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Abstract: In classic measurement theory each physical measurement result has a precision which 

becomes infinitesimal as noise and distortion approach zero, i. e., exact repetitive measurement 

results (± a Planck) are theoretically possible. This classic measurement theory is not well 

correlated with experimental measurement results. When noise and distortion are minimized, 

repetitive experimental measurement results display a Gaussian distribution. This paper 

addresses experimental measurements by first developing a formal measurement function and 

related definitions, which identify that a classic measurement result is not possible in theory as 

well as in experiments. This new measurement function is then correlated with quantum 

measurement theory. This correlation explains existing quantum measurement perplexities. 

 

Keywords: calibration, uncertainty, precision, quantization, metrology, entanglement, Gaussian. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.32388/AOXTC5.3 



 

 2 of 14 

Acknowledgments: The author is grateful for assistance from Chris Field, Luca Mari, Elaine 
Baskin and Richard Cember. 

1. Experimental measurement results 

L. Euler identified that all measurement results are based upon mutual relations with a 
known quantity[1]. The paradigm applied in current measurement theory [2] is based upon an 
observable–measurement–observer paradigm called representational. L. Euler's paradigm is 
measurand1–measurement–standard paradigm, called relative. Relative Measurement Theory 
(RMT) [3], is based upon Euler's paradigm. The current paper develops the practice of RMT, 
which explains how RMT resolves the measurement perplexities that appear in quantum 
mechanics (QM).  

 
A measurand's measurement result is currently defined as a quantity [4] which is the 

product of a numerical value (n) and a unit2(u). In this paper n is an integer and then u is the 
smallest interval of a relative scale. Two mutual relations between a measurand and a standard 
are established by a:  

• Relative scale - sets of u. 

• Reference point - e.g., 0 u.  
In representational measurement theory both these mutual relations are considered 

empirical, i.e., part of an experiment's set-up. They will be shown to be significant in 
measurement theory as well. 

 
A measurement system that generates a measurement result includes a relative scale which 

is projected on a measurand. Each interval (u) of this relative scale must be correlated to a 
standard unit (defined) for independent measurement results. This is the definition of 
calibration applied in this paper. When calibration to a standard unit is included, the first two 
mutual relations occur plus two additional (see Fig. 1) mutual relations between a measurand 
unit and a standard unit:  

• Quantization of u - numerical value of u. 

• Equalization of u - precision of u.  
 
A precise measurement result quantity (i.e., precision smaller than ±u) of a measurand, in 

theory or experiment, can only come from a measurand quantized into yet smaller states than one 
u. Thus, a calibration state must be smaller than a u interval. Therefore, quantization due to 
calibration is required in any precise measurement theory as well as in any precise experimental 
measurement. 

 
A physical measurement establishes these four mutual relations. The first two mutual 

relations are required in any measurement theory or experiment that produces comparable 
measurement results. The third mutual relation (quantization) is required in any precise 
measurement theory or experiment. The fourth mutual relation (equalization) is required for 

 
1 Measurand (that which is measured) is a metrology term which is more appropriate than the 

QM term observable (that which is observed or seen). 
2 The first instance of a word defined in Annex A is italicized. 
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independent measurement results. This paper explains the perplexities that occur when these four 
mutual relations are not recognized, by first developing a new formal measurement function. 

2. An experimental measurement result Quantity 

 For measurement result quantity comparisons, two relative scales with a common u are 
necessary. The common u occurs by: assumption, correlation of both relative scales, or by the 
calibration of each relative scale to a standard unit. This calibration process is considered solely 
empirical in the current theory of a measurement in physics. When calibration is solely 
empirical, precision (see definition in Annex A) is also empirical, which assumes classic 
measurement results, where the precision of u determined by calibration goes to zero in a perfect 
measurement system (where noise and distortion are assumed to be zero). However, classic 
measurement results are not possible in theory or experiment. 

 
RMT verified [5] that all u are not theoretically or empirically equal, especially at quantum 

scales (consider Heisenberg's uncertainty). When all u are not equal in theory, quantization of u 
must be included in a measurement theory.  

     quantized Quantity Q = un
n=1

n

å   (1) 

In (1), un represents each of the smallest intervals of an additive relative scale. However, 
each un is not defined as equal, as u is, for reasons that will be developed. A quantity ( n ×u) is 
expedient for experimental measurements. A Quantity, see (1), is a proper superset of a quantity, 
i.e., it includes the result n ×u . Equation (1) is proposed as the first step towards a formal 
measurement function that applies to all measurements in theory and experiment. 

3. A relative measurement system.  

Fig. 1 diagrams a calibrated relative measurement system which is currently applied only in 
experimental measurements. The relative measurement paradigm applies Fig. 1 in all 
measurements. Fig. 1 may also have transducers (not shown) which convert a measurand's 
property to a property represented by a relative scale.  

 
The first two mutual relations in Fig. 1 are:  

• The local relative scale (defined by the U property) determines that the set of u is n.  

• 0 is the reference point common to the measurand and the local relative scale.   
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Figure 1. Relative measurement system. 

A relative measurement system without calibration to a standard U) would still need to 
establish the first two mutual relations, A diagram of an uncalibrated relative measurement 
system would have two measurands with a common local relative scale (see example Section 
6.2).  

 
Fig. 1 shows four calibration states each defined as 1/m, which quantify each of the five u 

intervals on the local relative scale. The measurand is defined to be 4un even though repetitive 
measurement results of this measurand will show a Gaussian distribution, whose deviation is 
quantified into calibration states, centered on 4un.  

 
The deviation of a measurement result quantity has three possible causes (operator errors 

are not considered): quantization (i.e., u or smaller), noise (external to the measurement 
system), distortion (internal to the measurement system). This paper focuses on the deviation 
due to quantization (i.e., calibration states), as this has been previously overlooked.  

 
Fig. 1 illustrates the successively smaller quantized intervals (between the small vertical 

lines), of each horizontal scale that are required for a functional measurement system. That is, the 
local relative scale mean intervals are 1/n. The 1/n intervals are greater than the calibration 
relative scale defined calibration states (1/m). The 1/m states are greater than the U reference 
scale resolution, which is the smallest identifiable change of U. Integers n and m represent counts 
when 1/n and 1/m represent the smallest intervals or states of their relative scales. 

 
The third mutual relation, quantization, divides each u into m equal states. Then each un has 

a separate numerical value.  
                quantized u = un                               (2)   

 
The fourth mutual relation, equalization, equalizes each un to U and completes a calibration 

process. As example: 
 

           calibrated un = U ± 1/m                                (3) 
 

Notice that the relationship between calibrated un and U is statistical (not fixed) and defines 
the precision (±1/m) of each un to U. Then a precise measurement function must be a statistical 
sum of un. Including the precision of un in (1) produces:   

                 measurement result Quantities = un ±
n=1

n

å 1/ m                      (4)  

The ±1/m precision, which changes each un individually, establishes a Gaussian 
measurement result distribution when summed over many repetitive measurement results. In 
statistically rare cases the distribution established by each ±1/m becomes increasingly dispersed 
(see the examples in Section 4). For a measurement function to represent the Gaussian 
distribution created by the statistical sums, a Quantity (summation) must be used. When a 
quantity (product) is used, the statistical sums are not treated and perplexing differences in 
measurement results appear. 
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4. Empirical measurement examples 

The measurement paradigm developed in the first three sections is significantly different 
from the current measurement paradigm in physics today. The following three examples are 
offered in support of this new paradigm. 

  
4.1 Additive relative scale 
 
An example of an additive relative scale is a thermometer which measures the property of 

thermodynamic temperature. This example demonstrates how additive imperfect intervals 
statistically increase the deviation of measurement results, producing a Gaussian measurement 
result distribution.  

 
The measurement instrument consists of a hollow glass tube with a reservoir filled with 

mercury at one end, which fits inside another hollow glass tube that slides over the first. The two 
glass tubes are held together and placed in an adjustable temperature chamber which has a 
resolution of 0.10 (degree). Then the outside glass tube is marked at the level of mercury which 
appears and each 1.00 un above this mark. n + 1 marks (e.g., n = 100 in the Celsius system) or 
101 marks (a relative scale) are made to quantize the outside glass tube. Each of the 100 un is 

correlated with the chamber to 1/0.1 =10 = unm ±  0.10 precision.  
  
After 101 marks are made, the instrument is removed from the chamber and an ice water 

bath is applied to the tube with mercury. The outside glass tube is now slid over the inside glass 
tube until the top of the inside mercury column lines up with the first mark on the outside glass 
tube. Now one mark on the outside glass tube is referenced to the temperature of ice water (00C) 
which is the reference point on this relative scale.  

 
Consider the temperature of a glass of water (measurand) in contact with the reservoir of this 

measurement instrument. If the temperature of the water is 800, the 81st mark on the outside 

glass tube represents 800 ±  0.10 nominal precision or ±80 worst case precision. The ±0.10 

nominal precision occurs when the ±  0.10 unm precision of each 80 un is uniformly distributed 

and cancels. The ±80 precision occurs when each of the 80 un has the same +0.10 or -0.10 
precision, which sums.  

 
In the proper design of experimental measurement systems, quantization effects are made 

smaller than noise or distortion and are ignored. But in this theoretical example of quantization 

effects, when each mark's precision is specified to be ±0.10, ±80 is very rarely possible. The 

range of the precision from ±0.10 to ±80 establishes a Gaussian distribution of measurement 
results (see Section 4.3 below). The effects of this Gaussian distribution on a measurement result 
are ignored when equal u are assumed. The statistical nature of these effects is significant in 
quantum scale measurements.   

 
4.2 Length measurement instrument 
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A physical metre stick (a relative scale) is divided into 100 centimetres (smallest u). 
Consider a measurand whose numerical value is n= 70. In the more rigorous measurement 
theory proposed here, each un is treated individually and then added to the next un (70 times).  

 
 When first calibrated to a factor of U (a standard metre) each un = (U/100) ± 1/m precision 

where, as example, each 1/m is 1･10-6 metres (i.e., there are 106 calibration states of this metre 

stick) and the accuracy of n = n ±1/m is small enough to be ignored. In the proposed theory the 
Quantity deviation is established by the random application of ±1/m to each un producing a 
Gaussian distribution. In the rarest two cases, when n of the un, all with a precision of +1/m, are 
summed and in another measurement of n of the un, all with a precision of -1/m, are summed, the 

maximum, and very rare, Quantity deviation appears 2(70)10-6 =1.4･10-4 metres, which is still 

sufficient precision (±0.7･10-4) for a metre stick. When the number of calibration states of a 

relative scale is much greater than the n of the relative scale, the effect of measurement result 
deviation is often and realistically ignored. However, when the number of calibration states (m) 
and n are both small, e.g., quantum measurements, this effect becomes significant. 

 
4.3 Gaussian measurement distributions 
 
Fig. 2 presents the characteristic Gaussian shape of a large distribution of repetitive 

experimental measurement results. This shape has been verified in many different forms of 
measurement results where noise and distortion have been minimized [6]. A Gaussian 
distribution of repetitive measurement results, caused by the summing of the ±1/m precision, 
strongly supports the changes to measurement theory proposed in this paper.  

 

 

 

 

 

 

 

 

Figure 2. Gaussian distribution of measurement results. 

5. The effects of quantization on accuracy, precision and deviation  

Including an example of the quantization of accuracy in (4): 

   measurement result Quantities = un ± (1/ m
n=1

n±1/m

å )   (5) 

Equation (5) is a measurement function that applies (without noise or distortion) to all 
formal and experimental measurement systems. From (5):              
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This precision, ± 1/m relative to U in each of the n un in (5), varies randomly (in theory) and 
statistically sums into the worst case precision:  

 

              the worst case precision of (5) = ± ±(1/m)( )
n=1

n

å               (7) 

 
Equation (7) identifies how repetitive measurement result Quantities of the same measurand 

can appear to be different (non-commuting), when n and m are small (a common quantum 
measurement), and not when n or m are large relative to each other (a common experimental 
measurement, see Section 4.3). Then from (7) the maximum deviation of calibration states 
(including the accuracy of n which, in this example, is ±1/m), is 2n/m precision + 2/m accuracy: 

 
           the maximum Quantity deviation of (5) = 2n /m+ 2 /m         (8) 

 
Equation (7) identifies that each calibrated measurement result Quantity has a deviation 

which is determined by both the n and m of a Quantity. In (7) when n or m is large relative to the 
other, the ±1/m calibration states likely have a very small effect on precision, due to the central 
limit theorem's effect on the sum of n (un ±1/m) when n is large and/or due to the central limit 
theorem's effect on the sum of ±1/m calibration states in each unm when m is large.  

 
Conversely, when n and m are both small, two repetitive measurement result Quantities of 

the same measurand will often be different. This appears as non-commuting numerical values in 
QM measurement results.   

6. Mutual relations in quantum measurement theory 

The logical development presented in the first five sections is based on the relative 
measurement paradigm. When the units are seen as arbitrary and the calibration of them to U as 
empirical, the requirement for mutual relations between units in theory is lost and a 
representational measurement paradigm appears. Based upon a representational paradigm, the 
QM experiments and thought experiments discussed below are perplexing. When a relative 
paradigm is applied the perplexities are explained.   

  
6.1 Remote entanglement 
 
There have been many attempts to understand remote entanglement. J.S. Bell's formalization 

(since verified experimentally [7]), which perhaps consolidates the earlier attempts, is addressed 
below. J. S. Bell, in his paper [8]: "...there must be a mechanism whereby the setting of one 
measurement device can influence the reading of another instrument, however remote." That 
mechanism is calibration. 

 
 N. D. Mermin [9] described logically and analyzed statistically the neutron spin 

experiments [10] that verify the remote entanglement that Bell formalized in QM. Remote 
entanglement is described by Mermin without QM formalism, which indicates it occurs in all 
measurement results. He identifies that the measurement result quantities of two entangled 
particles have a logical relationship that is not possible without an unknown interaction between 
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the two measuring instruments. Not recognizing that two measurement instruments must be 
correlated for a relative measurement result to occur, Mermin identifies the unknown interaction 
- reference point correlation - without realizing it.  

 
In Mermin's device, the two measurement instruments each have a 3 position selector which 

selects the angle (one of three 1200 intervals) of the spin property chosen. Mermin's two 
measurement instruments require a common reference point among the three 1200 intervals since 
the common property (spin) and common relative scale (three 1200 intervals, each a un) are 
determined by experimental set-up. 

 
There are 9 possible combinations of the two position selectors: Three (Mermin's case a) 

when each selector is in the same position (33.3%) and six (Mermin's case b) when the positions 
of the two selectors are different (66.7%). When the two remote selectors are in different 
positions (the two measurement instruments are uncorrelated), each n (00 or 1800) of the two 
particles spin vectors appears randomly over a large number of runs. Only in Mermin's case a is 
each n of the two particles correlated, because the two measurement instruments have been 
correlated independent of the measurements. When this necessary reference point correlation 
occurs in experiments, but does not appear in physics measurement theory, it is perplexing.  

 
6.2 Heisenberg’s uncertainty  
 
In Heisenberg's analysis [11] a single particle's two Fourier dual properties (his notation: p, 

momentum and q, position) are measured multiple times identifying their precision p1 and q1. 
This precision produces a Gaussian distribution the same as un precision. The precision of 
Fourier dual properties (having inverse time units) will always vary inversely as time changes, 
which Heisenberg recognizes. Since two Fourier dual properties are measured on one particle, 
the required first three mutual relations are treated. Then the product of the precision of the two 
inversely related properties of one entity, p1q1 ∼ h is approximately equal to a Planck (the 

minimum calibration state), which supports the measurement precision quantization proposed in 
this paper. A more formal analysis of the relation between uncertainty and precision is presented 
in the RMT paper.  

 
Heisenberg's assumption that classic measurements in theory can be without uncertainty is 

shown to be invalid in Section 5, above.  
 
6.3 Double slit experiments  
 
Feynman's [12] explanation of the double slit experiments offers an example of how a 

relative scale (whose property is defined by U) defines a property of a measurand. Feynman 
concludes, "...when we look at the electrons the distribution of them on the screen is different 
than when we do not look."  

 
In these experiments the relative scale is a set of slits with a sensing screen which projects 

both length and momentum properties onto the screen. It is well understood that particles have 
multiple properties. An operator, looking at the sensing screen, identifies a dot indicating the 
particle's property of momentum. The same operator, looking at the same sensing screen 
identifies a wave's property of length (wavelength of the frequency determined by the slits), but 
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the operator is applying one sensing screen presenting two different relative scales. The 
operator's selection of a wavelength or dot reading on the sensing screen is a relative scale 
selection (first mutual relation). When selecting a relative scale is not included in measurement 
theory, the operator's choice (by looking) is perplexing. 

7. Relating relative measurement theory to other theories  

In 1891, J. C. Maxwell [13] proposed that a measurement result quantity is: 
 

  measurement result quantity q = n ×u  (9) 

 
In (9), n is a numerical value, and u is a unit ("taken as a standard of reference" [14]). From 

Maxwell's formal definition and quote, u is equal (without ±  precision) to a U standard unit. 
Then (9) indicates that perfect precision is possible in theory, which makes all units equal in 
theory. and a standard arbitrary in the same theory, well before Heisenberg uncertainty identified 
that perfect precision is impossible.  

 
Currently the precision of un appears in QM as quantum uncertainty; in metrology, this 

quantization effect is empirically made smaller than noise or distortion and is usually ignored. 
W. Heisenberg formally presented uncertainty in QM [15]. RMT provided a formal verification 
that a calibration state at the limit of precision and resolution (a Planck) is quantum uncertainty. 
Given this verification, the defined time-independent calibration states, which are states of each 
un, may be correlated with the defined time independent stationary states in QM [16]. 

 
In the 20th century, von Neumann's Process 1 QM measurement function [17] was 

developed. von Neumann's Process 1 formalizes a measurement as the sum of inner products of 
the stationary states (fn) of a measurand and a relative scale. Process 1 includes a statistical 

projection operator, 𝑃[𝜙𝑛][18], which projects each now statistical state on each inner product. 

von Neumann does treat the first three mutual relations by comparing the stationary states of the 
measurand's measurement result to the measurand's prior measurement result. Then the 
comparison of eq. (5) to Process 1 is possible, recognizing that the statistical calibration states 
are correlated to the statistical states in Process 1.  

 
A. Einstein based the special and general theory of relativity [19] on a relative measurement 

paradigm. As examples: in special relativity a rod = u. In general relativity ds in a continuous 
(Gaussian) four dimensional space is the equivalent of a calibration state in a one dimensional 
quantized space. Since this paradigm is not currently applied in QM, applying a relative 
measurement paradigm will assist the integration of these two formal forms of physics.    

 
The Einstein, Podolsky, Rosen (EPR) paper titled: "Can quantum-mechanical description of 

physical reality be considered complete?" [20] can be answered in the affirmative only when the 
relative measurement paradigm is applied in QM theory. The EPR paper considers a classic 
measurement, which is not possible in experiment or theory, and does not recognize the need for 
a standard (which Bell termed a non-local structure21) for an independent measurement result to 
occur.  
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Fig. 1 relates representational measurement theory (local) with the calibration and not-local 
aspects of a relative measurement system. D. H. Krantz, et al [22], note that representational 
measurement theory does not recognize a quantity; assumes measurement result comparisons can 
occur without a relative scale or standard; treats units as equal [23], which requires any 
calibration to be empirical [24]; and indicates that all measurement result quantity deviation is 
due to noise, and distortion in the measurement system [25]. RMT presents a different view. 

 
Since the relative measurement paradigm is not applied in QM theory, other perplexing 

effects have been noted. In Measurement Unification, 2021 [26], explanations are given of 
quantum teleportation experiments and Mach-Zehnder interferometer experiments. The 
Schrödinger's Cat thought experiment is explained in a short preprint [27]. These, together with 
the explanations in this paper, strongly support RMT.  

8. Conclusion  

Representational measurement theory is long standing dogma that will eventually change. A 
physical standard (U) is the basis from which all physical phenomena are defined. Without such 
standards any understanding of physical phenomena is less precise.  

 
Examined closely, all repetitive measurement result Quantities in theory and experiment 

have a deviation relative to a standard. Then a comparable, precise, independent, measurement 
result Quantity is:  

              (n ± accuracy) i(un ± precision) = (n iun ) ± deviation.          (10) 
 
These are the new measurement result Quantities. 
 
Perhaps, when Maxwell indicated that the u = U, he assumed that a theoretical measurement 

result could be exact, that calibration is empirical and u was arbitrary. This appears to have 
instigated the limited representational measurement theory which has continued and was not 
reconsidered, even after Heisenberg's uncertainty was recognized.  

 
When calibration is only an empirical process, then u may be unitary in theory and a 

standard is not required. When a standard is not required to define a property, the ratio of two 
measurement results are relative to each other rather than each relative to U. Then the forms of 
quantum uncertainty appear as relations between Fourier duals, not as the precision of any 
quantized measurement result Quantity relative to a standard in a state space. When the relative 
measurement paradigm is applied, measurement results and Gaussian distributions in physics are 
no longer perplexing.  
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Annex A Definitions 

1.0 Units have multiple definitions 

Currently accepted in physics and mathematics:  

• In representational measurement theory (all physics except metrology) u is defined to 
be U. 

• In metrology (assumed only empirical), u is commonly the mean u which is 
calibrated to a standard unit or a factor of a standard unit. 

• In statistics, a mean u or U may be a standard unit.  

• In bra-ket notation (common QM notation), a state is a ket vector representing u or 
U, and is treated as unity [28].  

 
In this paper:  

• u identifies each of the smallest u of a local relative scale without calibration to U. 
Each uncalibrated u has a local property, local size and undetermined precision. 
Local means correlated only to other u on the same relative scale or projected 
measurand. 

• un has a numerical value (n/m). Each un calibrated to U has a not-local property, not-
local size and precision relative to U or a factor thereof.  

• U standard unit (capitalized), is not-local with a defined physical property and a 
defined numerical value of reference scale resolution states. Only U may be defined 
as a true value, although it will have a resolution in a quantized state space. U 
represents one of the seven different BIPM base properties and units or their 
derivations [29].  

2.0 Additional definitions used in this paper 

Similar to the changes proposed for the unit definitions, the paradigm change proposed in 
this paper necessitates changing or adding other basic measurement definitions.   

 
Accuracy is the ± change of the numerical value (n) of a measurement result Quantity 

relative to its mean numerical value.  
 
Calibration state, 1/m, is the smallest defined equal state of a relative measurement system. 

A calibration state quantifies un and is a stationary (time independent) state of un. 
  
Deviation is the ± statistical sum of precision and accuracy. The ± deviation of one  

measurement result of a distribution of repetitive measurement results. 
 
Precision is the ± change of one or more un relative to a U standard or factor thereof as 

determined by calibration. 
 
Relative scale may be considered a one dimensional coordinate system or a theoretical 

measurement apparatus. A relative scale establishes the equivalence of a property, as well as the 
order and additivity of the u set. [30] Both the size and the precision of the relative scale 
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intervals relative to U are not defined. This paper only addresses additive relative scales. For 
comparison purposes, a relative scale may provide a reference point, e.g., 0 reference point.  
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