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Large Vision-Language Models (LVLMs) that incorporate visual models and Large Language Models (LLMs) have

achieved impressive results across various cross-modal understanding and reasoning tasks. In recent years, person re-

identi�cation (ReID) has also started to explore cross-modal semantics to improve the accuracy of identity recognition.

However, e�ectively utilizing LVLMs for ReID remains an open challenge. While LVLMs operate under a generative

paradigm by predicting the next output word, ReID requires the extraction of discriminative identity features to match

pedestrians across cameras. In this paper, we propose LVLM-ReID, a novel framework that harnesses the strengths of

LVLMs to promote ReID. Speci�cally, we employ instructions to guide the LVLM in generating one pedestrian semantic

token that encapsulates key appearance semantics from the person image. This token is further re�ned through our

Semantic-Guided Interaction (SGI) module, establishing a reciprocal interaction between the semantic token and visual

tokens. Ultimately, the reinforced semantic token serves as the pedestrian identity representation. Our framework

integrates the semantic understanding and generation capabilities of LVLMs into end-to-end ReID training, allowing

LVLMs to capture rich semantic cues from pedestrian images during both training and inference. Our method achieves

competitive results on multiple benchmarks without additional image-text annotations, demonstrating the potential of

LVLM-generated semantics to advance person ReID and o�ering a promising direction for future research.
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1. Introduction

Person re-identi�cation (ReID) is a crucial task in computer vision, aimed at accurately matching pedestrians across

di�erent camera views[1]. With the continuous advancements in deep learning techniques, person ReID methods have

evolved signi�cantly[2][3]. In the past decade, a large body of research has signi�cantly improved ReID accuracy by

optimizing the distances between features[4][5] and designing re�ned modules[6][7][8][9], following the paradigm shown

in Fig.  1  (a). However, challenges such as lighting variations, occlusions, and changes in appearance still persist,

prompting researchers to explore more robust feature extraction models.
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Figure 1. Comparison of di�erent person ReID frameworks. (a) Conventionally, a visual encoder is applied to extract

pedestrian identity representations, overlooking the supplemented semantics from other modalities. (b) CLIP-ReID uses

the text encoder of CLIP to introduce text semantics based on the contrastive learning paradigm. (c) Our proposed LVLM-

ReID incorporates LVLM in the ReID pipeline. Through instruction, LVLM generates one pedestrian semantic token to

enhance visual representations.

Due to the di�culty of learning rich pedestrian semantic information from a single modality, cross-modal learning has

received close attention in recent years. For example, in the context of the development of pre-trained Vision-Language

Models (VLMs), CLIP-ReID[10]  based on the representative VLM model CLIP[11]  to leverage the semantic information in

text. As shown in Fig. 1 (b), it enhances visual features through cross-modal contrastive learning with image-text pairs.

Meanwhile, Large Language Models (LLMs)[12][13][14]  have attracted widespread attention due to their powerful
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capabilities in text generation and comprehension. Large Vision-Language Models (LVLMs)[15][16][17][18][19]  enhance

LLMs by incorporating visual perception and understanding, demonstrating considerable potential in multi-modal

learning tasks. However, integrating LVLMs with person re-identi�cation remains an underexplored challenge.

LVLMs typically operate on a generative paradigm, training and functioning by predicting the next word in a sequence.

Thanks to pre-training and instruction tuning, LVLMs can follow instructions and converse with humans. As a result, a

direct approach might be to have the model to identify the input person images. However, ReID gallery databases are

usually very large (comprising tens of thousands of pedestrian images) [20][21]. For each query image, the time and cost of

comparing identities one by one with LVLMs are substantial. Processing multiple images simultaneously would also lead to

an unacceptable increase in visual tokens. Therefore, we consider whether it’s possible to leverage the reasoning and

understanding capabilities of LVLMs while adhering to the mainstream ReID paradigm of feature extraction combined

with feature similarity-based retrieval[1]. A potential solution involves using LVLMs to create textual descriptions of

pedestrian images and �ne-tuning the visual encoder via tasks such as image-text matching or image caption prediction.

However, this approach presents several limitations: (1) High-quality and diverse text annotations are expensive to obtain.

(2) The goals of image-text matching or image caption prediction tasks may not align well with those of image-based

ReID. (3) During the inference phase, the potential of LVLMs is often underutilized, as they are not e�ectively integrated

with the visual features.

To address these issues, we propose a new framework called LVLM-ReID. We propose to leverage the superior semantic

understanding and generation ability of LVLMs to assist ReID. Speci�cally, as shown in Fig.  1  (c), we use instruction to

guide the LVLM to focus on speci�c visual semantics in pedestrian images, generating a semantic token representing the

pedestrian’s appearance information. We then design an e�ective interaction module between the generated token and

visual tokens, re�ning the visual representations of pedestrians while reinforcing the semantic token as a discriminative

identity representation. Ultimately, the reinforced semantic token is optimized and used during inference to achieve

person retrieval. Our framework integrates the generative process of LVLMs into the ReID model, eliminating the need for

additional image caption annotations and enabling end-to-end e�ective learning. More importantly, during the inference

phase, we continue to leverage the generative power of LVLMs to adaptively enhance visual features. Our experiments

show that one generated semantic token can e�ectively facilitate the learning of pedestrian representations. Our

contributions are summarized as follows:

We propose a novel framework that incorporates LVLMs into the person ReID task, o�ering a new perspective on using

generative language models to assist discriminative visual models.

We propose to utilize the generative capability of LVLMs to produce a semantic token for pedestrians and design a

semantic-guided interaction module leveraging the generated semantic token to enhance identity representations.

Experimental results show that, without requiring additional annotations, our method e�ectively improves the

discriminability of identity features and achieves competitive results across multiple datasets.
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2. Related Work

2.1. Person Re-Identi�cation

With the development of deep learning techniques, Convolutional Neural Network (CNN)-based approaches have seen

widespread adoption in person ReID[1]. In addition to extracting global feature representations from pedestrian images,

part-level and multi-granularity features[22][23][24]  play an important role in �ne-grained pedestrian identity

recognition. Moreover, DG-Net[25]  proposes a joint learning framework that couples ReID learning and data generation

end-to-end. SAN[6] incorporates semantics-aligned feature representation learning through delicate supervision designs.

Many methods also attempt to learn better pedestrian representations and relationships through well-designed

modules[7][26][8][9]. With the popularity of the Transformer architecture[27], methods like TransReID[28]  explore to

leverage Vision Transformer (ViT)[29]  to enhance the model’s ability in learning rich structural patterns. Based on the

Transformer baseline, DCAL[30]  extends self-attention modules to better learn subtle feature embeddings, and

AAformer[31]  integrates part features for retrieval. Recently, visual language pre-training signi�cantly improves the

performance of many downstream tasks by training to match images and language[11][32]. CLIP-ReID[10]  utilizes the

contrastive cross-modal alignment in the CLIP paradigm[11] and adopts a two-stage strategy to facilitate a better visual

representation.

Figure 2. Framework of our LVLM-ReID. It leverages clear instructions to guide the frozen LLM towards focusing on

particular visual semantics within pedestrian images, resulting in the generation of one semantic token that encapsulates

the pedestrian’s appearance information. Subsequently, an e�cient interaction module is designed to facilitate re�nement

between the generated token and the visual tokens. Finally, the reinforced token as a distinctive identity descriptor is

optimized and employed for person retrieval.
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2.2. Large Vision-Language Model

Building on the impressive reasoning and understanding capabilities of LLMs[12][12][14], researchers have been working to

adapt these strengths to the visual domain, leading to the development of Large Vision-Language Models (LVLMs). LVLMs

have become a key technology in multimodal learning, enabling the processing and generation of complex visual and

textual information. For instance, Flamingo[33] introduces a cross-attention mechanism that enables the model to attend

to visual contexts, supporting visual in-context learning. Other models, such as BLIP-2[18]  and mPLUG-OWL[34], use

visual encoders to process image features, which are then combined with text embeddings and input into the LLM.

Additionally, LLaVA[16] and MiniGPT-4[35] align the image and text features as a preliminary step, followed by instruction

tuning to re�ne the model’s instruction following ability. Recently, Qwen2-VL[19]  employs a uni�ed paradigm for

processing both images and videos and support varying resolutions, achieving highly competitive performance across

various multimodal benchmarks. LVLMs can e�ectively facilitate cross-modal understanding of both image and text

inputs, while how to leverage their advantages in ReID tasks remains an underexplored issue. Based on one of the

representative LVLMs, Qwen2-VL, we explore the possibility of using the semantic understanding and generation

capabilities of LVLM to enhance pedestrians’ semantic representation in person ReID.

3. Methodology

In this section, we �rst introduce the overall framework of LVLM in Sec. 3.1. Then, we elaborate on our proposed Pedestrian

Semantic Token Generation (PSTG) in Sec.  3.2. PSTG aims to generate one semantic token that encapsulates instructive

appearance information of the pedestrian, and the generated semantic token is then used for Semantic-Guided Interaction

(SGI) with visual tokens (see Sec. 3.3). Finally, we introduce our end-to-end optimization and inference scheme in Sec. 3.4.

The framework of our proposed LVLM-ReID is shown in Fig. 2.

3.1. Overview of LVLM

Overall framework.

A typical LVLM consists of three key components: a visual encoder, a vision-language connector, and an LLM. The visual

encoder extracts rich visual representations from images, which are then processed by the vision-language connector that

converts visual features into the word embedding space. The LLM, trained for next-word prediction, generates text based

on the encoded visual content. This generative structure enables LVLM to handle multimodal inputs, allowing for e�cient

image-text interaction and the generation of new textual information. In this work, we leverage Qwen2-VL[19], one of the

most advanced LVLMs, known for its superior capabilities in instruction-following, semantic understanding, and text

generation across diverse tasks. Qwen2-VL combines a Vision Transformer (ViT)[29]  as the visual encoder and the

Qwen2[14]  as the LLM. The vision-language connector between the two components is a simple MLP layer that also

compresses the extracted visual tokens.
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Visual token extraction.

Before inputting a pedestrian image into the LLM, the image is �rst encoded and compressed by the visual encoder.

Speci�cally, each input RGB image  , where   and   are its height and width, is �rst divided into patches of

size  . These patches are then embedded and �attened into a feature vector  , where 

 represents the number of patches, and    is the embedding dimension. The resulting patch embeddings

are processed through multiple layers of Transformer self-attention blocks[27], producing visual representations 

. To enhance the model’s ability to capture spatial dependencies, Multimodal Rotary Position Embedding (M-

RoPE)[19]  is used in the process. Afterward, a simple MLP layer compresses adjacent    tokens into a single token,

producing the �nal visual tokens  , which is formulated as:

where  . Notably, instead of using the traditional [class] token[29], the image is transformed into a set of visual

tokens. These visual tokens will then be passed to the LLM for further processing and interaction.

3.2. Pedestrian Semantic Token Generation

We aim to integrate the advanced visual semantic understanding and generation capabilities of LVLM into the feature

extraction pipeline, by guiding the ReID model to generate one semantic token that encapsulates instructive appearance

information of the pedestrian. To achieve this, we propose the Pedestrian Semantic Token Generation (PSTG) strategy,

where we use instructions to direct the LVLM to generate a semantic token that summarizes the pedestrian’s visual

appearance. Considering that representative attributes, such as age, gender, and clothing, are crucial for identifying

pedestrians, the instruction is carefully formulated as follows:

<|vision_start|> V <|vision_end|> Summarize the person image into one word, focusing on age, gender, clothing,

and biometric features.

where   represents the extracted visual tokens, while the special tokens <|vision_start|> and <|vision_end|> are used

to mark the beginning and end of the visual token sequence. With this instruction, the LVLM is guided to focus on the

appearance-related semantics in the image, and then generate a semantic token that summarizes the relevant identity

features. We denote this generated token as <REID>, which serves as a compact representation of the pedestrian’s visual

appearance. The generated semantic token is then used in the following stages of our framework to guide identity feature

learning.

The quality of the instruction is crucial for obtaining a useful token. Through empirical evaluation, we �nd that simple,

clear instructions work e�ectively in guiding the LVLM. Future work could explore more sophisticated instruction designs

to improve the semantic token generation process and, by extension, ReID performance.

x ∈ R
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P × P ∈xp R
N×d
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f ∈ R
N×d
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V
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Camera semantic supplementation.

The semantic token generation process overlooks the in�uence of camera variations. To improve pedestrian semantic

consistency across cameras, we explicitly model and account for these camera-induced feature variations. Speci�cally, we

assign a unique learnable embedding vector to each camera, which allows the model to learn the inherent feature shifts

caused by cameras. These camera embeddings are used to adjust the pedestrian’s semantic representation by

incorporating camera-speci�c information. We denote the set of learnable camera embeddings as 

, where   is the total number of cameras. One direct implementation is to supplement the

generated pedestrian semantic token with the camera semantics as follows:

where    is the encoding of the <REID> token,    is the camera ID corresponding to the image  . However, this late

supplementation strategy may a�ect the visual model weakly. We thus try to transfer the usage of camera embeddings to

the input of visual model, where the camera embeddings are added to the patch embeddings  . We evaluate the two

variants and discuss their in�uences in Sec. 4.3.

3.3. Semantic-Guided Interaction

We design the Semantic-Guided Interaction (SGI) module to facilitate bidirectional interaction between the generated

semantic token and the visual tokens. Speci�cally, the generated semantic token is �rst concatenated with the visual

tokens. Formally,

This concatenated token sequence is then passed through 4 layers of Transformer blocks, each consisting of a multi-head

self-attention layer and a feed-forward network. The module re�nes the visual features to capture identity-relevant

information under the guidance of the semantic token. Meanwhile, the semantic token, serving as the pivot for

information aggregation, distills more discriminative features from the visual representations, enhancing the overall

understanding of the pedestrian’s identity. Through the semantic-guided interaction module, the model produces the

reinforced representation as:

Then, the reinforced semantic token representation    is used to compute the Re-ID losses, i.e., identity classi�cation

loss[2]  and triplet loss[36]. Speci�cally, identity classi�cation loss ensures that the reinforced semantic token correctly

maps to the pedestrian’s identity category. A Fully Connected (FC) layer is employed as the identity classi�er, and 

 represents the predicted logits for the  -th identity category. The identity classi�cation loss is computed as:

where   is the total number of training identities,   is the corresponding identity label for the image  , and   is a small

constant for label smoothing regularization, which is typically set to 0.1.
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Additionally, to further improve the identity discrimination of the learned features, triplet loss is used. It ensures that the

identity representations of di�erent pedestrians maintain the correct relative distances in the feature space. The triplet

loss is de�ned as:

where    and    are the feature distances between a positive pair and a negative pair mined in the training batch,

respectively, and    is the margin. A positive pair consists of images from the same pedestrian, while a negative pair

contains images from di�erent pedestrians. The triplet loss encourages the model to minimize the distance between

images of the same identity and maximize the distance between images of di�erent identities.

3.4. Optimization and Inference

During training, we optimize the parameters of both the visual model and the SGI module while keeping the LLM

parameters frozen, though we retain its gradients. The LLM’s role in generating the semantic token, guided by the

instruction, enables the model to focus on identity-relevant regions and characteristics within the pedestrian image. By

leveraging the generated <REID> token in conjunction with the SGI module, we achieve joint end-to-end training that

harnesses the strengths of LVLM in instruction-following and visual semantic understanding. This process allows for the

integration of rich semantic cues into the visual representations, improving pedestrian identity recognition accuracy. The

overall training loss is a weighted combination of the identity classi�cation loss    and the triplet loss  , which is

expressed as follows:

where   and   are balancing factors that control the contribution of each loss term.

During inference, the LVLM is also used to generate the <REID> token for each input image. Then, the reinforced semantic

token representation,  , is used to compute the cosine similarity between di�erent person images. These similarity

scores are employed for identity matching, allowing the model to accurately identify pedestrians. Note that the identity

representations of persons in the large gallery databases need to be extracted only once in applications.

= max (m + − , 0)Ltri dp dn (7)

dp dn

m

Lid Ltri

L = +α1Lid α2Ltri (8)

α1 α2

v̂reid
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Backbone Methods
DukeMTMC-reID Market-1501 CUHK03

mAP Rank-1 mAP Rank-1 mAP Rank-1

CNN

MGN[23] 78.4 88.7 86.9 95.7 67.4 68.0

DG-Net[25] 74.8 86.6 86.0 94.8 - -

SAN[6] 75.5 87.9 88.0 96.1 76.4 80.1

Pyramid[24] 79.0 89.0 88.2 95.7 76.9 78.9

Relation-Net[7] 78.6 89.7 88.9 95.2 75.6 77.9

RGA-SC[26] - - 88.4 96.1 77.4 81.1

CDNet[8] 76.8 88.6 86.0 95.1 - -

CAL[9] 76.4 87.2 87.0 94.5 - -

ViT

TransReID[28] 80.6 89.6 88.2 95.0 - -

DCAL[30] 80.1 89.0 87.5 94.7 - -

AAformer[31] 80.0 90.1 88.0 95.4 79.0 80.3

PFD[37] 82.2 90.6 89.6 95.5 - -

CLIP-ReID[10] 82.5 90.0 89.6 95.5 80.3 81.6

LVLM LVLM-ReID 82.8 92.2 89.2 95.6 82.3 84.6

Table 1. Comparison with the state-of-the-art methods on DukeMTMC-reID, Market-1501, and CUHK03. The results of

our proposed method and the best results of comparison methods are shown in bold.

4. Experiments

4.1. Experimental Settings

4.1.1. Dataset

We evaluate our methods on three person Re-ID datasets:

DukeMTMC-reID[20]  consists of 36,411 images of 1,404 identities, captured from 8 di�erent cameras. The dataset

includes 16,522 images for training and 19,889 images for testing.

Market-1501[21] is captured by 6 cameras at Tsinghua University, containing 12,936 images of 751 identities for training

and 19,281 images of 750 identities for testing.
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CUHK03[38]  consists of 1,467 pedestrians. Following[39], 767 identities are used for training and 700 identities for

testing. The labeled version is used with manually labeled bounding boxes from 14,096 images.

4.1.2. Evaluation Metrics

We follow the common practices to adopt Cumulative Matching Characteristics (CMC) at Rank-1 and mean Average

Precision (mAP) for performance evaluation.

4.1.3. Implementation Details

Our method is implemented on PyTorch. We employ Qwen2-VL-2B[19]  considering its e�ciency with limited resources,

while larger model sizes such as 7B and 72B have better LLM capabilities. The model adopts BFloat16 mixed precision.  , 

,   are set to 280, 140, 14, respectively, resulting in  . In other words, 50 visual tokens are included in the input of

LLM and our SGI module. Following[2], random horizontal �ipping, padding, random cropping, and random

erasing[40] are used for data augmentation. 16 identities and 4 images per person are randomly sampled to constitute a

training batch. Adam optimizer with weight decay of   is adopted, with the warmup strategy that linearly increases

the learning rate from   to   in the �rst 10 epochs. We train the model for 60 epochs, with a learning rate

decay factor of 0.1 at the 30th epoch.   and   are set to 0.25 and 1 following[10]. The margin   of triplet loss is set to 0.3.

4.2. Comparison with State-of-the-Art Methods

We compare our method with the state-of-the-art methods on three widely used person ReID benchmarks in Tab.  1.

Methods based on CNNs achieve solid performance by designing elaborate modules for person ReID. TransReID[28], on the

other hand, explores the potential of Transformers[27][29]  in ReID, establishing itself as a strong baseline with superior

capability. As shown in Tab.  1, ViT-based methods achieve consistent performance across di�erent datasets due to the

e�ectiveness of pre-training and Transformer architecture. Our LVLM-ReID adopts LVLM as the backbone, leveraging the

advantages of Transformer and capabilities of large language models. Rather than designing elaborate modules for

interactions between image pairs[30], or leveraging part-level features[31] or pose semantics[37] based on ViT, we introduce

LVLM’s advanced understanding and generative processes into the ReID framework. Our method achieves consistently

better results across the three datasets.

More concretely, on the DukeMTMC-reID dataset, which is known for occlusions and variations in appearance, LVLM-

ReID achieves an mAP of 82.8% and a Rank-1 accuracy of 92.2%, surpassing previous advanced methods, such as

PFD[37] (mAP: 82.2%, Rank-1: 90.6%) and CLIP-ReID[10] (mAP: 82.5%, Rank-1: 90.0%). The results indicate that LVLM-

ReID is e�ective in handling the challenging variations from varying cameras and complex environmental conditions. On

the CUHK03 dataset, LVLM-ReID achieves an mAP of 82.3% and a Rank-1 accuracy of 84.6%, signi�cantly outperforming

other methods like CLIP-ReID[10]  (mAP: 80.3%, Rank-1: 81.6%). LVLM-ReID also achieves competitive results on the

Market-1501 dataset. The strong performance of LVLM-ReID across datasets demonstrates its capability of leveraging

LVLM. Note that CLIP-ReID[10] leverages a VLM pre-trained through contrastive learning on large-scale image-text pairs,

and it discards the text encoder during inference. Di�erently, our proposed LVLM-ReID integrates LVLM into ReID

H

W P n = 50

3 × 10−4

3 × 10−5 3 × 10−4

α1 α2 m
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training and inference stages in a novel paradigm, moving beyond traditional model designs. The comparison results

demonstrate its e�ectiveness in advancing person ReID performance.

4.3. Ablation Studies

To incorporate LVLM to promote ReID, we introduce two key components, i.e., Pedestrian Semantic Token Generation

(PSTG) and Semantic-Guided Interaction (SGI). We validate their importance and necessity in Tab. 2. We also discuss the

camera semantic supplementation design in Tab. 3 and our semantic-guided interaction design in Tab. 4. To demonstrate

the e�ectiveness of our end-to-end training process, we further ablate one variant that eliminates the gradient from LLM

in Tab. 5.

Methods
DukeMTMC-reID Market-1501

mAP Rank-1 mAP Rank-1

Baseline 79.0 90.2 87.3 94.7

Ours w/o PSTG 80.9 91.0 88.3 95.0

Ours w/o SGI 79.0 90.0 87.3 94.5

Ours 82.8 92.2 89.2 95.6

Table 2. Ablation studies of our key two components on DukeMTMC-reID and Market-1501.

E�ectiveness of the generated pedestrian semantic token.

(1) Our baseline is based on the visual model of the LVLM, and the visual tokens are averaged to compute loss and feature

similarity during training and inference. The baseline only uses the visual model, overlooking the role of LVLM in visual

semantic understanding and achieving inferior performance. (2) In the variant “Ours w/o PSTG”, we replace the LVLM-

generated semantic token with a learnable token, similar to the design of the [class] token[29], to integrate visual

information. As shown in Tab. 2, this substitution leads to a substantial performance drop since the randomly initialized

learnable token lacks rich semantic cues. This result underscores the importance of our PSTG mechanism, which

contributes to a more comprehensive understanding of pedestrian images.

E�ectiveness of the SGI module.

In the “Ours w/o SGI” variant, we remove the SGI module and rely solely on the LVLM-generated semantic token for ReID.

As shown in Tab. 2, this con�guration still achieves reasonably good performance, suggesting that our PSTG mechanism

e�ectively captures essential pedestrian semantic information. However, the variant struggles to outperform the baseline,

emphasizing the importance of the SGI module in leveraging the generated semantic token. The SGI module not only

re�nes the visual tokens by allowing them to interact with the semantic token but also reinforces its identity-speci�c
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information, resulting in a more comprehensive representation. The performance improvement of introducing SGI

highlights its role in obtaining a more robust and discriminative pedestrian representation for person ReID.

Methods

DukeMTMC-reID Market-1501

mAP Rank-1 mAP Rank-1

w/o CSS 81.6 91.4 89.1 95.2

CSS- 82.3 92.1 88.4 95.3

CSS- 82.8 92.2 89.2 95.6

Table 3. Ablation of the camera semantic supplementation (CSS) strategy. CSS-  and CSS-  denote adding the camera

embedding to   and  , respectively.

Ablation of the camera semantic supplementation strategy.

As shown in Tab.  3, we compare two variants that supplement camera semantics for the generated tokens and visual

inputs. The result of “CSS- ” shows that camera semantics can improve the representation ability of the generated

tokens for pedestrians. However, since it indirectly enhances the robustness of the visual model to camera changes

through our semantic-guided interaction module, the late supplementation strategy may a�ect the visual model weakly.

When transferring the usage of camera embeddings to the input of the visual model (denoted by CSS- ), we observe a

better performance. Interestingly, the observation is consistent with the work only using ViT[28]. In our LVLM-ReID

framework, this design helps to improve the robustness of the generated semantic token and the extracted visual features,

further improving the model’s ability to match pedestrians across cameras.

Methods
DukeMTMC-reID Market-1501

mAP Rank-1 mAP Rank-1

 as Query 80.5 89.4 88.6 95.2

Ours 82.8 92.2 89.2 95.6

Table 4. Ablation of the SGI module design. “  as Query” treats the generated semantic token as query, with image

tokens serving as keys and values in a cross-attention mechanism[27], and uses the resulting output as the pedestrian

representation.
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Ablation of the SGI design.

In the SGI module, we adopt bidirectional interaction between the generated semantic token and the visual tokens. To

assess the e�ectiveness of this design, we evaluate an alternative con�guration, “  as Query”, in Tab. 4. However, this

variant results in a noticeable performance decrease, validating the e�ectiveness and rationale of our SGI design. Its

inferior performance suggests that limiting interaction to a single directional �ow from visual tokens to the semantic

token does not leverage the mutual enhancement potential between them. In contrast, our SGI allows the semantic token

to guide and re�ne the visual features while being dynamically in�uenced by the visual content. This reciprocal exchange

strengthens the visual representations with relevant semantic context.

Methods
DukeMTMC-reID Market-1501

mAP Rank-1 mAP Rank-1

Stop Gradient 73.1 86.8 84.7 93.5

Ours 82.8 92.2 89.2 95.6

Table 5. Ablation studies of our end-to-end training design. “Stop Gradient” prevents gradient �ow from the LLM to the

visual model.

E�ectiveness of our end-to-end design.

We evaluate a variant of our proposed LVLM-ReID, denoted as “Stop Gradient”, in Tab. 5. In the variant, while the LLM

generates semantic tokens, they do not impact the visual model’s learning process. The variant fails to harness the full

bene�t of joint training, as it restricts the cross-modal optimization loop that allows the generated semantics to iteratively

enhance visual feature learning. Therefore, it shows unsatisfactory performance. The results highlight that our integrated

design not only fosters tighter synergy between the visual model and the semantic token but also enables our model to

capture more nuanced identity-relevant details, ultimately driving stronger ReID performance.

4.4. Qualitative Analysis

To understand the identity-related information in the semantic token and demonstrate the e�ectiveness of LVLM in

enriching pedestrian semantics, we analyze the attention maps using[41] in Fig. 3, and retrieval results in Fig. 4.

vreid

qeios.com doi.org/10.32388/AI0CSN 13

https://www.qeios.com/
https://doi.org/10.32388/AI0CSN


Figure 3. Visualization of attention maps. We show (a) the original images, and compare the attentions of (b) the “Ours

w/o PSTG” variant, and (c) our LVLM-ReID model, on CUHK03.

Visualization of attention maps.

As shown in Fig.  3, the attention map visualizations reveal a clear advantage of our method in enhancing semantic

understanding. Since a learnable [class] token lacks pedestrian semantics, the “Ours w/oPSTG” variant tends to shift

attention toward background regions, relying on dataset-speci�c biases rather than intrinsic pedestrian attributes. This

results in an inability to learn robust identity representations under such complex conditions. In contrast, our method,

guided by the semantic token, concentrates attention on key identity-speci�c regions, such as unique clothing patterns

and distinctive body parts. In challenging scenarios, such as those involving occlusions or the presence of other

pedestrians in the background (as shown in the last two columns), our method demonstrates superior robustness. It

focuses on the primary body of pedestrians, ensuring that meaningful identity-speci�c features are prioritized. This

focused attention demonstrates the e�ectiveness of our semantic guidance in directing the model toward meaningful

visual cues, thereby enhancing identity recognition accuracy and robustness across varied scenes and backgrounds.
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Figure 4. Visualization of retrieval results. For each query, the �rst and the second rows show the top-8 retrieval

results of the baseline and our method on Market-1501, respectively. Retrieved images with green and red boxes are

correct and incorrect results, respectively. Best viewed in color and zoomed in.

Visualization of retrieval results.

As displayed in Fig. 4, the baseline model often returns false positives, particularly when individuals in the images share

similar attributes with the query image, such as clothing color or style. In contrast, our method e�ectively captures

nuanced identity-speci�c features, accurately identifying the correct individuals. For example, our method demonstrates

robustness to variations in image resolution and human pose (as shown in Fig. 4 (a)), and handles well scale changes (as

shown in Fig. 4 (b)), achieving consistently higher precision in ReID compared to the baseline. With the help of LVLM, our

method can re�ne visual representations and enhance the discriminative power of the identity features. This leads to more

reliable and accurate ReID in complex scenarios.

5. Conclusion

In this paper, we introduce LVLM-ReID, a novel framework that leverages the semantic understanding and generation

capabilities of LVLMs to enhance the performance of person ReID. We design two key components: Pedestrian Semantic
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Token Generation (PSTG) and Semantic-Guided Interaction (SGI). We certify that LVLM can be integrated into the ReID

process by generating one pedestrian semantic token, which can be used to improve the visual identity representations via

an e�cient interaction module. In our framework, LVLM e�ectively helps capture and utilize the rich semantics of

pedestrians. Our experimental �ndings underscore the importance of semantic guidance in strengthening visual

representations, and highlight the advantages of our end-to-end design. Our work sets a new direction for integrating

LVLMs in the area of person ReID.

Limitations and future work.

We validate the e�ectiveness of our framework on a 2B parameter model, while the performance gains from more

advanced LVLMs or larger model series still need to be explored. While a larger model will bring greater computational

overhead, exploring more lightweight LVLMs or optimization techniques is also important.
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