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Data science is a multidisciplinary field that plays a crucial role in extracting valuable insights and9

knowledge from large and intricate datasets. It has the potential to drive accurate predictions and10

enhance decision-making capabilities across various domains, including finance, marketing, health-11

care, and scientific disciplines. In this paper, we developed a multiscale entropy dynamic (MED)12

methodology that is applicable to the field of data science. As an example, we apply this method-13

ology to the data science framework of a large and intricate quantum mechanical system composed14

of particles. Our research demonstrates that the dynamic and probabilistic nature of such systems15

can be effectively addressed using the proposed MED approach. Through this approach, we are able16

to describe the system’s dynamics in a multiscale form of equation of motion which turned out to17

be a general form of the Nonlinear Schrödinger Equation (NSE). It becomes the conventional linear18

Schrödinger equation for the case of smallest size particles, namely electrons, and quite expectedly19

nonlinear Schrödinger equation for the cases of quasi-particles, such as plasmons, polarons, and20

solitons. By employing this innovative approach, we pave the way for a deeper understanding of21

quantum mechanical systems and their behaviors within complex materials.22

1. Introduction23

The fields of statistical physics, information theory, and data science share common mathematical and conceptual24

foundations. These are interconnected in several ways [1, 2] and deal with the analysis of complex systems and make25

use of similar mathematical and statistical tools to model and analyze these systems. One of the most important26

connections between these fields is the concept of entropy [3]. In statistical physics, entropy is the measure of disorder27

or randomness of a physical system and can be used as a main driving force of the Second Law of thermodynamics [4].28

In information theory, entropy is a measure of the uncertainty or randomness of a message or information content of29

a data set. Whereas in the field of data science, entropy is often used to measure the randomness or unpredictability30

of data sets in classical and quantum models [5]. Another connection between these fields is the use of probability31

theory and statistical methods to model and analyze complex systems [6]. Statistical physics uses probability theory32

to model the behavior of large systems of particles, while information theory uses probability theory to quantify the33

uncertainty or randomness as well as a measure of information from the messages in data sets [7]. Data science uses34

statistical methods to model and analyze data sets and to develop algorithms for processing and interpreting data [8].35

Quantum mechanics has been conventionally formulated in the Hilbert Space with the use of two conjugate variables36

that obey Heisenberg’s uncertainty principle. For instance, the momentum p and the position coordinate q, in the37

form of ∆q∆p ≥ ℏ/2. In this way, Heisenberg’s principle describes the statistical nature of these self-adjoint operators38

q̂ and p̂ in the Hilbert Space. The ED formulation of quantum mechanics was introduced in 2009 and has been39

applied to fields such as quantum measurement problem [9, 10], uncertainty relations [11] curved space-time [12],40

scalar fields [13–15], and finance [16]. The ED approach is an alternative formulation of QM in which the dynamics of41

a probability distribution are derived from the entropy [17, 18]. This approach seems to describe the discord between42

the dynamics and probabilistic nature of quantities in a more convenient way compared to other approaches. In the43

entropic dynamics (ED) formulation, the quantum nature of these operators is given a secondary role. In fact, in this44

approach, the uncertainty in these variables stems from the diffusion process of the Brownian motion of the particles45

[11, 19]. It is important to note that momentum is not real in ED formulation but is an epistemic property of wave46

functions and not a property of the particles. In classical mechanics, we assume that the particles’ positions and47

their momenta are real. In the ED approach, only the positions are real because ED does not describe the dynamic48

of particles, but only the dynamic of their probabilities. Another important fact of ED formulation is that there is49

no conventional momentum that is canonically conjugated to the generalized coordinates. As we mentioned above,50

the generalized coordinates represent the probabilities, not the actual positions. Thus, there is no momentum of the51
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particles in ED formulation. Of course, we can always consider translations, and, following convention, we can call52

the generator of translations by the name ”linear momentum”. But this is just a name for operators that are not53

properties of the particles.54

In this paper, we extend ED formulation which is applicable to complex systems of scientific disciplines including55

data science. The ED formulation has been extended by developing a multiscale ED (MED) methodology. The56

term multiscale represents the hierarchical system of particles or entities participating in the dynamics of a particular57

system. The paper is organized as follows. In section 3 the ED formulation of QM is briefly presented. The approach58

to data science using MED is discussed in section 4. In section 5 we demonstrate how the MED framework can be59

used to derive Generalized Schrödinger Equation (GSE). In section ??, the derived GSE is applied to a couple of60

well-known systems from solid-state physics that describe the dynamics of quasi-particles (e.g., solitons) in nonlinear61

phenomena. Furthermore, a form for the interaction of electromagnetic fields with solitons is also presented. However,62

this was done under the assumption that solitons have self-trapped particles like electrons and therefore are charged.63

The impact and ramifications of the GSE in the context of describing the dynamics of solitons in 2D materials are64

discussed in the section 7. In the end, the overall conclusions drawn from the presented examples of the application65

of the MED method to various complex systems are presented and discussed in the context of Data Science, see the66

section 8.67

2. Foundation of Entropy Evolution Approach to Data Science68

Data science is a multidisciplinary field dedicated to extracting valuable insights and knowledge from both structured69

and unstructured data. Using a diverse set of techniques, methods, and tools from disciplines such as statistics,70

mathematics, computer science, and domain-specific knowledge. The roots of data science trace back to the practice71

of data collection, which has become a ubiquitous aspect of nearly every human activity over time. As computer72

facilities have advanced, the ability to gather relevant data from various sources has resulted in the creation of73

extensive databases. Consequently, ensuring the quality and quantity of collected data has become paramount,74

prompting a detailed analysis to directly investigate their impact. Exploratory Data Analysis (EDA) plays a crucial75

role in this process, involving thorough examination, analysis, and visualization of data. Its objective is to understand76

the patterns, trends, and relationships within the data, facilitating the construction of predictive models through77

algorithms that learn from the data at hand.78

One crucial aspect of Data Science is Feature Data Engineering, which involves predicting the evolution of data79

flow. This process incorporates Big Data Technologies, capable of handling and processing large volumes of data.80

The field of data science is rapidly evolving, which requires practitioners to stay up-to-date on new techniques and81

technologies. In this dynamic and interdisciplinary field, it is essential to find and implement models that can perform82

fast and efficient analyses, providing realistic predictions over time. Considerations such as scalability, real-time83

processing, and model drift are integral to the practice of Data Science. Practitioners often specialize in specific areas84

based on their interests and expertise. The application of data science is extensive, spanning across various industries,85

including healthcare, finance, marketing, and technology. In simple terms, Data Science uses data organized into86

numerous sets, with each mathematical set comprising data identified by their similarities. This concept of similarity87

is broad, encompassing scenarios such as sets containing snapshots of cars crossing red lights at road intersections88

or exceeding speed limits in specific locations of special importance. Consequently, we obtain multiple sets, allowing89

for the identification of the probability of traffic rule violations, denoted pi, and the estimation of the information90

entropy describing the information content. The first probability (pi) represents the ratio of the number of elements91

in a particular set to the total number of elements in all sets.92

Using probability functions, the next step involves estimating the Shannon information entropy, denoted Ss. This93

marks the initial phase. Subsequently, in the second step, we need to consider the values of police fines established94

for each of these traffic rule violations. The fines for the n−th type of violation occur with the probability pn,95

and have the value En and therefore these fines can be incorporated into the expression of entropy using Lagrange96

multipliers, e.g., a constant β. By determining the maximum of the total entropy (or information content) function97

equal to Stotal = Ss(p1, ..., pN ) + β
∑

n pnEn we find the initial entropy or content information in the existing data98

set. Here, the function Ss(p1, ..., pN ) is expressed in the form of Shannon entropy and is a measure of the uncertainty99

or information content in a set of data. It is calculated using the formula:100

Ss = −
N∑

n=1

pn log2(pn) (1)

where pn represents the probability of the occurrence of the n−th event described the a certain set of data. In the101

context of the provided text, this entropy measure is applied to assess the information content associated with traffic102

rule violations.103
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Here, we may reveal the dependence of each pn on the value of the fine En in a manner very similar what is used104

in statistical mechanics at the derivation of the Boltzmann distribution. With this step, the analysis of the existing105

data sets is concluded and the probability distribution of police fines is derived. In the subsequent second stage, our106

objective is to find or predict the evolution of this complex system. Here we used an analogy between the money of107

the fine and the energy in statistical analysis, see for detail the Ref.[20].108

It is a well-established fact that in any complex system in physics, e.g. such as classical and quantum gases, the109

entropy of any initial equilibrium state increases with time during interactions between particles. This fundamental110

observation constitutes the cornerstone of the Second Law of Thermodynamics, with an immense number of confirma-111

tions in nature. Naturally, this prompts the assumption that the evolution of entropy, particularly its growth, extends112

far beyond the conventional subject of physics. Thus, in the second stage of our approach, our primary objective is to113

derive equations for the time evolution of the entropy in any complex system. The evolution of entropy begins with114

the initial entropy calculated from the data sets in the first stage of our approach. Remarkably, in numerous cases115

considered in this paper, the equations governing entropy evolution reduce to various types of nonlinear Schrödinger116

equations. This is noteworthy, especially considering that traditional data science methods, such as the multidimen-117

sional version of gradient descent, have been predominantly used. While such methods prove useful in many cases,118

they face challenges in realistic systems due to their multidimensional nature. For instance, introducing the concept119

of the system’s internal energy, represented as an integral function of entropy, reveals a complex energy landscape120

with numerous minima and maxima. The multidimensional gradient descent method may lead the system to a false121

minimum or maximum. An alternative and more advanced approach involves machine learning, which improves the122

situation by training the evolution of entropy on the initial time steps and then extrapolating it for all subsequent123

times. However, the approach proposed in this paper offers a comprehensive formulation that can be applied to any124

database.125

We propose using specific equations used to describe the time evolution of the entropy, which can vary depending on126

the characteristics of the system under consideration. In the context of the information provided by data science, the127

entropy evolution may be described by nonlinear Schrödinger equations (NLSE). It is a partial differential equation128

that commonly appears in various areas of physics, including optics, plasma physics, and condensed matter physics.129

Its general form is:130

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂x2
+ V (x)ψ + g|ψ|2 (2)

In this equation: ψ represents the wave function, t is time, x is the coordinate of the generalized spatial position, as131

in classical mechanics. ℏ is the reduced Planck constant, m is the particle mass, V (x) is the potential energy and the132

constant gn characterizes the strength of the non-linearity. This equation describes the evolution of the wave function133

ψ(t) over time, and its nonlinearity term g|ψ|2ψ is a key feature that distinguishes it from the linear Schrödinger134

equation. In the context of the provided information, the use of nonlinear Schrödinger equations suggests that the135

evolution of entropy in certain complex systems follows a mathematical framework akin to that of quantum mechanics.136

The specifics of how these equations are adapted or derived for entropy evolution in data science applications would137

require a more detailed understanding of the particular system and the associated mathematical modeling choices.138

The presented methodology of multiscale entropic dynamic (MED) is indeed applicable to any system including139

data science. It requires determining the constraints of the system. The details of the methodology are listed below.140

The entropic dynamic represents the evolution function of information in a statistical manner. Multiscale describes141

the size of the information carrier or a possible variety of generalized coordinates as in classical mechanics. Its smallest142

size information carrier obeys the linear system for the equation of motion. Whereas the equation becomes nonlinear143

as size of carriers scales up.144

3. The Entropy Dynamic Formulation of Quantum Mechanicss145

The fundamental object in QM is the wave function Ψ, which is a complex function of coordinate and/or momenta.146

It may, generally, be represented with the use of two real quantities ρ and Φ: Ψ =
√
ρ exp (iΦ). Here ρ is the probability147

density and Φ is the phase field. The wave function is nicely described by U(1) gauge symmetry group, where the phase148

Φ is a free gauge parameter. The elements of the abelian gauge group U(1) are associated with the different values of149

the phase. It turns out that these two quantities are the degrees of freedom in ED methodology, which are determined150

in two steps. The first step involves the entropy functional (9) that leads to the Fokker-Planck (FP) equation (25).151

The second step involves an energy functional (28), whose conservation leads to quantum Hamilton-Jacobi equation152

(32). The two equations are then combined to give the Schrödinger equation. It is pertinent to mention herein that153

in the past the Schrödinger equation has been derived in [21] with the use of stochastic mechanics. The starting point154
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in that derivation was the transition probability, which was conventionally described by Green’s function. In that155

stochastic theory-based formulation [21] it’s form is given below:156

p(x′, t′|x, t) = 1

(2πσ2∆t)d/2
e−

(x′−x)2

2σ2∆t , (3)

where d is the dimension of the space and σ2/2 is the diffusion coefficient. The Brownian motion given by equation (3)157

keeps track of the future given the present is known while independent of its past. Equation (3) admits the following158

stochastic differential equation159

∆xi(t) = bi(x(t), t)∆t+∆wi(t) , (4)

where bi is drift velocity and wi is the fluctuation or noise in the Brownian Motion with the following correlators160

⟨∆wi⟩ = 0 , and ⟨∆wi∆wj⟩ = σ2∆tδij , (5)

On the other hand, the transition probability derived in the ED formulation is followed by the incorporation of161

the Brownian motion. The ED framework differs from stochastic mechanics in ways that are delineated next. The162

ED formulation for a certain quantum system begins with defining the entropy functional (9) subjected to relevant163

constraints of the system and defining the notion of entropic time. The relevant constraints are those that lead to164

the desired theory. Since our main concern is to derive quantum theory using ED, the relevant constraints are the165

phase constraint (13) and gauge constraint (14). Once the constraints are incorporated and the entropy functional is166

optimized, one obtains the transition probability (17) which apparently is timeless. However, this is a common feature167

of Bayesian or entropic inferences, where the goal is to update the prior probability to the posterior probability when168

new information becomes available. The new information could be in the form of data (Bayesian inference) or in169

the form of constraints (entropic inference). In both cases, the two methods of inference are atemporal. It does not170

matter whether the posterior is obtained in the past or present, one gets the same result. Interestingly it is possible171

to introduce time in ED. Consider a particle that moves from the initial position x to the final position x′. Generally,172

both positions are unknown. This means that we are dealing with the joint probability P (x, x′). Then using the173

product rule of probability, we obtain the following:174

P (x, x′) = P (x′|x)P (x) , (6)

where P (x′|x) is the probability of x′ given x. Since x is also unknown, we marginalize over x to obtain the following:175

P (x′) =

∫
dxP (x′, x) =

∫
dxP (x′|x)P (x) , (7)

where P (x) is the probability of the particle being located at position x.176

Whereas P (x′) is the particle at position x′. As x occurs at an initial instant t and x′ happens at a later instant t′.177

Therefore we finally set the probabilities in the following manner:178

P (x) = ρ(x, t) and P (x′) = ρ(x′, t′) . (8)

In short, in the ED formulation, time is introduced as a book-keeping device that keeps track of a change. The notion179

of time would be further elaborated in section 5 where the duration of time would also be obtained.180

4. The Multiscale Entropy Dynamic Methodology181

The emergence of new information technologies has led to the rise of data science, which involves the analysis182

of large and complex data sets to make predictions about the evolution of systems. Data science has become an183

essential tool for businesses and organizations to gain insights into their customers, products, and operations, and184

make data-driven decisions. To conduct a data analysis, one must first take a data set and break it down into subsets.185

By analyzing the multiplicity of these subsets, one can determine the probabilities for the realization of different186

outcomes. This approach is based on the principles of probability theory, which involves quantifying uncertainty and187

measuring the likelihood of different events. To make predictions using data analysis, one can use methods such as188

statistical mechanics, which was first introduced by Boltzmann. This method is based on the concept of entropy,189

which measures the amount of disorder or randomness as well as the information contained in a system. By applying190

statistical mechanics to a data set, one can determine the most likely outcomes and predict the future evolution of the191
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system. What we propose to do is the following: take a data set and make an analysis with the goal of decomposing192

it into an arbitrary number of subsets. Then by using the multiplicity of those subsets, determine the probabilities193

for the realization of the different subsets. The determination of the probabilities can be accomplished using methods194

of statistical mechanics, which are completely compatible with the presented MED methodology.195

As we deal with multiscale methodology, the additional ingredient is to sum over all scales representing the hierarchal196

system of particles or entities. The Q(x′, s′|x, s) is called the prior probability distribution, which we get from our197

data set as mentioned earlier. The unknown function is the transition probability P (x′, s′|x, s), which is analogous to198

the transition probability distribution for a single particle when it moves from the position x to a neighboring point199

x′, where s, s′ are scaling indices or arbitrary variables of the data set which is under consideration. Our goal is to200

find the transition probability. But first, we have to find the prior, which we get from the analysis of the information201

data set, which is under consideration.202

The main idea of our approach is that in any system with time, the entropy rises. The same happens in the case203

of the second Law of thermodynamics, which deals with a complex system and also a large number of particles.204

So we consider the dynamics of entropy in MED methodology in the same way as it is done in the Second Law of205

thermodynamics. Thus, our goal in this paper is to extend the application of ED[18] to a complex system which can206

be described by some complex data set. Such a system can be also a single quantum mechanical particle embedded207

in different environments or scales. The mathematical tools needed for a system of such directly noninteracting208

particles go beyond the usual statistics and calculus. Since a system of particles or a complex system can involve209

several constraints, one needs to adopt a multifaceted and multiscale approach to formulate the equations that describe210

the system accurately [22] (see, the references therein). The proposed MED methodology has applications in both211

natural and social sciences. For instance, the brain is a complex system of neurons and in the same way, society is a212

complex system of communication networks. The universe itself is a complex system too, as it is comprised of planets,213

stars, and ultimately galaxies.214

In this paper, we consider a quantum mechanical system as an example to extend the ED method to the MED215

method with the eventual goal of applying MED method to the field of Data Science. As an illustration, we apply216

MED to the single and non-interacting particles of a quantum mechanical system, to obtain a well-known form of217

the Generalized Schrödinger Equation (GSE). The obtained set of equations is identical to the non-linear Schrödinger218

equations (NLSE) that have been applied to various systems including superconductivity. In other words, the equa-219

tions derived under MED approach describe the dynamics of non-linear systems in physics consisting of plasmons,220

deformons, polarons,condensons, and optical or matter solitons. The dynamics of solitons is a of great interest in221

describing the properties of new emerging fields of materials science, e.g. nonlinear optics, two-dimensional (2d) ma-222

terials, cold and hot plasma physics, and crystal lattice dynamics. As one example the matter solitons are considered223

as non-relativistic quanta of matter waves and represent Bose-Einstein Condensates (BEC) of atoms and electrons224

[23–28]. It is likely that the first form of NLSE appeared in Landau Theory of phase transition where he first intro-225

duced the cubic term in the Shroedinger equation describing order parameter [29]. Later in 1950, this equation was226

applied by Ginzburg and Landau to superconductors and the NLSE got a new meaning, the famous Ginzburg-Landau227

equation[30]. Later in 1960s the idea was applied to BEC and the NLSE equation got the name as Gross-Pitaevskii228

equation. On the other hand, an electron trapping by a crystal lattice, which leads to another form of NLSE was229

also first described by Lev Landau in 1933 [23]. Solomon Pekar proposed the concept of the polaron in 1946[31],230

which was further developed by Landau and Pekar in a 1948 paper[32]. This theory suggested that polarons, not free231

electrons, were the charge carriers in ionic crystals. Unlike quantum electrodynamics, the polaron theory is free from232

divergences, and the electron energy and mass remain finite. Today, research on polarons continues to expand into233

new areas of 2D materials, where new forms of NLSE have been obtained[33]. In general, it would be also interesting234

to consider these new phenomena from the principle of MED and compare them with conventional approaches. In235

particular, for a description of nonlinear waves, the NSLE was originally derived by Zabusky and Kruskal [24], but236

using MED one may include the Physics of many non-equilibrium phenomena, dissipation, and scattering and it can237

be used to describe the dynamics of solitons in 2d materials or many-body soliton physics.238

5. Formulation of MED Methodology and Its Application to a Quantum Mechanical Complex System of239

Data Science240

As stated earlier, our eventual goal is to introduce MEDmethodology for the field of Data Science. As an illustration,241

we apply it to describe the dynamics of quantum particles namely solitons. Whereas a complex Data Science system242

may also have particles such as fractals which are self-similar structures. Fractals are found in nature, besides243

being constructed both experimentally and mathematically. Clouds, lightning, and coastlines are examples of natural244

fractals, and the Sierpinski triangle is an example of geometrical fractals [34]. Moreover, geometrical objects are also245

fractals and can be found in Benoit B. Mandelbrot foundational book on fractals [35]. The creation of solitons in246
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Fractals has been discussed in [36].247

For a quantum statistical system, one must first specify the microstates, the prior probability distributions, and248

the constraints at the stage. Similarly, in a Data Science application, the prior probability distributions originated249

directly from the existing data set which is the subject of the main Data Science analysis. The most important part250

of this analysis is to find which constraints have been used in the collection of the existing data. The correct evolution251

of entropy strongly depends on these constraints. In the next step, we have to incorporate these limitations in the252

entropy function. With these taken into account we arrive at a traditional generalized Boltzmann-like expression of253

entropy which is a Quantum Mechanical representation of the entropy. To derive the linear Schrödinger equation254

(LSE), one considers N noninteracting particles living in a flat Euclidean space. It is assumed that particles have255

definite initial positions (and indefinite values of momenta) and yet unknown values that are desired to be inferred.256

The different definite initial positions of the particles form a data set. Such a data set can be very large, depending on257

how many initial positions for a single particle we will take into account. The data set can be also split into subsets258

associated with different scales, e.g. of the fractal. Note that the microstates at each scale are different. The devised259

MED methodology is given below in the following steps:260

5.1 MED Functional261

It is assumed that at each scale, the particle resides in an Euclidean space Xs with metric δab, with a = 1, 2, 3262

for spatial coordinates. And for all particles at that scale we have XNs
= Xs × . . .Xs, which is 3Ns dimensional263

configuration space. The positions of the particles are given by xai ∈ XNs
, where the index i = 1, 2, . . . Ns. We264

represent xai collectively by x. The multi-scale entropic functional for a system can be written in a way described by265

equation (??) (See a review on ED in [18]):266

S[P,Q] = −
∑
s′

∫
dnx′P (x′, s′|x, s) log P (x

′, s′|x, s)
Q(x′, s′|x, s)

, (9)

Equation(9) is the extension of the entropy functional in [18]. As we are dealing with multi-scale, the additional267

ingredient is to sum over all scales. Here Q(x′, s′|x, s) is the prior probability distribution, and P (x′, s′|x, s) is the268

transition probability distribution as the particle moves from x to a neighboring point x′, where s, s′ are scaling indices.269

Our goal is to find the transition probability. But first, we have to determine the prior probability distribution. For270

any specific data set, it can be obtained directly by classifying different snapshots of the data set. For the particular271

case of our many-particle system, as for the ideal gas to determine prior, we will follow the original Boltzmann272

approach.273

5.2 Prior Multiscale Probability Distribution Functional274

The prior multiscale probability distribution functional Q(x′, s′|x, s) codifies the relation between x and x′ before the275

information contained in constraints has been processed, where all particle positions are equally probable. In other276

words, it is desired to find a prior distribution that is invariant under translation and rotation. It can be obtained by277

maximizing the following relative entropy:278

S(Q) = −
∑
s′

∫
dnx′Q(∆x) log

Q(∆x)

µ(∆x)
, (10)

where ∆x = x′ −x is relative to the uniform measure µ(∆x), subject to normalization and a constraint that concerns279

short steps,280 ∑
s′

∫
dnx′Q(x′, s′|x, s)δab∆xai∆xbi = ⟨∆ℓ2i ⟩ , (i = 1, 2, . . . Ns′) (11)

where ⟨∆ℓ2i ⟩ are constants equal to the square of the average displacement between the points x and x′. The index i281

indicates that there are Ns′ constraints at each scale that are rotational invariant.282

The proof of the results presented below in the equation is completed in Appendix A.283

Q(x′, s′|x, s) ∝ exp[−1

2

∑
s′

Ns′∑
i

1

σ2
s′,i

δab∆x
a
i∆x

b
i ] (12)
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where σ2
s′,i is a Lagrange multiplier, which will be determined later (see equation (19).To ensure small steps, this284

Lagrange multiplier must be very small. The right-hand side is the product of the Gaussian function, which means the285

short steps are independent of each other. Equation (12) is a prior probability distribution that only takes into account286

the original positions of a particle before the actual constraints or information is incorporated, such as the influence287

of the EM field. It only describes motion in short steps as the particle moves from x to x′. We want to write down a288

form of equation (9) that works for describing the dynamics of particles and quasi-particles in solids, considering the289

case when the isotropic symmetry of the space is broken, e.g., by applying an external electric field. This symmetry-290

breaking requires including extra constraints that are listed below. In this way, the transition probability distribution291

P (x′, s′|x, s) will be determined. The isotropic symmetry breaking of the probability distribution can be achieved292

by introducing an external force per unit charge which is dependent upon space. Consequently, it results in space-293

dependent symmetry-breaking as well. In any complex system of Data science, it is caused by the gradient of a scalar294

external potential. In the case of a quantum mechanical complex system, it is the electric field generated by the295

gradient of electric ”potential” ϕs(x
a), that satisfies the following constraint:296

∑
s′

∫
dnx′P (x′, s′|x, s)∆xa ∂ϕs

∂xa
= κ1,s (13)

This constraint is called the drift potential constraint in the context of a quantum mechanical complex system. The297

κ1,s are constants that are related to equipotential lines. These equipotential lines are related to the cross-section298

which are perpendicular to the applied field.299

The time-dependent symmetry-breaking of the probability distribution can also be achieved by external force per300

unit charge that depends upon the time. This implies that the time-dependent component of the external force must301

be generated by a time-varying potential as well as a vector. For example, in the case of a quantum mechanical302

complex system, the external electric field can also be generated by the rate change of vector magnetic potential. This303

symmetry-breaking constraint can be imposed in the following form:304 ∑
s′

∫
dnx′P (x′, s′|x, s)∆xaAa = κs2 (14)

where Aa is vector potential which is a function of both space and time. The κs2 are constants that represent305

average displacement in the direction of the vector potential. It should be noted that an arbitrary form of the vector306

potential can be selected that results in the meaningless form of symmetry breaking. Therefore, its gauge invariant307

form must be selected. The gauge invariant form of vector potential implies that it causes the symmetry breaking308

of probability distribution functional simultaneously in time and space. This is why, the symmetry-breaking of the309

probability distributional functional in space due to vector potential must be included and it has been done in the310

following way:311 ∑
s′

∫
dnx′P (x′, s′|x, s)∆xaϵabc

∂Ac

∂xb
= κ1,s (15)

This constraint is also called the drift potential constraint in the context of a quantum mechanical complex system, but312

due to the drift of vector potential. Therefore, the κ1,s are the same constants that are related to vector equipotential313

lines in this case.314

5.3 Optimization of MED Functional315

The maximized multiscale MED functional of equation (9) subject to the constraints are given in equations (13), (14).316

We get the following result for the transition probability by combining both constraints.317

P (x′, s′|x, s) ∝ exp

[
−1

2

∑
s′

Ns′∑
i

(
1

σ2
s,i

δab∆x
a
i∆x

b
i − α′

s,i∆x
a
i

∂ϕs
∂xai

+ βs′,i∆x
a
iAa

)]
, (16)

where σ2
s,i, α

′
s,i, and βs′,i are Lagrange multipliers which will be expressed in the form of Planck’s constant ℏ, speed318

of light, and charge of an electron. For the sake of completeness, we should note that the gauge invariance of equation319

(16) can be achieved and may be written in the following way:320

P (x′, s′|x, s) ∝ exp

[
−1

2

∑
s′

Ns′∑
i

(
1

σ2
s,i

δab∆x
a
i∆x

b
i − α′

s,i∆x
a
i

∂ϕs
∂xai

+ βs′,i∆xaϵ
abc ∂Ac

∂xb

)]
, (17)
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In the MED formulation, we derive below the transition probability in the Gaussian form with time evolution. In321

this formulation, Brownian motion was applied explicitly to the general form transition probability as well as entropic322

time. Entropic time is explained and derived next.323

Any notion of time must involve motion and change[37]. In MED, motion/change is described by the transition324

probability given by (16). It is desired to obtain small change. Large changes can be obtained by accumulating small325

short steps. It should be noted that any notion of time must have (a) something one might identify as an instant,326

(b) a sense in which these instants can be ordered, (c) a convenient concept of duration measuring the separation327

between instants [38]. In ED an instant is defined by the information required to generate the next instant. The point328

x occurs at time t and x′ occurs at t′. So the probability distribution evolves according to329

ρ(x′, s′, t′) =
∑
s

∫
dtdxP (x′, s′|x, s)ρ(x, s, t). (18)

We write ρ(x, s, t) = ρs(x, t). Having introduced the notion of time, the next step is to define a duration of time.330

Since our goal is to derive GSE, it suffices to construct a Newtonian interval that is independent of the position x and331

time t. This can be achieved by the Lagrange multiplier σ2
s,i to be constant such that332

1

σ2
s,i

=
mi,s

ηs∆t
(19)

where mi,s are the particle masses and ηs is a constant which will be shown later that it is ℏ. Furthermore333

Mab = ms,iδab , (20)

where Mab is effective mass matrix. We have334

P (x′, s′|x, s) ∝ exp

[
− 1

2ηs∆t
Mab(∆x

a − ⟨∆xa⟩)(∆xb − ⟨∆xb⟩)
]
. (21)

Here335

∆xa = ⟨∆xa⟩+∆wa , (22)

with336

⟨∆xa⟩ = ηs∆tM
ab

(
α′
s,i

∂ϕs
∂xb

− βsAb

)
, (23)

⟨∆wa⟩ = 0 and ⟨∆wa∆wb⟩ = ηs∆tM
ab . (24)

This is Brownian motion because the drift ⟨∆xa⟩ ∼ O(∆t) and the fluctuation ∆wa ∼ O(∆t1/2). The trajectory is337

continuous but not differentiable.338

5.4 Dynamic Representation of MED Functional339

The probability ρs(x, t) evolves according to the Fokker-Planck (FP) equation and its proof is provided in Appendix340

B.341

∂ρs
∂t

= −∂a(vasρs) . (25)

Note that s is the scaling index and a = 1, 2.3 are spatial indices. A summation over repeated indices should be342

understood. Here va is the current velocity given by343

vas =Mab(α′
s,i∂aΦs − βsAa) ,where Φs = α′

s,iηsϕs − ηs log ρ
1/2
s (26)

So far we only have one dynamical variable ρs which evolves according to Fokker-Planck (FP). To derive the344

Schrödinger equation we need two dynamical variables the probability ρs and phase Φs. To promote Φs to a dynamical345

variable, we need another constraint H = H(ρs,Φs), where H is an energy functional. By requiring that the energy is346

conserved, we obtain the second dynamical variable as well. The functional H(ρs,Φs) can be constructed by writing347

the FP equation as348
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∂ρs
∂t

=
δH

δΦs
. (27)

It can easily be checked that the appropriate energy function is given by349

H(ρs,Φs) =
∑
s

∫
dxρs

(
1

2
Mab(∂aΦs − βsAa)(∂bΦs − βsAb) + Vs(x)

)
+
∑
ss′
gss′F (ρs, ρs′) , (28)

where V (x) is a scalar potential and F (ρs, ρs′) is an integration to be determined below and gss′ is the complexity350

coefficient. This term leads to the nonlinear Schrödinger equation. We have351

δH

δρs
=

1

2
Mab(∂aΦs − βsAa)(∂bΦs − βsAb) + Vs(x) +

∑
s′
gss′

δF (ρs, ρs′)

δρs
(29)

Taking total time derivative of Eq. (28) and require it to be conserved and also incorporate Eq.(27)352

dH

dt
=
∑
s

∫
dx

[
δH

δΦs
∂tΦs +

δH

δρs
∂tρs

]
=
∑
s

∫
dx

[
∂tΦs +

δH

δρs

]
∂tρs = 0 (30)

It holds for all ∂tρs which means that353

∂Φs

∂t
= − δH

∂ρs
. (31)

We get354

∂Φs

∂t
= −1

2
Mab(∂aΦs − βsAa)(∂bΦs − βsAb)− Vs −

∑
s′
gss′

δF (ρs, ρs′)

δρs
. (32)

This is the quantum Hamilton-Jacobi equation. Eqs. (25) and (32) can be combined using355

ψs = ρ1/2s exp[ikΦs/ηs] . (33)

The result is356

iηs
k

∂ψs

∂t
=

η2s
2k2

Mab(i∂a − βsAa)(i∂b − βsAa)ψs + Vsψs +
η2s
2k2

Mab∂a∂b
√
ρs√

ρs
ψs

+
∑
s′
gss′

δF (ρs, ρs′)

δρs
ψs , (34)

5.5 Gauge Invariance of MED Derived Relations357

The physical meaning of the ψs in equation (33) is that it represents the wavefunction of the particle that generalized358

Schrödinger equation. Its modulus is the probability of finding the particle in space and time. In most general359

situations e.g. data science, the ψs will be the parameter controlling the transition probabilities. Note that equation360

(34) is invariant under the gauge transformation given below [39]361

ψs → ψ′
s = eiβχ(x,t)ψs and Aa → A′

a = Aa + ∂aχ. (35)

In equation (34), the third term on the right is called ‘quantum potential’. Normally this term is present in the362

Hamilton-Jacobi equation (32). On combining this equation with the Fokker-Planck equation (25), one obtains linear363

Schrödinger equation (LSE) that obeys the superposition principle. In our case, the quantum potential is implicit in364

F (ρs, ρs′). Since we have freedom in the choice of F , we choose it such that365

∑
s′
gss′

δF (ρs, ρs′)

δρs
+

η2s
2k2

Mab∂a∂b
√
ρs√

ρs
=
∑
s′
gss′f(ρs′) . (36)

Note the function f on the right as a function of one variable only. If the goal is to obtain an LSE, one can set f = 0.366

However, we are interested in nonzero f for the reasons given below.367

iℏ
∂ψs

∂t
=

ℏ2

2
Mab(i∂a −

e

ℏc
Aa)(i∂b −

e

ℏc
Aa)ψs + Vsψs +

∑
s′
gss′f(ρs′)ψs . (37)
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Here we used ηs/k = ℏ, and βs = e/ℏc, where e is the charge of an electron, and c is the speed of light. Equation (37)368

is the sought Generalized Nonlinear Schrödinger Equation (GNSE) that takes into account the EM field interaction369

with matter waves. The last term indicates nonlinearity. A similar last term is also reported in [36]. But here we370

naturally derived the general NLSE using Entropic dynamics. For solitons we can take f(ρs′) = ρs′ = |ψs′ |2. So that371

iℏ
∂ψs

∂t
=

ℏ2

2
Mab(i∂a −

e

ℏc
Aa)(i∂b −

e

ℏc
Ab)ψs + Vsψs +

∑
s′
gss′ |ψs′ |2ψs . (38)

The existence of the nonlinear terms [40–42] and, in particular, cubic term [43] is characteristic of the solitons and372

other nonlinear waves (see, the seminal paper by Zakharov [44] about nonlinear stability of periodic waves in deep373

water). The existence of such waves and stable solitons depends on the boundary conditions and their dynamical374

stability depends on the spatial dimension of the system [43, 45]. Besides solitons, there is a large variety of nonlinear375

phenomena, including shape waves [42, 46], periodic waves in deep and shallow water [44], plasma cavitons [45, 47],376

Urbach and Lifshiz density of states tails [48, 49], the collapse of the plasmon, Langmuir waves [50] and many others377

related phenomena [51, 52]. It is very interesting if the NSE equations describing these or associated phenomena can378

be obtained with the principle of the maximum entropy and entropic dynamics as described above.379

6. Reduction of GNSE to a Few Relevant Representations380

One can note that equation (38) is a complex system of equations. It has some general form, which covers numerous381

physical phenomena. It may have both scalar or vector(tensor) forms [50, 53]. Below we will discuss those forms of382

NLS that found direct applications in different areas of physics, and it covers not only solitons but other quasi-particles383

too [43, 53, 54] including the phenomena such as self-trapping and polarons [52, 55, 56] as well as plasma caviton384

formation[47, 57, 58]. Here we consider the simplest example where two solitons coupled to each other may be created385

[59]. In one case, we obtain the vector nonlinear Schrödinger equation (VNSE) [56]. In the other case, the scalar386

nonlinear Schrödinger equation (SNSE) is obtained. The difference between VNSE and SNSE is that the former387

involves coupled solitons and the latter involves decoupled solitons as well as many different physical phenomena.388

389

6.1 Scalar Form of GSE for Decoupled Solitons and Electrons390

The solitons do usually exist in a one-dimensional chain or system with reduced dimensions [43]. The illustrative391

example is Davydov solitons [59], created in protein chains. They are associated with electron self-trapping or392

localization of Amide-I (or CO stretching) vibrational energy in proteins. Such localization as well as electron self-393

trapping arises through the interaction of the Amide-I mode with lattice distortion and plays an important role in394

charge transport vital for all biological systems. Our starting point is the system (38). For illustration, the EM field395

is set to zero (A⃗ = 0). The SNSE can be obtained by setting396

gss′ = 0, when s ̸= s′ (39)

where g11 and g22 survive. Further set ηs/k = ℏ. We obtain two decoupled SNSE’s as follows397

iℏ
∂ψ1

∂t
= − ℏ2

2m
∇2ψ1 + V1ψ1 + g11|ψ1|2ψ1 . (40)

398

iℏ
∂ψ2

∂t
= − ℏ2

2m
∇2

iψ2 + V2ψ2 + g22|ψ2|2ψ2 , (41)

which is the desired system of two decoupled solitons. The last two equations are known as the Gross-Pitaevski399

equation (GPE) [60, 61]. In Bose-Einstein condensate (BSE) g < 0 is referred to as the bright solitons and g > 0 is400

called dark solitons [61].401

402

6.2 A Vector Form of the GSE for Coupled Solitons403

We again recall the system (38) with A⃗ = 0, for illustration. Set gss′ such that404

gss′ = 0, when s = s′ , (42)
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where s, s′ = 1, 2. Equation (38) simplifies to405

iℏ
∂ψ1

∂t
= − ℏ2

2m
∇2ψ1 + V1ψ1 + g12|ψ2|2ψ1 . (43)

406

iℏ
∂ψ2

∂t
= − ℏ2

2m
∇2ψ2 + V2ψ2 + g21|ψ1|2ψ2 , (44)

which is the desired system of two solitons. Generally, we have407

iℏ
∂ψ1

∂t
= − ℏ2

2m
∇2ψ1 + V1ψ1 + ℏg11|ψ1|2ψ1 + g12|ψ2|2ψ1 . (45)

408

iℏ
∂ψ2

∂t
= − ℏ2

2m
∇2ψ2 + V2ψ2 + ℏg21|ψ1|2ψ2 + g22|ψ2|2ψ2 , (46)

409

410

6.3 The Interaction of Electromagnetic Fields with Coupled and Decoupled Solitons411

We can also write the full equation for solitons with EM-field. Recall equation (38)412

iℏ
∂ψs

∂t
=

ℏ2

2
Mab(i∂a −

e

ℏc
Aa)(i∂b −

e

ℏc
Aa)ψs + Vsψs +

∑
s′
gss′ |ψs′ |2ψs . (47)

where Mab = δab/mi is the the inverse of mass matrix. For coupled solitons we have413

iℏ
∂ψ1

∂t
=

ℏ2

2m
δab(i∂a −

e

ℏc
Aa)(i∂b −

e

ℏc
Aa)ψ1 + V1ψ1 + g12|ψ2|2ψ1 . (48)

414

iℏ
∂ψ2

∂t
=

ℏ2

2m
δab(i∂a −

e

ℏc
Aa)(i∂b −

e

ℏc
Aa)ψ2 + V2ψ2 + g21|ψ1|2ψ2 . (49)

Similarly, for decoupled solitons we have415

iℏ
∂ψ1

∂t
=

ℏ2

2m
δab(i∂a −

e

ℏc
Aa)(i∂b −

e

ℏc
Aa)ψ1 + V1ψ1 + g11|ψ1|2ψ1 . (50)

416

iℏ
∂ψ2

∂t
=

ℏ2

2m
δab(i∂a −

e

ℏc
Aa)(i∂b −

e

ℏc
Aa)ψ2 + V2ψ2 + g22|ψ2|2ψ2 . (51)

In summary, equations (40) through (51) are special cases of equation (38). Generally, the scaling indices s, s′ may417

vary as 1, 2, . . . n that describes a system of n coupled equations or quasi-particles. It is also worthwhile to note that418

the coupling enters through the complex coefficient gss′ . If it is set to zero, the equation (38) reduces to the linear SE419

that obeys the usual superposition principle for n particle system.420

7. Discussion421

In the 1950s, Ginsburg and Landau proposed a functional called the Ginsburg-Landau (GL) functional for free422

energy to describe the superconducting state in solids [30]. The GL functional was developed to introduce a non-423

linear term in the Schrödinger equation (SE) to describe the superconductivity property of conductors, by presenting424

the conduction electrons as super-fluids. The minimization of this GL functional gives rise to the nonlinear Schrödinger425

equation (NLSE). The NLSE describes a new state of quasi-particles, the superconducting condensate, which is similar426

to Bose-Einstein condensation (BEC) [24]. Gross and Pitaevskii later derived the NLSE by applying the minimum427

energy principle to the free energy of electrons or atoms in BEC. The use of NLSE enabled the description of the428
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quantum dynamics of other systems in the form of solitary matter waves or solitons in coupled solitons containing429

multi-solitons, or having optically interacting solitons.430

The NLSE has been widely used in many fields of physics, including condensed matter physics, nonlinear optics,431

and fluid dynamics. Solitons, which are localized wave packets that maintain their shape during propagation, have432

been described by the NLSE. These solitons can exist in many different systems, such as in optical fibers, plasmas,433

and superfluids. The maximization of MED functional not only resulted in an extension of GPE, but it also provided434

a natural way to include other interactions in it, such as the interaction of electromagnetic fields with quasi-particles435

in solids. Further, it provides the tools to deal with the dynamics of the scalar as well as vector solitons in decoupled436

and coupled forms. Whereas, it is to be noted that the GPE deals with scalar solitons. The implications of the GNSE437

may be quite far-reaching, in our opinion. Its application to 2D materials may lead to opportunities for discovering438

the quantized energies of solitons at the defect sites of those materials. Such quantized states may turn out to be439

suitable for future applications in electronics, including quantum computing.440

In addition to this, the presented MED methodology is envisioned as a complementary way to statistical methods441

which are currently applied on existing datasets to forecast the future behavior of complex systems. The entire442

temporal evolution is intricately linked with a complex dataset and is delineated by a system of interconnected443

nonlinear Schrödinger equations. This methodology draws inspiration from entropy evolution, analogous to the Second444

Law of Thermodynamics—regarded as one of the most elegant laws in physics. Naturally, any complex system tends445

to evolve towards a state of equilibrium and stability. However, over short durations, the system might become446

ensnared by false minima, leading to potential discrepancies in the predictions of the developed theory. Hence, in447

the short term, the theory’s predictions may falter. Nonetheless, machine learning can yield favorable outcomes in448

such instances. Conversely, in the long term, machine learning predictions may prove less reliable, while the approach449

grounded in the Second Law remains robust. This resilience is attributed to its foundation in the core principles of450

statistical mechanics.451

8. Conclusions452

The MED formulation was successfully applied to the derivation of GNSE which represents non-relativistic quantum453

mechanics in both linear and non-linear forms. The latter form describes the dynamics of quasi-particles. As an454

example, it describes the dynamics of matter-solitons in 2D materials for coupled and decoupled solitons. Furthermore,455

the development of machine learning and artificial intelligence techniques has further strengthened the connection456

between these fields. These techniques, which are used extensively in data science, are based on statistical and457

probabilistic models that are similar to those used in statistical physics and information theory. For example, deep458

learning models are based on neural networks that are similar to those used in statistical physics to model the behavior459

of physical systems.460

In a recent paper by analysis of the huge database, the relationship between DNA methylation and mutability,461

specifically how methylation can affect the emergence of novel genetic variations in eukaryotes (organisms with cells462

containing a nucleus) has been identified [62]. Further analysis of somatic mutation data, particularly from cancers463

where specific repair pathways are compromised, is necessary to understand the underlying mechanisms of this process464

and the involvement of particular DNA repair pathways as well as how the impact of methylation on mutability extends465

beyond the methylated cytosine itself. DNA methylation, which is a common epigenetic modification in eukaryotes,466

can affect genetic variation in ways that are not fully understood and imply that the precise mechanisms involved467

are complex and require further investigation [62]. Their findings suggest that methylation has a significant impact468

on the emergence of novel genetic variants in eukaryotes, which may have important implications for understanding469

genetic diversity and disease. We hope that the application of the proposed MED methodology to the huge databases470

can further shed light on their evolutionary mechanisms [62]. Additionally, all three fields are concerned with the471

extraction of meaningful information from complex and noisy data sets. Statistical physics seeks to identify and472

understand the underlying patterns and structures that govern the behavior of physical systems. Information theory473

seeks to extract and transmit useful information from noisy or uncertain data sets. Data science seeks to extract474

insights and knowledge from large and complex data sets.475

In summary, the fields of statistical physics, information theory, and data science are connected through their use476

of similar mathematical and statistical tools to model and analyze complex systems. These connections have become477

even stronger with the development of machine learning and artificial intelligence techniques, which rely heavily on478

the probabilistic and statistical models developed in these fields. The MED method can be adopted to improve the479

accuracy of data analysis and involve in optimizing the subset selection process to minimize the error in the prediction480

of the system’s evolution. We expect that this method will be effective in a wide range of applications, including481

finance, healthcare, and social media analysis482
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Appendix A: Derivation of Equation (12)493

Collecting the constraints, one has494

0 = −δ
∑

sprime

∫
dnx′Q(x′, s′|x, s) log Q(x′, s′|x, s)

µ(∆x)

− δ
∑

sprime

∫
dnα0(Q(x′, s′|x, s)− 1)

− δ
∑

sprime

∫
dn
∑
s

Ns∑
i

1

2σ2
s,i

Q(x′′, s′))δab∆x
a
i∆x

b
i − ⟨∆ℓ2i ⟩) (52)

Varying w.r.t. to Q and then set the integrant/summon equal to zero. One has495

log
Q(x′, s′|x, s)
µ(∆x)

= −1− α0 −
∑
s

Ns∑
i

1

2σi,s
δab∆x

a
i∆

bi
i (53)

Absorbing 1− α0 into a new constant, one gets496

Q(x′, s′|x, s) = 1

Z
exp

[
−1

2

∑
s

Ns∑
i

1

σi,s
δabxiAa∆x

b
i

]
(54)

Dropping the proportionality constant, Z, one gets (12)497

Q(x′, s′|x, s) ∝ exp

[
−1

2

∑
s

Ns∑
i

1

σi,s
δab∆x

a
−∆x

b
i

]
(55)

Appendix B: Derivation of Fokker-Planck Equation i.e., Equation (25)498

The transition probability P (x′, s′|x, s) holds for short steps. Finite changes can be obtained by accumulating small499

changes according to500

ρ(x, s, t) =
∑
s0

∫
dnx0ρ(x0, s0, t)P (x, s, t|x0, s0, t0) (56)

Write501

P (x, s, t+∆t|x0, t0) =
∑
sz

∫
dnzP (z, sz, t|x0, s0, t0)P (x, s, t+∆t|x, sz, t) (57)

https://www.qeios.com/read/B225L5
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Multiply by a smooth a function f(x), then integrate ove x, and then expand f(x) about z, In a few steps one arrives502

at the FP equation503

∂ρs(x, t]

∂t
= ∂a(ρsv

a
s ) (58)

where504

vas =Mab(α′
s,i∂bϕs − βsAb) (59)
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