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ABSTRACT 

This research investigated the role of artificial intelligence (AI), specifically the DALL.E model 

by OpenAI, in advancing data generation and visualization techniques in agriculture. DALL.E, an 

advanced AI image generator, works alongside ChatGPT's language processing to transform text 

descriptions and image clues into realistic visual representations of the content. The study used 

both approaches of image generation: text-to-image and image-to-image (variation). Two types of 

datasets depicting fruit crop environment and “crop-vs-weed” environment were generated. These 

AI-generated images were then compared against ground truth images captured by sensors in real 

agricultural fields. The comparison was based on Peak Signal-to-Noise Ratio (PSNR) and Feature 

Similarity Index (FSIM) metrics. For fruit crops, image-to-image generation exhibited a 5.78% 

increase in average PSNR over text-to-image methods, signifying superior image clarity and 

quality. However, this method also resulted in a 10.23% decrease in average FSIM, indicating a 

diminished structural and textural similarity to the original images. Conversely, in crop vs weed 

scenarios, image-to-image generation showed a 3.77% increase in PSNR, demonstrating enhanced 

image precision, but experienced a slight 0.76% decrease in FSIM, suggesting a minor reduction 

in feature similarity. Similar to these measures, human evaluation also showed that images 

generated using image-to-image-based method were more realistic compared to those generated 
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with text-to-image approach. The results highlighted DALL.E's potential in generating realistic 

agricultural image datasets and thus accelerating the development and adoption of precision 

agricultural solutions.  

 

1 Introduction 

In recent years, synthetic images, generated by computer algorithms to resemble real-world 

entities, have been widely used in various sectors, such as healthcare1, biomedicine2, fashion3, 

architecture4, geospatial studies5, automotive industry6, and agriculture7 due to their ability to 

provide realistic visual representations for observation, and analysis, and driving innovations8.  

Traditional methods of creating these images include parametric techniques such as 9Bezier Curves 

used by Chen et al. 9 to develop more accurate synthetic images of cell nuclei for biomedical 

applications. Similarly, Alberto et al. 10 used Bezier Curves for designing complex mechanical 

structures using synthetic images. Another classical method is ray tracing, a technique to render 

realistic images by simulating light paths, improved upon by Ben et al. 11 through Neural Radiance 

Fields for better low-light image reconstruction. Additionally, Physics-based Rendering (PBR) 12 , 

a method that mimics real-world light flow, has been used effectively for creating photorealistic 

images, as demonstrated by Hodan et al. 12 in their AI-based object detection research. These 

traditional image generation methods highlighted the evolving role of synthetic images in driving 

technological advancements 13. However, these traditional models of synthetic image generation 

come with notable limitations. Parametric models, for instance, rely heavily on the accuracy of 

parameters and equations, making them less adaptable to complex or irregular shapes14 and 

environments that don't align with predefined mathematical structures 15. The ray tracing technique 

faces challenges due to high computational intensity and time16. This technique also can be limiting 



in simulating complex lighting effects like indirect light and reflections 17. PBR, on the other hand, 

has reduced flexibility and high computational demands18.  

Generative Adversarial Networks (GANs) present a promising alternative to generate synthetic 

images. These networks, consisting of a generator and a discriminator, efficiently produce realistic 

synthetic images19. GANs provide greater flexibility than parametric and other traditional models 

by learning from high-dimensional data distributions, enabling them to generate more realistic 

images, even in complex scenarios 22. This approach also addresses the computational challenges 

of ray tracing, as trained GANs can quickly generate new images 17. Furthermore, GANs balance 

the realism-flexibility trade-off better than the PBR method, allowing detailed image generations 

without sacrificing quality20. Their ability to create realistic images in complex environments 

enable them to be adoptable to wider fields and applications21, making them a crucial tool in 

synthetic image generation. 

In recent years, the application of Generative Adversarial Networks (GANs) in agriculture has 

gained increasing attention, particularly for tasks like disease detection and image augmentation, 

yielding promising results. For instance, Abbas et al.22 demonstrated the effectiveness of GANs, 

specifically using a Conditional GAN (C-GAN), to generate synthetic images of tomato plant 

leaves. This technique, combined with a DenseNet121 model and transfer learning, achieved a 

high accuracy of 99.5% in classifying tomato leaf diseases. It's noteworthy that their approach 

integrated both synthetic and actual images to enhance classification accuracy, suggesting a blend 

of novel and traditional methodologies. Furthermore, Lu et al. 23 utilized GANs to create synthetic 

images of insect pests, thereby augmenting limited actual datasets (collected with sensors). This 

innovation significantly improved the performance of classifiers for insect pests, highlighting the 

utility of GANs in scenarios where actual data is scarce. Nazki et al. 24 explored a different aspect 



of GANs by employing them for image-to-image translation in plant disease datasets, which 

facilitated more accurate disease classification. These studies indicate a trend towards using GANs 

not just for dataset augmentation - a role typically filled by conventional techniques like rotation 

and flipping - but also as a crucial tool in synthesizing and enhancing the quality of agricultural 

datasets. This shift marks a significant advancement in the application of AI in agriculture, opening 

new pathways for research and practical applications in the field.  

Studies22,26 have shown that GANs effectively address the challenges of biological variability and 

the complexity of unstructured agricultural environments by successfully identifying and 

classifying pest and plant leaf diseases. GANs have been instrumental in several key areas of 

agricultural image processing. GANs enhance model efficiency by reducing the need for extensive 

data collection and labeling, particularly in diverse crop scenarios27. For instance, Gomaa et al. 28 

utilized a combination of Convolutional Neural Networks (CNN) and GANs for disease detection 

in tomato plants, highlighting the synergistic potential of combining traditional and generative 

models. Similarly, Madsen et al.29 applied Wasserstein auxiliary classifier generative adversarial 

networks (Wac-GAN) to model seedlings of nine different plants, showcasing the versatility of 

GANs in handling varied crop types. Zhu et al. 30 took a specialized approach with Conditional 

Deep Convolutional GANs (C-DCGAN) for orchid seedling vigor rating, emphasizing the 

precision capabilities of GANs. Further, studies like Hartley et al. 31 with wheat for plant head 

detection using CycleGAN 31, and Bird et al. 32 focusing on lemon quality assessment using C-

GAN illustrate the broad applicability of these networks across different crop environment.  Table 

1 summarizes these recent efforts, showcasing how the integration of GANs in synthetic image 

generation is revolutionizing agricultural applications and contributing to the advancement of 

machine vision systems in agriculture.    



Table 1: Overview of GAN-based Synthetic Image Generation in Agriculture (2019-2024), 

Highlighting Image Generation Techniques, Crops, and Key Achievements. 

Author 

Reference 

Target Crop Synthetic Image 

Generation Technique 

Primary Objective 

Abbas et. al 22 Tomato plants Conditional Generative 

Adversarial Network (C-GAN) 

Disease detection 

Gomaa et. al 28 Tomato plants Convolutional Neural Network 

(CNN) and GAN 

Disease detection 

Madsen et. al29 Nine different plant 

seedlings as:  

1. Charlock  

2. Cleavers  

3. Common 

Chickweed  

4. Fat Hen  

5. Maize  

6. Scentless 

Mayweed  

7. Shepherd’s Purse  

8. Small-flowered 

Cranesbill 

9. Sugar Beets 

Wasserstein auxiliary classifier 

generative adversarial network 

(Wac-GAN) 

Modeling plant seedlings  

   Zhu et. al 30 Orchid seedlings Conditional deep convolutional 

generative adversarial network 

(C-DCGAN) 

Plant Vigor rating 

Hartley et. al 31 Wheat CycleGAN Plant head detection 



Bird et. al32 Lemons C-GAN Fruit quality assessment and 

defect 

classification 

Shete et. al 33 Maize plants TasselGAN and deep 

convolutional generative 

adversarial networks (DCGAN) 

Image generation of maize 

tassels 

against sky backgrounds 

Guo et. al34 Jujubes DCGAN Quality grading 

Drees et. al 35 Arabidopsis thaliana and 

cauliflower 

plants 

C-GAN (Pix2Pix) Laboratory-grown and field-

grown 

image generation 

   Kierdorf et. al 

36 

Grapevine Berries C-GAN/CDCGAN Estimation of occluded fruits 

Olatunji et. al 37 Kiwifruit C-GAN Filling in missing fruit surface 

(Re- 

construction) 

Bellocchio et. 

al 38 

Apple orchard CycleGAN Unseen fruits counting 

Fawakherji et. 

al 39 

Sugar beet, sunflower CGAN/CDCGAN Crop/weed segmentation in 

precision farming 

Zeng et. al40 Citrus DCGAN Disease severity detection 

Kim et. al41 Blueberry leaves DCGAN Fruit tree disease classification 

Tian et. al 42 Apple canopy CycleGAN Disease detection 

Cap et. al 43 Cucumber leaves CycleGAN Plant disease diagnosis 

  Maqsood et. al 

44 

Wheat super-resolution generative 

adversarial networks (SR-

GAN) 

Wheat stripe(yellow) rust 

classifica- 

tion 

Bi et. al45 Grape, Orange, Potato, Wasserstein generative Plant disease classification 



Squash, 

Tomato 

adversarial network with 

gradient penalty (WGAN-GP) 

  Zhao et. al46  Apple, Corn, Grape, Potato, 

Tomato 

DoubleGAN Plant disease detection 

Nerkar et. al 47 Apple, corn, tomato, potato Reinforced GAN Leaf disease detection 

 

The recent advancement of Natural Language Processing (NLP) models and Large Language 

Models (LLMs) has led to capability for handling the complexities of language understanding and 

generation. Initially, models like Recurrent Neural Networks (RNNs) and Convolutional Neural 

Networks (CNNs) were foundational in NLP; however, they struggled with capturing long-range 

dependencies crucial for tasks such as translation and summarization (Hochreiter and Schmidhuber 

1997; Radford et al. 2019a). This limitation was substantially mitigated in 2017 with the 

introduction of the Transformer model by Vaswani et al. (Vaswani et al. 2017). The model's self-

attention mechanism allowed it to effectively attend to all tokens in the input sequence, thereby 

capturing long-range dependencies and significantly enhancing performance across various NLP 

tasks (Devlin et al. 2018). The historical growth of LLMs starting from development of transformer 

in 2017 by Vaswani et al. to current state of the art LLMs are presented in Figure 1.  

Building on the success of the Transformer, (Devlin et al. 2018) introduced BERT (Bidirectional 

Encoder Representations from Transformers) in 2018, which utilized deep bidirectional training 

by conditioning on both left and right contexts simultaneously. This methodology enabled the 

model to be fine-tuned with just one additional output layer to perform a wide range of NLP tasks 

effectively, setting a new standard in the field. The development of language models continued to 

accelerate with the introduction of GPT-2 by Radford et al. in 2019, which employed a transformer-

based architecture with 1.5 billion parameters, leveraging self-attention mechanisms to enhance 



text generation capabilities (Radford et al. 2019b). That same year, the Megatron-LM was 

developed by Shoeybi et al. (Shoeybi et al. 2019), featuring 8.3 billion parameters which allowed 

for even more complex pattern recognition and faster training due to its innovative parallelization 

scheme. 

 

In 2020, the release of GPT-3 by Brown et al. demonstrated wider scale and capabilities of Large 

Language Models (LLMs) with 175 billion parameters, enabling high-quality text generation with 

minimal fine-tuning (Brown et al. 2020). This model provided the foundation for the next 

generation of multimodal NLP models. Most recently, in 2023, OpenAI introduced GPT-4, which 

can process both text and image inputs, demonstrating near-human or superior performance on 

Figure 1:  Showing the history of Large Language Models starting from 2017 (Animation from Dr Alan D. 
Thompson, LifeArchitect.ai (June/2024)) 



various professional and academic benchmarks (OpenAI, 2023). Concurrently, Meta released the 

open-source LLM Llama, which, while smaller in size, offers a valuable resource for researchers 

worldwide (Meta, 2023).  

DALL·E model by OpenAI (OpenAI, California, USA) represents a significant leap forward in 

the domain of AI-based image generation. Integrating the principles of GANs with innovative 

technologies such as Compact Language-Image Pretrained (CLIP) embeddings 47,  and Principal 

Component Analysis (PCA) for dimensionality reduction 48, DALL·E transcends the capabilities 

of traditional image generation methods 49. One of the major breakthroughs with the DALL·E 

model is that it can convert textual descriptions into realistic images. Additionally, the model can 

generate a variation within an image representing similar environments. This capability of the 

model is achieved using text-conditional hierarchical image generation strategy 48. Building on the 

foundation of ChatGPT developed by the same organization (OpenAI, California, USA), this 

model has been trained on an extensive variety and size of image-text pairs. Both models, 

stemming from the same OpenAI lineage, manifest exceptional competence in managing intricate, 

multi-dimensional tasks 50. For instance, while ChatGPT excels at generating contextually relevant 

textual responses, DALL·E emerges as a powerhouse in producing images that accurately 

represent the semantics of the input text51. Even though synthetic image generation has become 

easier and more accessible while providing more realistic images with OpenAI’s DALL.E model, 

there is a need to thoroughly assess and evaluate its capability in representing field environments 

and its practicality in agricultural applications. To address this need, the following specific 

objectives were pursued in this study: 

 



 Building upon the foundational advancements introduced by Generative Adversarial Networks 

(GANs) in agricultural image processing, the DALL·E model by OpenAI ( OpenAI, California, 

USA) represents a significant leap forward in the domain of AI-based image generation. 

Integrating the principles of GANs with innovative technologies such as Compact Language-

Image Pretrained (CLIP) embeddings 48,  and Principal Component Analysis (PCA) for 

dimensionality reduction 49, DALL·E transcends the capabilities of traditional image generation 

methods 50. One of the major breakthroughs with the DALL·E model is that it can convert textual 

descriptions into realistic images. Additionally, the model can generate a variation within an image 

representing similar environments. This capability of the model is achieved using text-conditional 

hierarchical image generation strategy 49. Building on the foundation of ChatGPT developed by 

the same organization (OpenAI, California, USA), this model has been trained on an extensive 

variety and size of image-text pairs. Both models, stemming from the same OpenAI lineage, 

manifest exceptional competence in managing intricate, multi-dimensional tasks 51. For instance, 

while ChatGPT excels at generating contextually relevant textual responses, DALL·E emerges as 

a powerhouse in producing images that accurately represent the semantics of the input text52. Even 

though synthetic image generation has become easier and more accessible while providing more 

realistic images with OpenAI’s DALL.E model, there is a need to thoroughly assess and evaluate 

its capability in representing field environments and its practicality in agricultural applications. To 

address this need, the following specific objectives were pursued in this study: 

• To assess and evaluate the DALL·E model's proficiency in translating detailed textual 

prompts into accurate and realistic visual representations using text-to-image generation 

feature of the model.  



• To evaluate DALL·E model's ability to accurately transform an image prompt into 

generating realistic images of the similar environment using image variation feature of the 

model.  

2. Methods 

2.1 Data Collec-on and Compila-on  
 In this study, the focus of image analysis was on two distinct agricultural datasets, as shown in 

Figure 2. Dataset 1 encompassed a variety of fruit crops, including strawberries, mangoes, apples, 

avocados, rockmelons, and oranges. These fruits were carefully selected for their distinctive 

morphological, textural, and color characteristics, as well as their diverse backgrounds. Dataset 2 

focused on early-stage crop fields intertwined with weeds, specifically targeting carrot, onion, and 

corn fields, chosen for their significant relevance in weed management studies. The intention was 

to assess the DALL·E model’s accuracy in depicting agricultural scenarios where the 

differentiation between crops and weeds is crucial. The original ground truth images for both 

datasets were obtained from “A Survey of Public Datasets for Computer Vision Tasks in Precision 

Agriculture” by Lu and Young 53. Six representative images from the fruit crops dataset and three 

from the crop versus weed scenarios were randomly selected. 

Following this, in the initial image generation step, input text prompts were crafted by carefully 

examining the original images as depicted in Figure 3. These prompts were then used to generate 

the first category of images. For the second approach, we directly used the ground truth images 

as input to the DALL.E model to create variations. 

 



 

Figure 2: Utilizing DALL.E for dataset creation in this research, two distinct sets were employed: Dataset 1 

focusing on fruit crops and Dataset 2 on crop vs weed scenarios. Figure 2 demonstrates how textual inputs for 

text-to-image and image-to-image generation. 

After a processing step, images were generated for both categories. The generated images from 

both approaches were compared against their respective ground truth images. We evaluated the 

resulting visuals using key metrics: Peak Signal-to-Noise Ratio (PSNR) for image clarity and pixel 

accuracy, and Feature Similarity Index (FSIM) for structural similarity. Additionally, human 

assessments were conducted to confirm their realism. 

2.2 DALL.E Image Genera-on Model  
In this study, DALL·E 2 (OpenAI, California, USA) image generation model was used, which 

utilizes hierarchical text-conditional image generation to produce images based on textual 

descriptions 54. The hierarchical text-conditional image generation involves a (contrastive model) 

CLIP image embedding from a given text caption, taking advantage of CLIP's ability to learn 

robust image representations that encompass both the subject matter and stylistic elements 55. The 



second stage involves a decoder that creates an image based on this embedding. This method is 

designed to enhance the variations in the generated images while maintaining their photorealism 

and relevance to the caption 56. Additionally, it allows for the generation of image variations that 

retain the core semantics and style, altering only the incidental details not captured in the image 

representation. The DALL.E model leverages diffusion models in the decoding phase to discover 

effective techniques for creating high-quality images. These images can be finely tuned based on 

textual directions, eliminating the necessity for the model to undergo specialized pre-training for 

distinct image editing operations.   

The model consists of three stage process: encoder, prior and decoder. The model takes a textual 

input which is then encoded into a Compact Language-Image Pretrained (CLIP) text embedding 

based on a neural network trained on hundreds of millions of tax-image pairs. Dimensionality of 

the resulting CLIP text embedding is then reduced using Principal Component Analysis (PCA) 

before the results are provided the prior stage. In the prior stage, a Transformer model with an 

attention mechanism transforms the CLIP text embedding into an image embedding. Following 

Figure 3:  Flow diagram depicting the Two-Step process utilized to generate agricultural image datasets using by 
the Generative AI Model DALL.E: The first step involves synthesizing images from textual prompts without any 
visual input, and the second step generates variations using a ground truth image as a reference.  



the prior stage, the image embedding go through the decoder stage, also known as the unCLIP 

phase, in which a diffusion model based on Generative Adversarial Network (GAN) is used to 

convert it into an image. The output is subsequently generated through two Convolutional Neural 

Networks (CNNs) for upscaling: first from 64x64 resolution to 256x256, and then to a final 

resolution of 1024x1024. The model utilizes semantic components, handling inpainting tasks, and 

altering images based on subtle changes in the contextual understanding of the input text to 

produce the output.  

2.3 Text-to-image genera-on  
In this study, text prompts displayed in Figure 3 were created to generate images across the two 

specified categories. These text prompts were carefully designed to ensure that the synthetic 

images conveyed significant information, closely representing the real images. Initially, a manual 

analysis of randomly selected ground truth (actual) images was conducted for six fruit crops and 

two “crop vs weed” environments. Text prompts were then crafted based on the visual 

characteristics of the ground truth images, with input text ranging from a minimum of 4 words to 

a maximum of 10 words, as illustrated in Figure 3. For all fruit crops, the input text prompts were 

uniform, describing the "name of the fruit in the field for harvesting," where "in the field for 

harvesting" was a common phrase reflecting the harvesting condition, making a 5-word input text 

prompt used for each fruit crop categories. In the case of “crop vs weed” datasets, considering the 

spatial nature of the ground truth images for carrot and onion fields (captured from UAV aerial 

views), the input text was formulated as "Spatial view of name of the crop plants and weeds in a 

field," resulting in a 10-word input text prompt for generating these two sets of “crop vs weed” 

images. Altogether 32 images were generated using this approach.  



2.4 Image-to-image (varia-ons) genera-on 
 In this approach, actual images (ground truth images) representing the two specific datasets were 

provided to the model as input image prompts as shown in Figure 4. The model was then activated 

to generate four variations of the given input image upon receiving the command "Generate 

Variations." An illustration of this approach to image generation is depicted in Figure 3. Altogether, 

32 images were generated using this approach.  

2.5 Analysis of the generated images  
In this research, the generated images were analyzed to assess their fidelity and realism. Evaluation 

metrics like PSNR and FSIM were employed to quantify the similarity between AI-generated and 

ground-truth images. Additionally, human evaluations by 15 scholars from Washington State 

University, Irrigated Agriculture Research and Extension Center (IAREC) provided subjective 

insights into the realistic portrayal of these images. Figure 4 depicts the image analysis procedure 

used. All generated image datasets, obtained through the two approaches discussed above, 

underwent a standardized preprocessing procedure. Initially, the images were converted to 

grayscale and resized to a resolution of 256 by 256 pixels for subsequent pixel-level analysis. For 

Figure 4: An example showing image-to-image varia8on genera8on using the DALL.E model  



the statistical comparison of the generated images with the respective ground truth images, the 

images were resized and converted to grayscale as shown in Figure 5.  

2.6 Evalua-on Measures 
In this study, the images generated in both Step 1 (text-prompt-based image generation) and Step 

2 (image-prompt-based image variation generation) were compared against the ground truth 

images using two standard metrics as follows.   

1)  Peak Signal to Noise Ratio (PSNR):  PSNR served as a metric for assessing image quality by 

evaluating the ratio of the maximum potential power of the signal (represented by the original image) to 

the power of disruptive noise (capturing the disparities between the original and the AI-generated image) 

as given by Equation 1.  Mean Squared Error (MSE) estimated using Equation 2 was used to calculate 

this ratio. A higher PSNR  typically indicates that the generated image is closer in quality to the original 

image and has minimal distortion.  

𝑃𝑆𝑁𝑅 = 10 log!"(
𝑀𝐴𝑋#$

𝑀𝑆𝐸 ) 

Equation 1 

Where, MAXI  denotes the maximum possible pixel value in the image and Mean Squared Error 

(MSE) is computed as the average of the squared differences between corresponding pixels in the 

two images. In simple words, MSE helps in understanding how much the generated image (G) 

deviates from the original image (O) on a pixel-by-pixel basis.  

2) Feature Similarity Index  (FSIM): FSIM assesses the similarity between the AI-generated images and 

the original/actual images based on their features. It evaluates both basic and intricate image features, 

providing a thorough measure of similarity. FSIM considers aspects like structure, luminance, and contrast 

of the images. Although the exact calculation of FSIM (Equation 3) involves complex comparisons at 



multiple scales, the key idea is that it measures how closely the features of the generated image match those 

of the original image 57. In this analysis, the images were preprocessed by being resized to 256 by 256 pixels 

and then converted into grayscale images. Canny edge features were then extracted from the grayscale 

images to calculate the Gabor filter responses. These responses were used to calculate the similarity 

measures and evaluate the feature similarity score, as shown in Figure 5.  
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Equation 1 

Where, lk , ck , and sk are the local similarity, contrast, and structure measurements at scale k, 

respectively, and αk is the weight assigned to each scale. 

3) Human Evaluation: A group of 15 agricultural scholars including graduate students and 

professors from Biological Systems Engineering and Horticulture departments at Washington State 

Figure 5: Block diagram showing the process of calcula8ng feature similarity index (FSIM) 



University participated in an unbiased survey to evaluate the realism of images generated by the 

DALL·E  model. To ensure independence and minimize bias, the same set of images used for 

PSNR and FSIM analysis (8 images each for ground truth, text-generated set and image-variation-

generated set) was provided to the participants. The participants were unaware of whether the 

individual images were generated using AI or were acquired in the field using a camera. Each 

participant was given only the name of the crop environment with no additional information. They 

used a 5-point likelihood scale to rate the realism, ranging from 'Not at all realistic' (1) to 

'Extremely realistic' (5). 

3 Results and Discussion 

3.1 Image genera-on for fruit crops  
Fruit crop images generated by the DALL·E model from textual inputs are presented in Figure 6. 

The model accurately depicted strawberries in the field condition with plastic mulch (Figure 6a), 

mangoes on tree branches (Figure 6b), mature apples in a tree (Figure 6c), avocados in tree 

canopies with foliage (Figure 6d), a rockmelon with its characteristic netted skin (Figure 6e), and  

oranges on tree section realistically as shown in Figure 6f. Each image effectively illustrated the 

distinct morphological features of the fruits and their environments, showcasing the model’s ability 

to create detailed and contextually precise visual representations from text descriptions. Variations 

of these fruit crops, based on ground truth images, were also generated by the model. These 

variations were subtly different yet retained the essence of the original images. For strawberries, 

variations in the ground cover were shown; avocados were depicted hanging in different positions; 

apples were presented in various cluster formations; and the oranges, rockmelons, and mangoes 

were characterized by their vibrant colors, unique textures, and distinct shapes.  



Likewise, the image generated by the DALL.E model using the ground truth image as an input to 

generate image-variations are depicted in Figure 7. Each of the six fruit types including 

strawberries (Figure 7a), avocados (Figure 7b), apples (Figure 7c), mangoes (Figure 7d), 

rockmelons (Figure 7e), and oranges (Figure 7f) were characterized by subtle yet realistic 

modifications, maintaining the essence of the original, ground truth images.  

 

Figure 6: Fruit crop images generated using text-to-image genera8on approach using the DALL.E model; (a) 
strawberries; (b) mangoes; (c) apples; (d) avocados; (e) rockmelon; and (f) oranges. 

 

 

(a) (b) (c) 

(d) (e) (f) 



 

Figure 7: Three varia8ons (right) of fruit crop images generated by DALL·E 2 model using original images 
(leP) as an input; (a) strawberries; (b) mangoes; (c) apples; (d) avocados; (e) rockmelon; and (f) oranges. 



3.1.1 Quan)ta)ve Similarity Measures  
For the text-generated images, as shown in Figure 8a the PSNR values ranged from a low of 8.3 

for rockmelons to a high of 10.6 for avocados, indicating a variation in the model’s ability to 

replicate image quality. In contrast, the PSNR for image-generated (variation) images was 14.6 for 

mangoes, suggesting a potential for superior representation of the reality of fruit crop 

environments. However, the lowest PSNR in this category was 8.8 for strawberries, highlighting 

a potential weakness in representing the reality in a wider range of agricultural environments.  

In the assessment of FSIM scores for text-generated images, as illustrated in Figure 8b, a range 

was observed from 0.248 for avocados to 0.308 for rockmelons. This variation was recorded, 

showcasing an inverse relationship with the PSNR values, which suggests a differential capacity 

of the model in capturing structural features and textures. Specifically, while avocados achieved 

the highest realism according to PSNR, indicating minimal distortion from the original in terms of 

brightness and contrast, they were found to be the least representative in terms of structural 

similarity according to FSIM. Conversely, rockmelons, which presented the highest FSIM scores, 

reflecting superior structural and textural fidelity, did not score as highly in PSNR, suggesting 

possible discrepancies in pixel-level accuracy or contrast. This inverse relationship between FSIM 

and PSNR scores for avocados and rockmelons indicates that the model’s ability to generate 

realistic images varies significantly depending on the criteria used for evaluation. It implies that 

while some images may closely match the original in pixel intensity and contrast (as PSNR 

measures), they may not as effectively capture the structural integrity or texture (as FSIM 

evaluates), and vice versa.   



 

 

The observation that image variation generation underperforms in comparison to text-to-image 

generation, as measured by PSNR and FSIM, may initially seem counterintuitive. However, this 

outcome can be attributed to the inherent differences in the model's approach to generating images 

from textual versus image prompts. Text-to-image generation relies on the model's understanding 

and interpretation of textual descriptions to create an image from scratch, potentially allowing the 

model to "idealize" the output, closely matching key features described in the text while 

maintaining overall coherence and fidelity. In contrast, image variation generation starts with an 

existing image and attempts to introduce variations within the constraints of the original image's 

context. This process may inherently limit the extent to which the model can optimize for clarity 

and structural similarity, as it must balance between preserving the original image's integrity and 

introducing meaningful variations. As a result, the variations might introduce or exacerbate minor 

discrepancies in texture or structural details, which could explain the lower PSNR and FSIM 

scores. This suggests a trade-off in the model's performance between generating novel images from 

Figure 8: Box plots illustra2ng the distribu2on of PSNR and FSIM for all fruit crops tested; a) comparing text-to-image; b) image-to-
image genera2on methods in agricultural AI applica2ons. 

(a) (b) 



textual descriptions and modifying existing images to create variations, highlighting the challenges 

in achieving both high fidelity and meaningful diversity in generated images. 

These results suggest a generally lower performance in maintaining feature similarity compared 

to the original images, particularly in the case of avocados (0.2) when compared to text-generated 

images. While both text and image-prompt approaches displayed strengths in certain aspects, there 

were notable variations in performance across different fruit types and metrics. This analysis 

indicates that the model's effectiveness in generating accurate and realistic images in diverse 

agriculture environment is promising but is dependent on crop types and cropping environments. 

3.1.2 Human Evalua)on Results 
Results of the human assessment of the AI-generated and original images for all six fruit crops are 

depicted in Figure 9. In the text-to-image category, apples consistently received high ratings, 

indicating a strong capability of the AI model to interpret textual prompts and generate realistic 

visual representations. On the other hand, Avocados recorded lower ratings, suggesting challenges 

in capturing their unique textures, colors and/or other features through text descriptions alone. In 

generating the image-to-image variations, Mangoes and Rockmelons received notably high 

ratings, showcasing the model's proficiency in creating realistic variations from existing images. 

The lower ratings for Strawberries in this category might reflect difficulties in maintaining the 

fruit's distinct characteristics in generating variations. Ground truth images, as expected, generally 

received the highest ratings across all categories, affirming their authenticity, which also indicated  

that there is a huge room for improvement in AI modeling to replicate complexities in the plant 

canopies and agricultural fields. 



Despite those challenges, it is noted that there were instances where text-based or image-based AI 

generations outperformed the original images in specific fruit crops. For example, image-to-image 

variations of Mangoes and Rockmelons occasionally surpassed ground truth ratings. This could be 

attributed to the AI's ability to enhance certain visual aspects, such as color vibrancy or clarity, making them 

more appealing than the actual photographs to human observers. The success in these instances shows the 

potential of AI-based image generation to not only replicate but potentially improve upon real-world images 

of agricultural fields.  

 

3.2 Image genera-on results for “crop vs weed” scenario 
In Figure 10a, the carrot field image, generated from the textual prompt "Spatial view of carrot plants and 

weed in a field" exhibited a representation where carrot-like colored pixels were randomly distributed across 

an area predominantly resembling weed patches. This indicated that while the model successfully 

recognized the color attributes of carrots, it struggled to accurately replicate their geometric and structural 

Figure 9: Bar chart illustra2ng average human evalua2on ra2ngs for Text-to-Image, Image-to-Image varia2ons, and Ground 
Truth across six different fruit crops images  in this survey of image genera2on process using Genera2ve AI 



characteristics at the plant level, particularly in a spatial context of crop and weed scenarios. Conversely, 

as depicted in Figure 10b, the onion field images showcased a higher degree of realism. The text-to-image 

 
Varia8on Genera8on Original Image 

Original Image Varia8on Genera8on 
(b) 

(a) 

Figure 11: Crop vs weed images created by the DALL.E model by genera2on of image-to-image varia2on for a) Carrot 
plants b) Onion plants 

Figure 10: “Crop vs weed” images generated using text-to-image genera8on approach using the DALL.E model 
for; (a) Carrot fields; and (b) Onion fields 

(b) (a) 



generation method for onions, using a 10-word prompt, notably surpassed the carrot field in producing 

realistic and accurate representations. As with fruit crops, this disparity highlighted the model's varying 

capability in interpreting and visualizing different agricultural scenarios. Here, identical text prompts 

"Spatial view of carrot plants and weed in a field" and "Spatial view of onion plants and weed in a field" 

were used, differing only the crop name. Despite the similarity in prompts, the resulting images varied 

significantly. Specifically, no recognizable carrot plants were generated in the carrot field scenario, a stark 

contrast to the onion field images as shown in Figures 11a and 11b. 

 

3.2.1 Quan)ta)ve Similarity Measures 
For the images depicting “crop vs weed” scenarios, the PSNR revealed a high difference in performance 

between the two crop scenarios (Figure 12a and Figure 12b). For carrot fields, the model achieved a PSNR 

of 13.4, which was the highest among the two, indicating a superior quality in the synthetic images 

generated for this crop type. In contrast, onion fields exhibited a lower PSNR of 10.4, suggesting a 

comparatively reduced fidelity in image generation. Similarly, the FSIM scores as shown in Figure 11b, 

measuring the structural similarity between the generated and original images, showed a comparable result. 

Carrot fields secured an FSIM score of 0.3 same as that of onion fields (0.3). The AI-generated carrot field 

images not only exhibited higher image quality but also a marginally better structural resemblance to the 

ground truth images. This subtle difference indicates that while both crop types were reasonably well-

represented in terms of structural features, the carrot fields edged out slightly in replicating the original 

images' structural details.  

Figure 13 presents a heatmap detailing the MSE, PSNR, and FSIM for both Text-to-Image and 

Image-to-Image (variation) generated outputs.  For fruit crops, text-to-image generation yielded 

PSNR values up to 10.95 (for avocados), indicating a commendable image quality. However, 

image-based variations surpassed this, with rockmelons achieving a higher PSNR of 14.592, 

suggesting a closer resemblance to actual images. The Feature Similarity Index (FSIM) echoed 



this trend; while text-generated images like mangoes scored 0.308, indicating satisfactory 

structural similarity, image-based generation scored marginally lower at 0.287 for the same fruit. 

In contrast, the crop vs weed scenario demonstrated a different trend. Text-to-image generation for 

onions achieved a PSNR of 13.375, closely followed by image-based variations at 13.626. The 

FSIM scores, measuring structural similarity, remained consistently high across both methods, 

with text-based generation scoring 0.33 and image-based 0.32 for onions. These results indicate 

that while text-based generation showed notable proficiency, image-based variations generally 

offered enhanced clarity and fidelity. The best results was achieved for rockmelons image-based 

generation, whereas the lowest was in text-based generation for avocados. This pattern suggests 

that while AI can generate reasonably accurate representations from textual descriptions, providing 

image prompts leads to more precise and realistic visual outputs, especially in complex agricultural 

scenarios. 

 

 

Figure 12: Box Plot for Crop vs Weed Scenarios on carrot and onion fields infested with weeds showing  a) Signal to Noise Ra2on (PSNR) and ; b)Feature 
similarity measure  index (FSIM)  

(a) (b) 



 

 

The differential performance observed between text-to-image and image-to-image generation 

methods, particularly in the context of carrot fields, underscores the significance of input modality 

in influencing the AI's output quality. While text descriptions alone sometimes fell short in 

capturing the intricate details necessary for a lifelike representation, supplementing the AI with 

actual image inputs markedly improved its ability to generate images that closely mimic reality. 

This improvement is attributed to the model's enhanced access to visual context, allowing for a 

more accurate interpretation and recreation of the subject matter. 

For fruit crops, the image-to-image generation method consistently outperformed the text-to-

image approach. Notably, rockmelons generated through image-to-image variations exhibited high 

clarity and detail, as evidenced by superior PSNR score of 14.6. This was indicative of the AI's 

proficiency in producing clear and detailed images, essential for tasks like crop growth monitoring 

and yield estimation. Mango crop images, generated through both methods, showcased high 

structural similarity with the actual images achieving an FSIM score of 0.31 for text-to-image 

Figure 13: Heatmap for the DALL.E Model Performance: Showcases a detailed comparison of MSE, PSNR, and FSIM metrics across (a) fruit 
crops and (b)crop vs weed scenario, using text-to-image and image varia2on genera2ons approaches 



generation method and 0.29 in image-to-image generation method. These results also highlight the 

AI's capability to maintain structural integrity, crucial for shape-based agricultural tasks such as 

on fruit crops results.  

3.2.2 Human Evalua)on Results 
As shown in  Figure 14, a detailed image analysis was conducted to assess the effectiveness of 

image-to-image and text-to-image generation techniques across different agricultural scenarios. 

For carrot fields, the image-to-image variation technique demonstrated superior performance 

compared to text-to-image based generation, achieving better clarity and details that even 

surpassed the ground truth images. This result is supported by human evaluators awarding these 

images the highest possible scores, with a peak at 5, compared to the ground truth images which 

received a broader score range from 2.0 to 5.0. The finding indicates a capability of the image-to-

image variation approach in enhancing the visual quality beyond the original photographs. In 

contrast, the carrot fields generated using the text-to-image approach were met with more moderate 

success. These images received scores ranging from 2.5 to 4.0 by human evaluators, suggesting 

that while the generated images were of acceptable quality, they exhibited certain limitations in 

capturing the full detail and reality of the actual fields. In the onion field images, however, a 

different trend was observed. The text-to-image generation technique for onion fields yielded 

better outcomes, with scores ranging from 4.0 to 5.5. These scores closely mirrored the ratings 

assigned to the ground truth images, indicating a high degree of accuracy and realism in the images 

generated from textual descriptions.  



These results demonstrated that DALL.E model can be used to generate large image datasets for 

agricultural applications with good accuracy and structural integrity. Such AI-generated images 

can significantly simplify the data generation process, reducing time and costs associated with 

traditional methods that rely on advanced sensors and intensive field data collection. The findings 

suggest that DALL.E 2's capabilities in image generation hold potential for advancing machine 

vision and robotic operations in agriculture, contributing to the development of more efficient and 

accurate AI-driven agricultural systems and accelerate their adoption. 

Previous studies for image generation in the agricultural environments typically depended on 

labor-intensive and expensive field data collection, often hindering efficiency. However, in this 

study, we showed an efficient workflow of creating agricultural images using AI that could 

potentially avoid the reliance on labor-intensive and costly field data collection methods in the 

near future. Our evaluation of the feature similarity between AI-generated images and real sensor-

captured images of crop environments not only validates the practical utility of this technology but 

also opens up new possibilities for its application in precision agriculture. This shift towards AI-

Figure 14: Showing average human evalua2on scores for Text-to-Image and Image-to-Image (varia2on) genera2ons, compared 
with Ground Truth for crop vs weed scenario images, demonstra2ng the efficacy of Genera2ve AI enabled model DALL.E in 
image dataset crea2on for agricultural applica2ons. 



generated imagery could potentially revolutionize the way agricultural studies are conducted, 

offering a more cost-effective, rapid, and versatile method of data collection. 

4 Conclusion and Future Prospects 
In modern agriculture, the need for comprehensive image datasets is paramount, especially given 

the limitations of traditional data collection methods, which are often labor-intensive and time-

consuming. Synthetic image generation emerges as a compelling solution, addressing these 

challenges by creating realistic and diverse datasets efficiently. The utilization of AI-based 

methods, particularly the DALL.E model developed by OpenAI, exemplifies this approach. 

Functioning similarly to its counterpart ChatGPT, DALL.E is trained on a vast array of images and 

textual data, enabling it to generate accurate and diverse images from textual descriptions and 

existing images. The DALL.E model's potential in agricultural applications is, therefore, 

substantial. It offers innovative solutions for critical tasks such as fruit quality assessment, 

automated harvesting, and crop yield estimation. By generating realistic images of various crops 

and cropping environments, DALL.E  aids in the development of smart farming techniques. For 

instance, the model's ability to create images of fruits in different growth stages can help in training 

AI models for precise fruit detection, thus improving crop monitoring and harvesting strategies. 

Similarly, its capacity to depict “crop-versus-weed” scenarios can help enhance weed detection 

algorithms, facilitating targeted weeding. This study conducted a detailed evaluation of the 

DALL.E model's efficacy in generating agriculturally relevant images, focusing on its ability to 

replicate and enhance real-world field conditions through synthetic imagery. We systematically 

compared the generated images against actual field data, assessing their realism and applicability in 

supporting advanced agricultural practices and research.   

Based on the results, the following specific conclusions can be made from this study:  

• Image-to-image generation methods resulted in a 5.78% increase in average PSNR, 



indicating improved image clarity and quality over text-to-image generation. However, there 

was a decrease of 10.23% in average FSIM for image-to-image generation, suggesting a 

reduction in structural and textural similarity to the original images compared to text-to-

image generation. 

• For image-to-image generation, PSNR saw an increase of 3.77%, reflecting enhanced image 

precision compared to text-to-image generation. Image-to-image generation also 

experienced a slight FSIM decrease of 0.76%, indicating a minimal drop in feature similarity 

with the original images versus text-to-image generation.   

This study underscores the potential transformative impact of integrating advanced AI models like 

DALL.E 2 into advancing agricultural technologies and solutions. The successful application of this 

model in generating realistic images for various agricultural scenarios opens up new opportunities 

for enhancing agricultural efficiency and improving crop yield and quality. By leveraging the 

capabilities of DALL.E 2, a generative AI model based on Large Language Models (LLMs), the 

agricultural sector could see a significant shift in how data is gathered and analyzed. The traditional 

reliance on sensors and manual data collection processes, often cumbersome and time-intensive, 

could be greatly reduced or even be completely replaced in the future. Instead, AI-generated images, 

as demonstrated in this study, could provide a more efficient and scalable alternative. The ability of 

models like DALL.E 2 to create accurate depictions of diverse agricultural environments from 

different crop stages to complex crop vs. weed scenarios offers new potential for smart and precision 

agricultural practices. In the future, tasks like yield estimation, disease detection, and crop health 

monitoring could be conducted using datasets generated entirely by AI, streamlining the process and 

increasing its accuracy and adoptability.  

Looking ahead, the advancement in generative AI techniques like DALL.E model holds the promise 



of automatically creating accurately labeled image datasets. This innovation paves the way for the 

development of virtual orchards and digital twins, revolutionizing agricultural planning and 

management with precision and foresight. 
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