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Event cameras have gained increasing attention for 3D reconstruction due to their high temporal

resolution, low latency, and high dynamic range. They capture per-pixel brightness changes

asynchronously, allowing accurate reconstruction under fast motion and challenging lighting

conditions. In this survey, we provide a comprehensive review of event-driven 3D reconstruction

methods, including stereo, monocular, and multimodal systems. We further categorize recent

developments based on geometric, learning-based, and hybrid approaches. Emerging trends, such as

neural radiance fields and 3D Gaussian splatting with event data, are also covered. The related works

are structured chronologically to illustrate the innovations and progression within the field. To

support future research, we also highlight key research gaps and future research directions in dataset,

experiment, evaluation, event representation, etc.
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I. Introduction

Event cameras, also known as neuromorphic cameras, silicon retina, or dynamic vision sensors, are bio-

inspired sensors that respond asynchronously to changes in brightness. Unlike traditional RGB cameras

with a fixed frame rate, each pixel in event cameras operates independently and asynchronously as a

sub-sensor. When a brightness change surpasses a certain threshold, the pixel records the coordinates,

timestamp, and polarity of the brightness change - this is known as event data.

The application of event cameras in 3D reconstruction has been mainly explored since the 2010s[1][2],

whereas traditional camera-based 3D reconstruction has been studied since the 1990s. Referring to
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Figure 1, 3D reconstruction can be done with stereo and monocular event cameras, and multimodal

methods with event cameras. Recent methods also incorporate NeRF and 3D Gaussian Splatting to

achieve high-fidelity reconstructions. The number of related studies is steadily increasing. However, no

dedicated survey on event-driven 3D reconstruction can provide a summary and guidance for future

research.

Author (Method) Year Priors Event Rep.
Real-

time
Output (Dense?) Dataset

Zhu et al. (TSES)[3] 2018 Velocity
Event disparity

volume
✓ 3D depth map (✓) MVSEC

Zhou et al.[4] 2018 Pose Time surface ✗ 3D depth map (✗) MVSEC

Lin et al.[3] 2018 Pose Time surface ✓ Point cloud (✗) -

Steffen et al.[5] 2019 - 4D vector ✗ Voxel (✗) -

Zhou et al. (ESVO)

[6]
2021 Pose Time surface ✓

Point cloud, depth map

(✗)
RPG, ESIM

Nam et al. (SE-CFF)

[7]
2022 Pose Event Stack ✓ 3D depth map (✓) DSEC

Ghosh et al.[8] 2022 Pose
Disparity space

image
✗ 3D depth map (✗)

MVSEC, DSEC,

ESIM

Table I. Methods with Stereo Event Cameras

In the field of event cameras, three key survey papers have been published. The first, by Gallego et al.

(2020), included a section on 3D reconstruction[9], but parts of it are now outdated due to the rapid

growth of deep learning. The survey by Chakravarthi et al. (2024) categorizes various tasks related to

event cameras[10], but it lacks detailed discussions on specific domains, particularly 3D reconstruction.

Similarly, the survey by Zheng et al. (2024) focuses exclusively on deep learning-based event camera

tasks[11], but it only mentions 3D reconstruction in one subsection and does not provide a sufficient
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historical perspective on the evolution of 3D reconstruction. Additionally, no other survey has specifically

mentioned event-driven 3D reconstruction. Therefore, in this survey, we aim to:

1. Provide a comprehensive review of the event-driven 3D reconstruction domain.

2. Establish a coherent categorization of the diverse event-based 3D reconstruction methods.

3. Present a timeline of technical advancements in event-driven 3D reconstruction.

4. Highlight existing research gaps and promising future directions for event-driven 3D

reconstruction.

Figure 1. Different categories of event-driven 3D reconstruction.

II. Event Camera

When the event camera detects a brightness change at a pixel  , it generates event data containing event

coordinates  , timestamp    and the polarity  . The brightness    is

set as the pixel’s log intensity. The brightness change threshold   usually varies by 10-15%[12]. An event 

  is triggered when the brightness change    at pixel    exceeds  , which can be

expressed as:

k

= ( , )xk xk yk tk pk L( , t) = log(I( , t))xk xk

C

= ( , , )ek xk tk pk ΔL k C

|ΔL( , )| = |L( , ) − L( , )| ≥ | ⋅ C|xk tk xk tk xk tk−1 pk (1)
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where    represents the timestamp of the last event at the same pixel. The polarity value    is

determined as follows:

When an event camera continuously captures events, it forms an event stream, which can be represented

as a sequence of events ordered by timestamps:

where   denotes the total number of recorded events.

Event cameras have some characteristics that distinguish them from traditional cameras. Event cameras

offer microsecond-level temporal resolution, enabling the capture of rapid motion without the motion

blur. With a dynamic range exceeding 120 dB, they effectively adapt to both extremely low and high

illumination conditions. Unlike traditional cameras, event cameras respond solely to pixel intensity

changes, leading to significantly reduced data bandwidth, lower power consumption, and minimal

latency. These characteristics make event cameras highly applicable across a wide range of fields, such as

object tracking[13], corner detection[14], object recognition[15], depth estimation[16], video generation[17],

light field video enhancement[18], and 3D reconstruction, etc.

tk−1 pk

=pk

⎧

⎩
⎨

+1,
−1,

No event,

if ΔL( , ) ≥ Cxk tk

if ΔL( , ) ≤ −Cxk tk

if -C <ΔL( , ) < Cxk tk

(2)

EventStream = {( , , , )tk xk yk pk }N
k=1
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N
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III. Methods with Stereo Event Cameras

Author (Method) Year Priors Event Rep. Output (Dense?) Dataset

Kim et al.[19] 2016 Trajectory
Event gradient

accumulation
3D depth map (✗) -

Rebecq et al. (EVO)[20] 2016 Pose Event frame 3D depth map (✗)
Multi-

Keyframe

Rebecq et al. (EMVS)[12] 2018 Trajectory Event-by-event 3D depth map (✗) -

Guan et al. (EVI-SAM)

[21]
2024 Trajectory Time surface 3D mapping (✓) DAVIS240c

Elms et al. (eSfO)[22] 2024 Trajectory Time surface
Sparse point cloud

(✗)
TOPSPIN

Table II. Monocular Event Camera: Real-time Geometry-based Methods

Author (Method) Year Priors Pipeline Event Rep. Model Output Dataset

Baudron et al.

(E3D)[23]
2020 Silhouette ✓

Event accumulate

frames
E2S(CNN) Mesh ShapeNet

Xiao et al.[24] 2022 Pose ✓ Intensity image
E2VID(RNN-

CNN)
Mesh ESIM

Wang et al.

(Evac3d)[24]
2023

Contour,

Trajec.
✓ Voxel grid Evac3d(CNN) Mesh MOEC-3D

Chen et al. (E2V)

[25]
2023 - ✗ Event frame ResNet-152 Voxel SynthEVox3D

Xu et al.[26] 2025 - ✗ Sobel event frame ResNet-152 Voxel SynthEVox3D

Table III. Monocular Event Camera: Deep Learning-based Methods
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Stereo event cameras typically refer to two or more rigidly mounted event cameras. Event-driven 3D-

related tasks were initially pioneered using stereo event cameras in the 2010s[27][2]. However, many prior

works, such as[28] and those in SLAM and visual odometry (VO), can only be regarded as prior estimation

steps in the broader pipeline of 3D reconstruction. In this section, we focus only on methods that

perform complete event-to-3D representations.

Many earlier approaches perform depth mapping reconstruction by computing disparity between events

observed at the same timestamp across different viewpoints, followed by geometry-based multi-view

stereo estimation to achieve real-time 3D depth reconstruction. In 2018, Zhu et al.[3] proposed a method

that synchronizes events in time using known camera velocities, constructs a dense event disparity

volume, and performs real-time sliding window matching, introducing a novel matching cost function

combining ambiguity and similarity. Simultaneously, Lin et al.[29]  reformulated event matching as a

time-difference consistency problem across views.

However, disparity matching can be bypassed as well. In 2018, Zhou et al.[4]  proposed a forward-

projection based depth estimation method by directly optimizing a temporal consistency energy across

stereo time surfaces, without requiring disparity computation. Later in 2021, Zhou et al.[6] extended this

concept by integrating stereo time surfaces with a stereo visual odometry framework, optimizing a

spatio-temporal consistency objective for real-time semi-dense reconstruction. In 2022, Ghosh et al.

[8] proposed a robust stereo depth estimation framework that fuses multi-view event ray densities (via

Disparity Space Image, DSI), achieving high-quality depth estimation without explicit disparity

matching.

Additionally, one research explores unsupervised clustering for self-organizing structural modeling. In

2019, Steffen et al.[5] employed Self-Organizing Maps (SOMs) to embed events from multiple viewpoints

into a high-dimensional space, enabling sparse voxelized 3D reconstruction under uncalibrated and

unsupervised conditions.

More recent methods leverage neural networks to learn stereo disparity estimation and event

representations. In 2022, Nam et al.[7]  introduced a deep learning framework that combines multi-

density event stacking with attention mechanisms using a UNet + ResNet encoder. By incorporating

future-event prediction during training, their method achieves high-accuracy, real-time, and dense

stereo event-based depth estimation.
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IV. Methods with Monocular Event Cameras

Monocular event cameras cannot directly obtain disparity information as in stereo methods, requiring

additional prior estimation. These methods can be categorized as:

A. Geometry-based methods

Geometry-based methods typically achieve semi-dense real-time 3D reconstruction, relying on spatial

scanning with a monocular event camera. One critical step is to estimate the physical prior.

In 2016, Kim et al.[19]  proposed an approach utilizing three interleaved probabilistic filters to estimate

camera trajectory, scene log-intensity gradient, and inverse depth. Rebecq et al.[20]  introduced EVO,

leveraging event projection, edge alignment, and DSI construction for 3D reconstruction. In the same

year, Rebecq et al.[12], later in 2018, proposed EMVS, employing event space-sweep and ray density

analysis to directly generate a semi-dense 3D depth map, without frame-level data association.

A recent study has improved geometry-based methods to achieve dense reconstruction. In 2024, Guan et

al.[21]  proposed EVI-SAM, a tightly coupled event-image-IMU SLAM framework. It achieves real-time

dense 3D reconstruction on a standard CPU, integrating event-based 2D-2D alignment, image-guided

depth interpolation, and TSDF fusion.

A unique innovation enables reconstruction when the event camera is stationary, while the object rotates.

In 2024, Elms et al.[22] proposed eSfO, which performs 3D reconstruction through event corner tracking

and factor graph optimization, but it only perform non-real-time sparse point cloud reconstruction.

B. Deep learning-based methods

Deep learning-based methods typically produce non-real-time dense reconstruction. However,

traditional RGB image feature extraction techniques cannot be directly applied to event data, and raw

events are also difficult to use as neural network inputs[30].

In 2020, Baudron et al.[23]  proposed E3D, the first dense 3D shape reconstruction method based on

monocular event cameras. It employs the E2S neural network to estimate silhouettes and leverages

PyTorch3D for 3D mesh optimization, achieving high-quality multi-view 3D reconstruction trained on

ShapeNet. In 2022, Xiao et al.[24] proposed a pipeline using the E2VID deep learning method[31] to process

continuous event streams and generate normalized intensity image sequences. They then employed SfM
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to estimate intrinsic and extrinsic parameters for sparse point clouds and used MVS for dense mesh

reconstruction. In 2023, Wang et al.[32] proposed EvAC3D, which uses CNN to predict Apparent Contour

Events (ACE), combined with Continuous Volume Carving and Global Mesh Optimization, to achieve

dense 3D shape reconstruction with known camera trajectories.

Many studies have established an event-to-3D pipeline, a structured and modular event processing

framework[23][24][30][20], including feature extraction, matching, and 3D computation. The extraction and

estimation of priors are also essential. However, recent methods aim to eliminate the pipeline and priors.

In 2023, Chen et al.[25] proposed E2V, which employs a modified ResNet-152 and a U-Net 3D decoder to

directly predict dense 3D voxel grids from monocular event frames, achieving event-based 3D

reconstruction without external priors. In 2025, Xu et al.[26] extended E2V by introducing a novel event

representation, Sobel Event Frame, and an optimal binarization strategy for event-based 3D

reconstruction. By enhancing E2V with ECA[33], their method significantly improved reconstruction

quality.

V. Multimodal Methods with Event Cameras

Author (Method) Year Device Priors Event Rep. Real-time Output (Dense?)

Leroux et al.[34] 2018 Structured light Pose Time surface ✓ Point cloud (✓)

Huang et al.[35] 2021 Structured light Pose Event-by-event ✗ Point cloud (✓)

Zuo et al. (Devo)[36] 2022 D-RGB camera Trajectory Time surface ✓ Point cloud (✗)

Xiao et al.[37] 2023 Structured light Pose Event frame ✓ Point cloud (✓)

Fu et al.[38] 2023 Structured light Pose Time surface ✓ Point cloud (✓)

Li et al.[39] 2024 Structured light Pose Event-by-event ✓ Point cloud (✓)

Table IV. Multimodal Methods with event cameras

Some recent multimodal approaches combine event cameras with structured light or depth-RGB sensors
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to improve 3D reconstruction. These systems enhance robustness through asynchronous processing,

joint calibration, and information fusion, enabling real-time 3D point cloud generation under high-speed

motion or low-light conditions. As most of them rely on self-collected datasets, they are not included in

Table IV.

Structured light, an active 3D sensing technique, projects coded patterns onto surfaces and reconstructs

depth via triangulation. Leroux et al.[34]  used frequency-coded structured light with event cameras to

recover depth. Huang et al.[35] combined structured light projection with digital image correlation (DIC)

for high-speed scanning. Xiao et al.[37]  employed alternating binary speckle patterns and DIC-based

stereo matching for fast and accurate reconstruction. Fu et al.[38]  introduced spatio-temporal coding

(STC) with an enhanced matching scheme (STEM) for improved stereo robustness. Li et al.[39] proposed

eFPSL, using time-frequency analysis to extract high-SNR fringe maps from events and an event-count-

based shadow mask to reduce errors.

Some methods fuse event data with depth-RGB (D-RGB) sensors for improved scene understanding. Zuo

et al.[36]  proposed DEVO, combining time surface maps from events and depth supervision from a

calibrated sensor. Their system performs semi-dense 3D-2D edge alignment to estimate poses and

incrementally build point clouds under fast motion and poor lighting.
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VI. Neural Radiance Fields with Event Cameras

Author Model Yr-Mo Inputs Event Rep.
Colorful

Recon.
Dataset

Klenk et al.[40] E-NeRF
2023-

01
Event stream EAF ✗ ESIM

Hwang et al.[41] Ev-NeRF
2023-

03
Event stream EAF ✗ IJRR, HQF

Rudnev et al.[42] EventNeRF
2023-

03

RGB bayer event

stream
EAF ✓ NeRF dataset

Qi et al.[43] E²NeRF
2023-

10

Blurry RGB, Event

stream
EAF ✓ NeRF dataset

Bhattacharya et al.

[44]
EvDNeRF

2023-

12
Event stream EAF ✗ Real-Fork

Cannici et al.[45] Ev-DeblurNeRF
2024-

06

Blurry RGB, Event

stream
EAF ✓

Ev-

DeblurBlender

Wang et al.[30] NeRF(Enhanced)
2024-

05
Event stream EAF ✗ PAEv3D

Feng et al.[46] AE-NeRF
2025-

01
Event stream

Event-by-

event
✗ TUM-VIE
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Author Model Yr-Mo Inputs
Event

Rep.

Colorful

Recon.
Dataset

Weng et al.[47] EaDeblur-GS
2024-

09

Blurry RGB, Event

stream
EGA ✓ E²NeRF

Wu et al.[48] Ev-GS
2024-

09
Event stream EGA ✗ NeRF dataset

Deguchi et al.

[49]
E2GS 2024-10

Blurry RGB, Event

stream
EAF ✓ NeRF dataset

Xiong et al.[50] Event3DGS 2024-10
Blurry RGB, Event

stream
EGA ✓ EventNeRF

Han et al.[51] Event-3DGS 2024-10
Blurry RGB, Event

stream
EAF ✓ DeepVoxels

Huang et al.[52] IncEventGS 2024-10 Event stream EAF ✗

Replica

dataset

Yu et al.[53] EvaGaussians 2024-12
Blurry RGB, Event

stream
EGA ✓ EvaGaussians

Yura et al.[54] EventSplat 2024-12 RGB bayer event stream EAF ✓ NeRF dataset

Table V. Neural Radiance Fields Methods with Event Cameras (EAF: Event accumulate frame)
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Author Model Yr-Mo Inputs
Event

Rep.

Colorful

Recon.
Dataset

Weng et al.[47] EaDeblur-GS
2024-

09

Blurry RGB, Event

stream
EGA ✓ E²NeRF

Wu et al.[48] Ev-GS
2024-

09
Event stream EGA ✗ NeRF dataset

Deguchi et al.

[49]
E2GS 2024-10

Blurry RGB, Event

stream
EAF ✓ NeRF dataset

Xiong et al.[50] Event3DGS 2024-10
Blurry RGB, Event

stream
EGA ✓ EventNeRF

Han et al.[51] Event-3DGS 2024-10
Blurry RGB, Event

stream
EAF ✓ DeepVoxels

Huang et al.[52] IncEventGS 2024-10 Event stream EAF ✗

Replica

dataset

Yu et al.[53] EvaGaussians 2024-12
Blurry RGB, Event

stream
EGA ✓ EvaGaussians

Yura et al.[54] EventSplat 2024-12 RGB bayer event stream EAF ✓ NeRF dataset

Table VI. 3D Gaussian Methods with Event Cameras (EAF: Event accumulate frame, EGA: Event gradient

accumulation)

Neural Radiance Fields (NeRF) is a neural network-based method for representing 3D scenes, proposed by

Mildenhall et al. in 2020[55]. It learns a continuous and differentiable 3D radiance field from multi-view

2D images and synthesizes novel views. Since 2023, NeRF-based methods have been adapted for event-

based 3D reconstruction. These approaches typically use event accumulation frames and assume known

or estimated camera trajectories. By modeling brightness changes and event-triggering probability, they

enable dense 3D reconstruction and novel view synthesis.
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Methods without RGB input focus solely on events, capturing grayscale scene structure under

challenging conditions. Klenk et al.[40] proposed E-NeRF, using an event-triggered brightness model and

no-event loss for high-fidelity reconstruction. Hwang et al.[41]  introduced Ev-NeRF, aggregating

volumetric event data via multi-view consistency. Bhattacharya et al.[44] proposed EvDNeRF, a dynamic

NeRF model supporting rigid and non-rigid motion. Wang et al.[30]  introduced Physical Priors

Augmented EventNeRF with motion priors and geometric consistency loss. Feng et al.[46] proposed AE-

NeRF, combining pose correction with a two-stage event-based NeRF for reconstruction from noisy,

asynchronous data.

Methods incorporating RGB images combine events with visual texture for color reconstruction. Rudnev

et al.[42]  proposed EventNeRF with self-supervised training and event-based rendering. Qi et al.

[43]  introduced E²NeRF, jointly using blurry images and events with blur and event rendering losses.

Cannici et al.[45] proposed Ev-DeblurNeRF, using an event double integral (EDI), learnable event response

function (eCRF), and explicit feature volumes to reconstruct under extreme motion blur.

VII. 3D Gaussian Splatting with Event Cameras

3D Gaussian Splatting, proposed by Kerbl et al.[56], represents a volumetric primitive in 3D space with

attributes such as position, shape, orientation, and color. In computer graphics, it serves as an explicit 3D

representation that enables efficient differentiable rendering.

Recently, combining event cameras with 3D Gaussian Splatting has become a new trend in implicit 3D

reconstruction. These methods typically use event accumulation frames or gradient maps as input and

apply Gaussian modeling with differentiable rendering to achieve smooth and scalable 3D reconstruction

and novel view synthesis (NVS). They usually assume known or estimated camera trajectories, aiming for

dense reconstruction with real-time rendering performance.

First, methods without RGB input rely solely on event streams, focusing on brightness change, edges, and

temporal cues. They are well-suited for low-light or image-infeasible environments. Wu et al.

[48]  introduced Ev-GS, the first Gaussian splatting framework driven by event data, using a logarithmic

brightness accumulation model and a lightweight renderer. Huang et al.[52] proposed IncEventGS, which

follows a SLAM-style “tracking and mapping” design and jointly optimizes motion and scene structure

using continuous-time trajectory modeling.
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Second, methods that combine events with RGB images fuse texture and edge information for higher-

quality reconstructions. Deguchi et al.[49]  proposed E2GS, using the Event Double Integral (EDI) and

event-based loss for blur removal. Yu et al.[53]  introduced EvaGaussians with learnable pose offsets and

event supervision. Weng et al.[47]  developed EaDeblur-GS, featuring adaptive pose correction and

combined loss for fast and accurate results. Xiong et al.[50]  presented Event3DGS, using DSSIM loss,

sparsity-aware sampling, and progressive training. Yura et al.[54]  proposed EventSplat, initializing

reconstruction via event-to-video SfM and cubic spline interpolation. Han et al.[51]  introduced Event-

3DGS, which integrates photovoltage estimation, contrast-based rendering, and event-driven loss for

robust dense reconstruction in challenging conditions.

VIII. Event-driven 3D Reconstruction: Research Gaps & Future

Direction

Despite recent advances, event-driven 3D reconstruction still faces key challenges across simulation,

evaluation, modeling, and deployment.

First, datasets and benchmarks can be explored. The main modeling platforms do not support event-

based 3D modeling. While simulating tools like ESIM[57] and Video-to-Event[58] exist, datasets for event-

based 3D reconstruction remain limited, and the methods proposed so far rely on inconsistent and non-

standardized data. The reconstruction outputs vary greatly across methods due to differences in datasets,

result types, and metrics, hindering fair comparison. A unified dataset and standardized evaluation

metric for accuracy and speed are needed to benchmark progress.

Second, event representation can be explored. Event representation significantly affects feature

extraction, yet its impact on 3D reconstruction quality and efficiency remains underexplored. Although

many representations have been proposed[59][60][26], no systematic comparison exists within a unified

pipeline.

Third, experiments under extreme scenarios and with special objects remain insufficient. Although

event cameras are known to perform well under extreme conditions (e.g., brightness, speed, low light),

few studies benchmark them against traditional cameras in such scenarios[26]. Reconstruction of non-

Lambertian objects like mirrors and glass also remains underdeveloped, with only limited attempts such

as EventPS[61].
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From a system perspective, sparse and uneven event data limits reconstruction in low-texture or static

regions; polarity cancellation further weakens structure encoding[7][8][21][25][50]. Many methods rely on

precise synchronization and accurate extrinsics, posing challenges for practical deployment[8][21][22][42]

[43][53][47]. Most approaches assume static scenes and struggle with dynamic or deformable objects[41][42]

[40][49][47].

In terms of efficiency, NeRF-based methods are computationally expensive and slow to train and

render[41][43][53]. Even fast Gaussian Splatting pipelines have yet to reach real-time performance in event-

based settings[50][62]. Under blur, reflections, or low light, outputs remain noisy or sparse[32][38][43][47][21]

[36].

Future work should focus on dynamic scene modeling[22][41][42][49][53], asynchronous multimodal fusion

(events + images + IMU)[8][21][36], efficient and lightweight networks[7][25][49][50], and self-/weak

supervision for generalization[41][43]. Enhancing robustness to extreme conditions and improving pose

estimation, energy efficiency, and privacy support are also promising directions[38][47][7].

IX. Conclusion

This survey provides a structured review of event-driven 3D reconstruction, covering stereo, monocular,

and multimodal methods. We categorized approaches by different devices and highlighted emerging

trends of NeRF and 3D Gaussian Splatting. In addition to summarizing key technical advances, we also

presented a chronological timeline to reflect the evolution of the field. However, significant challenges

remain in standardized datasets, evaluation metrics, event representation, and handling dynamic or

extreme scenes, etc. We also suggested several directions for improvement. We hope this work serves as

both a comprehensive reference and a guide for future research in event-driven 3D reconstruction.
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