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Abstract: In classic measurement theory each measurement result has a precision which 

becomes infinitesimal as noise and distortion approach zero. I. e., exact repetitive 

measurement results are theoretically possible. This classic measurement theory is not well 

correlated with experimental measurement results. Because, when noise and distortion are 

minimized, repetitive experimental measurement results display a Gaussian distribution. This 

paper first correlates classic and experimental measurements by developing a new 

measurement function and related definitions. Then this new measurement function is shown 

to correlate with quantum measurement theory and resolve existing quantum measurement 

perplexities. 
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INTRODUCTION  

A BIPM [1] experimental measurement result is a quantity (defined in the 
International Vocabulary of Metrology [2]) which is the product of two terms: a numerical 
value (n) and a unit (u). In this paper u is a general unit representing each of the smallest 
intervals of a measurement instrument (which quantify a measurement result). Then n is a 
positive integer. For simplicity this paper only addresses the effects of measurement result 
quantization on a quantity without the effects of noise (external to the measurement 
system) or distortion (internal to the measurement system).  

 
L. Euler identified that an observable's quantity is relative [3]. An observable's 

measurement result quantity is relative to a measurement instrument, a calibrated 
measurement instrument is relative to a standard unit, and a standard unit is defined. The 
measurement instrument's property [4] itself, as well as the numerical value and precision 
(see definition Section 4.0) of each u are defined by and correlated to a standard unit, or 
factor thereof, by calibration. See Appendix A for an example of the relative nature of a 
measurement instrument's property.  

 
A precise measurement result in u (i.e., precision smaller than a u) of an observable, in 

theory or experiment, can only be produced by a measurement instrument calibrated into 
smaller states than one u. These equal calibration states are smaller than the smallest u to 
correlate each u to a standard unit or factor thereof (see Fig. 1).  

1. A Quantity 

This paper develops a new classic measurement equation (1) - (4). Currently quantity 
calculus [5] defines a quantity (lower case) as the product of n and u. The relationship 
between each, possibly not equal, u is determined by calibration and considered only 
empirical in the current theory of a measurement in physics [6]. Relative measurement theory 
(RMT) [7], which this paper expands upon, identified that all u are not theoretically equal 
which requires that calibration (a process that quantizes and equalizes the u) be included in 
measurement theory.  

     measure result Quantity Q = un
n=1

n

å   (1) 

In (1) un represents each of the smallest intervals of an additive scale without any un 
calibration (i.e., all un are not defined to be equal), including during the design or 
construction of experimental measurement instruments. A quantity ( n ×u) is expedient for 
experimental measurements and notation. A Quantity, see (1), generates a proper superset of 
a quantity, i.e., includes the result n ×u . (1) is proposed as the beginning of a formal 
measurement equation that applies to all measurements. 

2. A relative measurement system 

As first proposed in RMT, a relative measurement system (Fig. 1) consists of three 
measurement sub-systems: local, calibration, and non-local. This relative measurement 
system (without any noise or distortion) presents the descriptions (two or more additive 
scales), equation (4), and instruments (measure and calibrate) of a relative measurement 
system in theory and experiment.  
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 In Fig. 1 the upper dashed outline (local) represents a measure process including the 

observable (quantum term) or measurand (metrology term), the measure instrument with an 
additive (but not assumed to be equal intervals) measure reference scale. A measure process 
is local. A measurement process includes all three subsystems. The lower dashed outline 
represents the calibration sub-system including the calibrate instrument with additive defined 
equal calibration states which correlate the local and non-local sub-systems.  

 

 

 

 

 

 

 

 

 

Figure 1. Relative measurement system. 

The un intervals, where the mean interval is 1/n, quantify the measure reference scale. 
The m equal calibration states, each defined to be 1/m, quantify the calibrate reference scale. 
From Fig. 1, where the measure instrument n = 5, the observable/measurand has a fixed 
quantity of 4unm even though repetitive measurement results of this observable/measurand 
will show a Gaussian distribution centered on 4unm. 

 
Fig. 1 illustrates the successively smaller intervals, between the small vertical lines, of 

each horizontal scale that are required for a functional measurement system. That is, the 
measure reference scale mean intervals, 1/n > calibration states, 1/m > U reference scale 
resolution. Where the resolution is the smallest identifiable change of the standard. n and m 
are integers (representing counts) when 1/n and 1/m represent the smallest intervals or states 
of their respective reference scales. 

 
The calibrate reference scale quantizes and equalizes each un which determines the 

precision of each un to U. When each un is quantized and equalized to U, all un are calibrated: 
 

        calibratedun = un ±1 /m= unm                               (2) 
 

Although the numerical value of U does not appear in (2), the numerical value of U can 
only be considered arbitrary in the first use. The numerical value of U determines the 
precision of eachunm in 1/m calibration states when there is noise or distortion (i.e., all 
experimental measurements). Changing un in (1) to unm from (2), produces the next 
measurement equation:   

                 measurement result Quantities = unm
n=1

n

å                      (3)  

The ±1/m precision, which changes each un individually, when summed over many 
repetitive measurement results establishes a Gaussian measurement result distribution. In rare 
statistical cases the distribution established by each ±1/m becomes increasingly dispersed 
(see the examples: 5.1, 5.2 and 5.3 below). For a measurement function to represent this 

local 

non-local 

   0    n un 
 measure  

   measure reference scale  

instrument 

observable/measurand 

unm 
   quantized 

 calibrate reference scale 

  0 

standard 

 

     U  
m 

equalized   calibrate 
instrument 

 

     

calibration 



 

 4 of 12 

Gaussian statistical effect, a Quantity (summation) must be used. When a quantity (product) 
is used, these statistical effects are not treated and perplexities appear. 

 
The differences that have appeared between classic, experimental and quantum 

measurement are based upon the different definitions of a unit and a state in the different 
disciplines. Understanding these differences requires a close look at the definitions.   

3. Units have multiple definitions 

Currently accepted:  

• In representational measure theory (all physics except metrology) u is defined to 
be U. 

• In metrology (assumed only experimental), u is commonly the mean u which is 
calibrated with a precision to a standard unit or a factor of a standard unit. 

• In statistics, a mean u or U may be the standard.  

• In bra-ket notation (common QM notation) a state is a ket vector representing, u 
or U, and treated as unity [8].  

 
In this paper:  

• un identifies each of the smallest u of a measure reference scale before calibration 
to U. un represents each uncalibrated u which has a local property, local size and 
undetermined precision. Local means correlated only to other un on the same 
reference scale. 

• unm is the numerical value of each u calibrated to U expressed in 1/m. Each unm 
has a non-local property, non-local size and precision relative to a standard unit 
or factor thereof. The 1/m intervals are the smallest states of the calibrate 
reference scale (calibration states).  

• U standard, U (capitalized), is a non-local standard with a defined physical 
property and a defined numerical value. U represents one of the seven different 
BIPM base properties, their units or derivations. U may be defined without ±  
precision (i.e., exact). A U's property and unit are required as a standard for 
relative measurements and U's numerical value is required to determine the 
precision of independent measurement instruments relative to U.  

4. Additional definitions used in this paper 

The un, unm and U definitions proposed in this paper necessitate revising other definitions 
from the International Vocabulary of Metrology (VIM). The definitions below are related, 
where possible, to VIM definitions. These definitions apply in measurement theory and 
experiment. 

 
Quantity may be a product (q) or a sum (Q) as developed by equations (1) - (4). In VIM a 

quantity is a product, because instrument calibration is assumed to establish sufficient unm 
precision when n>>m. 

 
Reference scale represents the usually additive local property of the measure or calibrate 

reference instrument. This paper only addresses additive scales. A reference scale must be 
local to the observable (i.e., properties are locally comparable) to establish a measure. Both 
the size and the relative precision of the reference scale intervals relative to U are not defined. 
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A reference scale may have a zero point. VIM applies the term reference measurement 
standard to both scales and standards.  

 
A measurement instrument (calibrated in theory and experiment) has a reference scale 

and may have a transducer which converts an observable's property to a property represented 
on this reference scale.  

 
A measure instrument (uncalibrated in theory and experiment) has a reference scale and 

may have a transducer which converts an observable's property to a property on this reference 
scale. A measure instrument determines the n of an observable/measurand. 

 
A calibrate instrument (in theory and experiment) has a defined equal scale which, when 

referenced to a U, defines the property of the measure and calibrate instrument reference 
scales. The calibrate instrument determines the numerical value of unm.  

 
Calibration applies to both physics theory and metrology and is includes quantization 

and equalization (see Fig. 1) of each measure instrument to a non-local unit standard (or 
factor thereof). Calibration also defines the property of an observable/measurand relative to a 
standard. Calibration as defined in VIM is termed instrument calibration in this paper, and 
commonly generates a mean un. Instrument calibration may also include adjusting the n 
numerical value as adjusting the many un of an instrument is often not practical. 

 
Calibration state is the smallest defined equal state of a relative measurement system. A 

calibration state quantifies un but is time independent of un. 
 
Precision is the ± deviation of the unit unm of a measurement result Quantity relative to a 

U standard. Precision is determined by calibration. This definition is more rigorous than the 
VIM definition. 

 
Accuracy is the ± deviation of the numerical value (n) of a measurement result Quantity 

relative to the mean numerical value. In the VIM empirical definition, measurement accuracy 
may also include precision.  

5. Empirical measurements  

Considering the subtle, but extensive, classic measurement theory and definitional 
changes proposed, some examples may be helpful.  

5.1 Additive reference scale 
 
An example of an additive reference scale is a thermometer which measures the property 

of thermodynamic temperature. This example demonstrates how additive imperfect intervals 
statistically increase the dispersion of measurement results, producing a Gaussian 
measurement result distribution.  

 
The measurement instrument consists of a hollow glass tube with a reservoir filled with 

mercury at one end, which fits inside another hollow glass tube that slides over the first. The 
two glass tubes are held together and placed in an adjustable temperature chamber which has 
a resolution of 0.10 (degree). Then the outside glass tube is marked at the level of mercury 
which appears and each 1.00 un above this mark. n + 1 marks (e.g., n = 100 in the Celsius 
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system) or 101 marks are made to quantize the outside glass tube. Each of the 100 un is 
correlated with the chamber to 1/0.1 =10 = unm ±  0.10 precision.  

  
After 101 marks are made, the instrument is removed from the chamber and an ice water 

bath is applied to the tube with mercury. The outside glass tube is now slid over the inside 
glass tube until the top of the inside mercury column lines up with the first mark on the 
outside glass tube. Now one mark on the outside glass tube is referenced to the temperature 
of ice water (00C) which is one point on this reference scale for thermodynamic temperature.  

 
Consider the temperature of a glass of water in contact with the reservoir of this 

measurement instrument (observable/measurand). If the temperature of the water is 800, the 

81st mark on the outside glass tube represents 800 ±  0.10 nominal precision or ±80 worst 
case precision dispersion. The ±0.10 nominal precision occurs when the ±  0.10 unm 
precision of each 80 un is uniformly distributed.  

 

The ±80 precision dispersion occurs when each of the 80 un has the same +0.10 or -0.10 
precision, which sums. Of course, such a ±80 distribution is not really possible in practice 
and for this reason is often ignored in current practice. But in a measurement theory, when 

each mark's precision is specified to be ±0.10, ±80 is possible in theory. The range of the 
precision dispersion from ±0.10 to ±80 establishes a Gaussian distribution of measurement 
results (see Section 5.3). The statistical effects of this Gaussian distribution on a 
measurement result is ignored when equal u are assumed.  

 
5.2 Length measurement instrument 
 
A physical metre stick is divided into 100 centimetres (smallest u), or 100 un. Consider 

an observable/measurand whose quantity, 80un consists of n= 80 and each un is calibrated to 
become unm. In the measurement theory proposed each un is calibrated to a standard and 
added to the next un (80 times). When first calibrated to a factor of U (a standard metre) each 

unm = (U/100) ± 1/m precision where, e.g., each 1/m is 1･10-6 (i.e., there are 106 calibration 

states of this metre stick) and the n accuracy = n ±1/m is ignored. In the proposed theory the 
Quantity dispersion is established by the random application of ±1/m to each un producing a 
Gaussian distribution. In the rarest two cases, when n of the unm, all with a precision of +1/m, 
are summed and in another measurement of n of the unm, all with a precision of -1/m, are 

summed, the greatest Quantity dispersion appears 2(80)10-6 =1.6･10-4 metres, which is 

sufficient precision ( ±0.8･10-4) for a metre stick. When the number of calibration states of a 

measurement instrument is much greater than n, the effect of measurement result dispersion 
is realistically ignored for statistical reasons, which are explained in Section 6.  

 
5.3 Gaussian normal measurement distributions 
 
Fig. 2 presents the characteristic Gaussian shape of a large distribution of repetitive 

experimental measurement results. This shape has been verified in many different forms of 
measurement results where noise and distortion have been minimized [9]. The Gaussian 
shape of measurement results in Fig. 2 is established by the quantization due to calibration 
states. This strongly supports the proposal to treat calibration in both physics theory and 
experiment.  
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Figure 2. Gaussian distribution of measurement results. 

6. The effect of unm on precision and dispersion  

Including the quantization of accuracy in (3): 

   measurement result Quantities = unm
n=1

n±1/m

å    (4) 

Equation (4) is a measurement function that applies (without noise or distortion) to all 
formal results and experimental processes. From (2):              

    

 

         unm precision = ± 1 / m( )   (5) 

This precision, ± 1/m in each of the n un, varies randomly (in theory) and sums (4) into a 
measurement result. Then the sum of the unm precision is:  

 

              the worst case precision of (4) = ±n 1 / m( )                  (6) 

 
Equation (6) identifies how repetitive measurement result Quantities of the same 

observable appear different, when n ~ m (a quantum measurement), and not when 1/n >>1/m 
(an experimental measurement, when 1/m is often treated as infinitesimal). Then from (6) the 
maximum dispersion of calibration states (including the accuracy of n which, in this example, 
is ±1/m), is 2n/m precision dispersion + 2/m accuracy dispersion: 

 
           the maximum Quantity dispersion of (4) = 2n /m+ 2 /m         (7) 

 
Equation (7) defines the base of the Gaussian distribution of measurement results shown 

in Fig. 2. Equation (4) identifies that each calibrated measurement result Quantity has a 
dispersion which is determined by both the n and m of a Quantity. In (4) when m is large 
relative to n, the ±1/m calibration states have a small effect on precision. Because, each ±
1/m (calibration state) cancels, or close to cancels in almost all measurement results (as 
example see 5.1), due to the central limit theorem's effect on the distribution of unm 
calibration states.  

 
Conversely, when n ~ m and m is small (neutron spin measurements n = m = 2) [10], the 

sum of each ±1/m precision will likely not cancel. In the neutron spin experimental 
measurements, it is likely (50% probability in the neutron spin measurements, assuming 
accuracy does not have an effect) two repetitive measurement result Quantities of an 
unchanged observable will be different. This creates the illusion of non-commuting 
quantities. 
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7. Explaining the perplexities that appear in quantum measurement theory 

The previously development (4) identifies that the calibration states are not similar to u. 
The defined time independent calibration states may be correlated with the defined time 
independent stationary states in quantum mechanics (QM) measurement theory [11].  

 
Currently the precision of unm (i.e., ±1/m) in QM appears as quantum uncertainty and in 

metrology may appear as accuracy, precision or resolution. W. Heisenberg formally 
presented uncertainty in QM [12]. RMT provided a verification that 1/m (a calibration state) 
at the limit of precision and resolution (a Planck) is quantum uncertainty.  

 
7.1 Heisenberg’s uncertainty  
 
Heisenberg's thought experiment [13] explores why uncertainty appears in QM, based 

upon his assumption that uncertainty does not appear in classic measurements. Heisenberg's 
assumption about classic measurements is not valid. The worst case precision (6) identifies 
that all measurement results (theory or experiment) will not commute (e.g., two repetitive 
measurements of one quantity of a Fourier dual (x1p1 & p2x2) are not equal, (x1 ≠ x2 & p1 ≠ p2) 
in one half of the repetitive measurement results when n = m = 2. Not commuting appears 
because each repetitive measurement result of x and p, a sum (n) of the sum of the m 
calibration states of either quantity, varies statistically. These statistical dispersions occur 
whether or not x and p are Fourier duals. The quantum uncertainty Heisenberg and others 
described occurs in all quantized measurement results.  

 
7.2 Double slit experiments 
 
The double slit experiments as explained by Feynman [14] offer an example of how 

calibration defines a property. Feynman concludes, "...when we look at the electrons the 
distribution of them on the screen is different than when we do not look."  

 
The measurement instrument in these experiments includes a sensing screen which is 

both a position and momentum transducer, while the slits are the reference scale. An 
operator, looking at the sensing screen, identifies a dot indicating the particle's property of 
momentum. The same operator's looking at the same sensing screen identifies a wave's 
property of length (wavelength of the frequency), but these are two independent calibrated 
measurements. The operator's choice of a wavelength or dot reading on the sensing screen is 
a property selection process which occurs by calibration. Calibration, which defines the 
property being measured, is what Feynman refers to as a "look". When calibration is not 
considered part of a measurement process, the property measured, which is always relative, 
appears to be changed by looking, but is actually defined by calibration. 

 
7.3 Remote entanglement of two measurement instruments' results 
 
A physical comparison of two measurement result quantities (qa and qb) from two 

measurement instruments (a and b) is a ratio of their numerical values (na and nb) and the 
numerical values of their mean u (i.e., ua and ub), shown as: na ×ua / nb ×ub . Currently in 
physics theory experimental calibration is assumed, therefore ub = ua. Given the development 
in Section 6 and the quantum uncertainty identified in Section 7.1, ub = ua. is not always 
valid. 
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 Applying calibration in theory, the calibration of a and b to U refines ua into uam and ub 
into ubm, which gives the ratio as na ×uam / nb ×ubm . Then uam and ubm cancel because they are 
equalized by calibration. When the calibration of both ua and ub is considered an initial 
empirical condition, this does not recognize that the ratio na ×ua / nb ×ubhas a different 
numerical value than the ratio na ×uam / nb ×ubm . This difference is then assumed to be a 
difference in the ratio of na/nb (because all u are assumed equal) which suggests a remote 
entanglement [15] between the measurements of na and nb, which is very perplexing. 

 
There have been many attempts to understand remote entanglement. J.S. Bell's 

formalization, (since verified experimentally [16]), which perhaps consolidates the earlier 
attempts, is addressed below. J. S. Bell, in his paper [17]: "...there must be a mechanism 
whereby the setting of one measurement device can influence the reading of another 
instrument, however remote." That mechanism is calibration as defined in this paper. 

 
 N. D. Mermin [18] described logically and analyzed statistically the neutron spin 

experiments that verified the remote entanglement that Bell formalized in QM. Remote 
entanglement is described by Mermin without QM formalism, indicating it is basic to all 
measurements. He identifies that the measurement result quantities of two entangled particles 
have a logical relationship that is not possible without an unknown interaction between the 
two measuring instruments. Not recognizing that a measurement result is a Quantity, Mermin 
describes calibration as that interaction, without realizing it. 

 
In Mermin's description two measurement instruments each have a 3 position selector 

which determines the un detected (i.e., spin vector at 1200 intervals) meaning there are 3 
possible un. Then, there are 9 possible combinations of the two position selectors: Three 
(Mermin's case a) when each selector is in the same position and six (Mermin's case b) when 
the positions of the two selectors are different. When the two remote selectors are different 
(the two measurement instruments' un are uncalibrated) and the n (00 or 1800) of the two 
particles appears randomly. Only in Mermin's case a (the two measurement instruments' un 
are calibrated) is the n of the two particles correlated.    

 
In summary, the a and b measurement instruments are independent but the measurement 

results qa and qb, whose units (uam and ubm) are equalized by calibration, appear to 
"...influence the reading of another instrument...". That is, the two measurement instruments 
are calibrated. The measurement result quantity ratio na ×ua / nb ×ubwill be different 
(especially at quantum scales) when ua and ub are not calibrated in theory to each other. This 
is strong evidence of the significance of calibration to any description of physical reality.   

8. Relating relative measurement theory to other theories  

In 1891, J. C. Maxwell [19] proposed that a measurement result quantity is: 
 

  measurement result quantity q = n ×u  (8) 

 
In (8), n is a numerical value, and u is a unit ("taken as a standard of reference" [20]), 

which together form a mutual relation, capable of being compared [3]. Equation (8) is the 
basis of quantity calculus. From Maxwell's usage and quote, u is equal (without ±  precision) 
to a U standard unit. Equation (8) and Maxwell's usage suggest that perfect precision is 
possible and a standard, though required, is arbitrary, well before quantum uncertainty 
identified that perfect precision is impossible.  
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In the 20th century, QM offered a new measurement function, von Neumann's Process 1 

[21]. Process 1 includes a statistical projection operator, 𝑃[𝜙𝑛][22], which represents each 

sum of m calibration states in this paper. von Neumann's Process 1 formalizes a measurement 
as the sum (n) of the inner products of the stationary states of the observable and the 
measurement instrument. Then the comparison of eq. (4) to Process 1 is straight forward 
when the calibration states are correlated to the stationary states in Process 1. 

 
Fig. 1 relates representational measure theory [23] (local) with the calibration and non-

local portions of a relative measurement system. Representational measure theory does not 
recognize that a quantity is relative; assumes measure result comparisons can occur without a 
reference scale or standard; treats a unit as arbitrary [24], which requires any calibration to be 
empirical [25]; and indicates that all measure result quantity dispersion is due to noise, 
distortion and errors in the measurement system [26].  

 
Now, the Einstein, Podolsky, Rosen (EPR) paper titled: "Can quantum-mechanical 

description of physical reality be considered complete?" [27] can be answered in the 
affirmative when the correlation (i.e., calibration) of each u to a non-local physical standard 
is treated in theory. The basic criteria, explained in the EPR paper, that experimental 
measurement results (physical reality) can in theory be certain ("predict with certainty"), is 
not rigorous. The EPR paper considers classic and experimental measurement results to be 
equal. Experimental measurement results can only be as precise as a calibration process 
defines.  

 
Since a Quantity consisting of a numerical value and a unm has not been applied in QM 

for almost 90 years, other perplexing effects have been noted. In Measurement Unification, 
2021 [28] explanations are given of quantum teleportation experiments and Mach-Zehnder 
interferometer experiments. The Schrödinger's Cat thought experiment is explained in a short 
preprint [29]. Together with the explanations above, these explanations verify that un 
calibration unifies classic and experimental measurement processes and QM measurement 
functions. 

9. Conclusion  

A physical standard (U) is the basis from which all physical phenomena are defined. 
Without such standards any understanding of physical phenomena, e.g., QM, appears 
statistical.  

 
Perhaps, when Maxwell indicated that the u = U, he assumed that a theoretical 

measurement result could be exact. It is not clear if he considered calibration an empirical 
process or that a standard was arbitrary. However, these incorrect assumptions did emerge. 
When calibration is only an empirical process, then a standard is not required in theory and a 
measurement property is assumed. When a standard is not required to define a property, the 
ratios of two measurement results are relative to each other rather than each relative to a 
standard. Then the various forms of quantum uncertainty appear as relations between Fourier 
duals, not as a precision relative to a standard of any quantized measurement result quantity 
in a state space.  

 
Examined closely, all repetitive measurement quantities are distributions caused by 

quantization and controlled by calibration. This paper has developed how quantization creates 
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variation between states, units and standard units. These variations are not included in current 
physics measurement theory, which causes perplexities.  

 

 
Appendix A 

Defining the property of a measurement instrument 

The first calibration of a measurement instrument to a physical unit standard defines the 
measurement instrument's property (length, mass, time, spin, etc.). 

It is often assumed that a measurement instrument has a physical property (length, mass, 
spin, time, etc.) that it measures. This is a simplification. All physical properties are relative 
and must be defined by a common property (usually represented by a BIPM standard).  

As example, consider an electrical multi-meter which can display the numerical values 
in units of the electrical properties: volts, ohms and amps on its meter. A rotary switch on the 
multi-meter selects which property to display. What occurs if the printing of the terms: volts, 
ohms and amps on the multi-meter's rotary switch is removed? That is, the visible prior 
history of the multi-meter's measured properties is removed. 

In this case the operator can use a known reference voltage (e.g., the known numerical 
value in volts of a common battery) and apply it to the multi-meter to determine which switch 
setting causes the display of the numerical value of the battery voltage. The same approach 
may be used by applying a known reference resistance to determine the ohms switch position. 
Without any prior history, calibration to a known reference/standard defines the property as 
well as determines the precision of the measurement instrument. 

The very first calibration of any measurement instrument to a standard, or perhaps an 
instrument or part that is applied in the design or manufacture of the measurement 
instrument, defines the property being measured.     
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