testing. This ensured that the adapted model produced consistent and accurate results and

leveraged the Hailo hardware e�ectively. The process included the following kep steps:

4.1. Quantization and Optimization

To further optimize the model for Hailo hardware, a quantization process was performed. This

process involved creating a calibration dataset from the spatial features input to the 2D backbone.

Using the Hailo SDK, the model based on the calibration dataset was optimized. This step ensured

that the model was numerically e�cient and ready for execution on Hailo hardware.

The optimized model was saved as a quantized HAR (q-HAR) �le.

4.2. Compiling for Hailo Hardware

The quantized model was then compiled for execution on Hailo hardware. This involved generating

a hardware executable �le (HEF) that encapsulates the optimized model.

The compilation process included creating an allocation plan and optimizing the resource

utilization on the Hailo hardware. The resulting HEF �le was ready for deployment.
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4.3. End-to-End Integration

The Hailo hardware execution was integrated into the overall inference pipeline using HailoRT’s

asynchronous send/receive functionality. This allowed for e�cient and pipelined processing.

Two new PyTorch modules were de�ned to handle the operations before and after the Hailo-

mapped parts. These modules encapsulated the preprocessing and postprocessing steps, ensuring a

seamless �ow of data.

A multiprocessing setup was implemented to manage the data transfer between PyTorch and Hailo

hardware. Separate processes handled the sending and receiving of data, enabling e�cient and

parallel execution.

4.4. Final Testing

Extensive testing was performed to verify the accuracy and performance of the integrated model.

We compared the results with the original model to ensure consistency.

The end-to-end inference pipeline was validated to ensure it met the required performance

metrics and utilized the Hailo hardware e�ectively.

Model F1 Score Recall Precision AP

PVRCNN 0.96 0.97 0.96 0.97

PointPillars 0.92 0.87 0.97 0.87

PointPillars+Hailo (ours) 0.91 0.87 0.96 0.85

Table 1. The result metrics[12] were evaluated using an IoU threshold and a con�dence threshold of 0.3.

We evaluated the results for two models (PVRCNN and PointPillars) and for the new pipeline created

with the o�oaded computation to the Hailo chip based on the PointPillars model.

5. Results

The optimized model on the Hailo chip achieved a processing rate of approximately 5 Hz, with

detection accuracy comparable to running on more powerful hardware. This demonstrated the
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feasibility of deploying advanced 3D object detection models on low-power edge devices. In addition

to the PointPillars model, we also trained the PV-RCNN model[13], which is a more complex and

powerful 3D object detection architecture. PV-RCNN is known for its superior accuracy due to its

multi-scale feature aggregation and region-based re�nement. However, the model is computationally

heavier, and we recognized early on that it would not be feasible to run PV-RCNN on the Hailo chip,

given its resource constraints. Despite this, we conducted the comparison to evaluate the potential

trade-o�s between model complexity and performance. While PV-RCNN achieved higher accuracy on

the same dataset, its processing speed was signi�cantly slower, further justifying our choice to

optimize the lighter PointPillars model for real-time edge inference on the Hailo platform.

The experimental results, summarized in Table 1, highlight the performance metrics for the PV-RCNN

and PointPillars models. Evaluations were conducted using an IoU threshold and a con�dence

threshold of 0.3, with comparisons made between the models’ performance with and without the

Hailo-optimized pipeline. Notably, the PointPillars model, optimized for the Hailo chip, demonstrated

competitive accuracy while achieving faster processing speeds. Detection metrics for PointPillars at

these thresholds showed minimal variation between the standard and Hailo-optimized pipelines.
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6. Discussion

Figure 5. Above are several detection of cars generated by the PointPillars model using Hailo on point

cloud data from Innoviz LiDAR. Red bounding boxes represent the detector results, while green

bounding boxes indicate the ground truth.

The successful deployment of real-time 3D object detection on low-power hardware is a major step

forward for the future of autonomous driving technologies. This advancement not only demonstrates

the feasibility of using e�cient, power-constrained hardware in complex perception tasks but also

highlights the potential for broader adoption across various autonomous platforms. By addressing

challenges related to scalability and cost, our approach enables more a�ordable access to advanced

detection capabilities, which could bene�t a wide range of applications, from commercial autonomous

vehicles to agricultural and industrial automation.

In addition, our study identi�es key areas for further development, including optimization techniques

that could reduce processing latency and enhance detection accuracy. Expanding the applicability of

our approach to integrate with various sensor types, such as other LiDAR models and radar, could

improve system robustness across diverse driving conditions and environments. These ongoing
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improvements will be essential for advancing the reliability and versatility of real-time 3D object

detection in autonomous systems

7. Conclusion

This study illustrates that high-performance real-time 3D object detection is achievable using cost-

e�ective, low-power hardware. By leveraging the capabilities of the InnovizOne LiDAR sensor in

combination with the Hailo AI chip, and through careful optimization of the PointPillars model

architecture, we achieved a processing rate of 5Hz with substantial accuracy. This setup strikes a

balance between performance and energy e�ciency, showcasing the feasibility of deploying advanced

perception systems without the need for expensive, high-power GPUs traditionally associated with

autonomous vehicle technologies.

The results underscore the potential for more accessible and scalable autonomous driving solutions.

This approach can be particularly impactful in applications where both cost and power consumption

are limiting factors, such as compact or lightweight robotic systems, autonomous delivery vehicles,

and agricultural or industrial automation. Moreover, it opens opportunities to integrate high-

resolution 3D perception in environments with constrained resources, making autonomous

technology more adaptable and a�ordable across a wider range of sectors. Future work could extend

these optimizations to support additional sensor types and processing frameworks, further

broadening the scope and accessibility of autonomous systems.
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