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Human pose estimation has given rise to a broad spectrum of novel and compelling applications,

including action recognition, sports analysis, as well as surveillance. However, accurate video pose

estimation remains an open challenge. One aspect that has been overlooked so far is that existing

methods learn motion clues from all pixels rather than focusing on the target human body, making

them easily misled and disrupted by unimportant information such as background changes or

movements of other people. Additionally, while the current Transformer-based pose estimation

methods has demonstrated impressive performance with global modeling, they struggle with local

context perception and precise positional identi�cation.

In this paper, we try to tackle these challenges from three aspects: (1) We propose a bilayer Human-

Keypoint Mask module that performs coarse-to-�ne visual token re�nement, which gradually

zooms in on the target human body and keypoints while masking out unimportant �gure regions.

(2) We further introduce a novel deformable cross attention mechanism and a bidirectional

separation strategy to adaptively aggregate spatial and temporal motion clues from constrained

surrounding contexts. (3) We mathematically formulate the deformable cross attention,

constraining that the model focuses solely on the regions centered at the target person body.

Empirically, our method achieves state-of-the-art performance on three large-scale benchmark

datasets. A remarkable highlight is that our method achieves an 84.8 mean Average Precision (mAP)

on the challenging wrist joint, which signi�cantly outperforms the 81.5 mAP achieved by the current

state-of-the-art method on the PoseTrack2017 dataset.
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Introduction

Human pose estimation, as a fundamental problem in the realm of computer vision and arti�cial

intelligence[1][2], involves accurately identifying the anatomical keypoints of human bodies. Precise

pose estimation is the key for the success of a machine as it paves the way for machines to accurately

interpret human movements and behaviors. Accordingly, human pose estimation spans a wide range

of applications from action recognization, movement tracking, to augmented reality[3][4][5][6][7].

A plethora of research has been dedicated to the �eld of pose estimation on still images, evolving from

early methods employing tree-based and random forest models[8][9]  to current methodologies

utilizing convolutional neural networks[10] and Transformers[11]. Despite their excellent performance

on still images, applying these methods directly to video pose estimation leads to signi�cant

performance degradation due to the exclusive characteristics in videos, such as rapid movement and

video defocus, which are frequently encountered in videos but absent in static images[12].

Figure 1. A high-level overview of our proposed VREMD, which utilizes a dual-stream architecture to

collaboratively process and integrate complementary visual and motion features. The visual

representation stream executes progressive enhancement of human keypoint-related features to achieve

precise location recognition. The motion stream performs adaptive pose-related motion disentanglement

through the novel deformable cross attention.   denote the visual features of three input

frames   output by backbone network.
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To address this issue, substantial studies have emerged that leverage temporal continuity to extract

rich semantic visual contexts for human pose estimation in videos. Current methods can be roughly

categorized into two main branches. One line of research[13][14] aggregates temporal information from

neighboring frames for video pose estimation, employing CNN-based architectures and pose

calibration. Fueled by the development of Transformers[15][16], another line of studies[17][18] strive to

integrate attention mechanisms into model construction, yielding impressive results and showcasing

their immense potential. However, a limitation inherent in existing Transformer-based

methods[17]  lies in their inability to e�ectively manage local dependencies. This limitation poses a

notable challenge for visual perception tasks such as pose estimation, which require precise local

positioning.

Following thorough experimentation and empirical investigation, we uncover two insights: (1)

Existing methods[19][20][21]  struggle to handle subtle pose changes, particularly in challenging

scenarios with occlusions or motion blur. This may stem from the fact that current methods tend to

capture temporal dynamics pixel-by-pixel rather than focusing solely on target human regions,

leading to them being distracted by unuseful cues such as background changes or pixels far from the

target person. (2) Additionally, previous studies[14][19]  adopting multiple sets of �xed deformable

convolutions with varying dilation rates, which neglect the importance of adaptive scale selection.

Inspired by these, we propose a dual-stream framework, which executes Visual Representation

Enhancement and Motion Disentanglement (VREMD) for human pose estimation in videos.

Technically, we embrace three novel designs to tackle the challenge. (1) We propose a two-step

human-keypoint mask module for coarse-to-�ne visual enhancement, which progressively re�nes

extracted representations from the human body and keypoints perspectives. (2) We further introduce

a bidirectional decoupled module tailored for adaptively disentangling motion cues of the target

person from unnecessary visual elements. (3) Furthermore, we mathematically formulate a

deformable cross attention mechanism that constrains the model to focus exclusively on regions

circumscribing the target human body.
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Figure 2. The overall pipeline of our VREMD framework. Given an input sequence  , our goal

is to estimate the human pose of the key frame  . We initially extract the visual features via a ViT

backbone, and then feed them into the Human-Keypoint Enhanced module and the Bidirectional Motion

Disentanglement module to obtain   and  . Finally, the outputs derived from di�erent heads are

combined through a weighted sum to arrive at the �nal predicted pose heatmap  .

Our framework exempli�es the collaborative advantage between local spatial focus and adaptive

temporal clues extraction, opening up possibilities for rethinking the pose estimation task from

emphasizing on the target human body and masking out the irrelevant spatio-temporal contexts. To

evaluate the e�cacy of our method, we conduct extensive experiments on three public benchmarks,

achieving state-of-the-art performance. The key contributions of our method are summarized as

follows:

We present a dual-stream framework that integrates visual enhancement and motion

disentanglement to highlight target human areas and �iter other non-essential regions for human

pose estimation.

We creatively introduce a deformable cross attention to disentangle pose-related motion cues,

harnessing bidirectional temporal dynamics and enabling the model to robustly handle complex

pose variations of the target human.

Empirically, our method achieves state-of-the-art performance on three large-scale benchmarks,

and overall provides insights into integrating Transformer-based methods with region-speci�c
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enhancement strategies to boost their local localization capabilities.

Our Method

Preliminaries. Our method follows the top-down paradigm, which �rst extracts each individual

person from an image and then estimates their poses. Speci�cally, we �rst utilize an object detector to

extract the bounding box for person    in a video frame    that is to be detected. Subsequently, we

expand the bounding box by 25  and crop the same person in the adjacent frames (i.e.,   and  ).

As a result, we obtain a sequence of consecutive frames for person  :  . Given a

sequence of video frames   that includes the key frame   and the auxiliary frames   and  , our

target is to detect the human pose within  . We aim to strengthen the utilization of supplementary

temporal information in auxiliary frames by employing incremental visual representation

enhancement and adaptively disentangling useful motion information, thus tackling the common

issue of existing methods being interfered with by irrelevant information regarding the target human.

Method overview. The overview pipeline of our proposed VREMD is depicted in Figure  2. VREMD

constructs a dual-stream architecture with inter-module communication that enhances both visual

features and captures meaningful motion cues. Speci�cally, VREMD incorporates two distinct

modules: a Human-Keypoint Mask Enhanced module (HKME) and a Bidirectional Motion

Disentanglement module (BMD). First, we utilize a Vision Transformer backbone to extract visual

features    from the input frame sequence  , which are then simultaneously fed into

both the HKME and BMD modules. The HKME generates dual masks for a coarse-to-�ne

representation re�nement, resulting in enhanced feature    and key frame keypoint tokens  . The

BMD computes the motion features and, utilizing   as a constraint, dynamically derives joint-related

motion contexts to produce the �ltered  . Finally, the keypoint heatmaps   from key frame tokens 

  via an MLP and the heatmaps    decoded from    and key frame features    are weighted,

summed, and combined to produce the �nal pose estimation  . The following sections will elaborate

on the two key components in detail.

Human-Keypoint Mask Enhanced Module

Despite the Transformers architecture achieving remarkable success in various �elds[15][16], its

application in video pose estimation has been limited. Given the signi�cant potential demonstrated by

this architecture in other visual perception tasks[22][23], we seek to design a novel Transformer-based
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framework specially tailored for video pose detection. A naive approach to aggregate unique temporal

cues from a video would be to concatenate features across multiple frames for full-token computation.

Yet, such a straightforward treatment strategy faces two issues: excessive capture of redundant

information between adjacent frames, and a lack of focus on task-relevant tokens.

Inspired by previous work[24][11], we propose a Human-Keypoint Mask Enhanced module with a

progressive re�nement architecture, addressing the aforementioned issues through three steps: (1)

We generate a human mask to coarsely enhance the perception of the target human. (2) We produce a

keypoint mask to achieve �ner �ltering of keypoint-related features. (3) We utilize spatio-temporal

networks to aggregate the highlighted spatio-temporal cues of these visual features. This step-by-

step optimization strategy can discern articular visual tokens, simulating the capability of localized

identi�cation, which promotes precise pose estimation.

Human mask. Given a visual feature sequence   output by the ViT backbone,

we concatenate a learnable class token   with a category of human to each feature. These

features then individually pass through cascaded Transformer blocks for intra-frame spatial

similarity computation. We separate the result into human token   and visual features  .

After transposing the human token, we perform matrix multiplication to obtain the human mask 

. Finally, we secure a coarsely selected feature   by executing element-

wise dot product between the human mask    and the visual feature  , utilizing broadcasting.

The above operations can be formulated as:

where  ,  ,  ,  , and    denote concatenation, temporal index of frames, dot product, matrix

multiplication, the transpose of  , respectively.

Keypoint mask. In pursuit of more precise keypoint-related feature enhancement, we employ

additional auxiliary tokens to accurately localize spatial positions by integrating multi-frame

representations in the spatio-temporal domain. We concatenate the learnable keypoint tokens 

 (Note that   is the number of keypoints) to the coarsely selected feature   and separate

the multi-frame features, which are then linked along the token dimension and fed into Transformer

blocks for spatio-temporal learning. Subsequently, we split the visual features and keypoint tokens

from the output and gather them over multiple frames, resulting in multi-frame features 
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  and multi-frame keypoint tokens  . After transposing the multi-frame

features, we perform matrix multiplication with the multi-frame keypoint tokens to produce the

keypoint con�dence map  . We apply the softmax function to compute element-

wise weights for the map  , and summing along the second-to-last dimension followed by

transposition yields the keypoint mask  :

where  ,    ,  , and    denote the keypoint index, squeeze operation, softmax

function, and matrix multiplication, respectively. The keypoint mask is element-wise multiplied with

the multi-frame features   to create the re�ned �ltered features  .

Spatio-temporal aggregation. To fully leverage the re�ned representation information, we perform

decoupled spatio-temporal feature aggregation through the spatio-temporal Transformers.

Speci�cally, we �rst separate the re�ned �ltered features    and undertake frame-level spatial

modulation. Then, each token is concatenated with its corresponding token in the temporal domain to

undergo temporal modulation, resulting in  . Finally, we adopt an MLP to execute token

dimensionality reduction on    to attain spatio-temporal aggregation of multi-frame features,

leading to the enhanced feature  .

Bidirectional Motion Disentanglement Module

To extract useful complementary information from auxiliary frames, prior methods[14][20] implicitly

model feature residuals to capture motion evidence. The common practice among these paradigms is

to directly concatenate the computed multiple motion features for convolution after their calculation,

which considers temporal continuity but overlooks insights from the temporal direction. We observe

that, from the perspective centered around the key frame, the essential temporal details that need to

be focused on actually originate from two di�erent directions, namely forward and backward.

Considering this intrinsic factor, we design a bidirectional separation strategy to decouple the

continuous motion into parallel forward and backward motion trajectories. Furthermore, existing

methods do not di�erentiate motion clues in the spatial dimension, which can lead to learning pose-

irrelevant information (e.g., background, other people, etc.) that can disrupt detection. Moreover,

existing methods heavily rely on deformable convolutions for local motion calibration, potentially

leading to models that are overly tailored and limiting their compatibility with Transformer-based
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architectures. To tackle these challenges, we introduce deformable cross attention (DCA) for the �rst

time and create the Adaptive Deformable Cross block by employing it, which adaptively captures pose-

related motion dynamics.
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Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

PoseTracker[25] 67.5 70.2 62.0 51.7 60.7 58.7 49.8 60.6

PoseFlow[26] 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5

JointFlow[27] - - - - - - - 69.3

FastPose[28] 80.0 80.3 69.5 59.1 71.4 67.5 59.4 70.3

TML++[29] - - - - - - - 71.5

Simple (R-50)[30] 79.1 80.5 75.5 66.0 70.8 70.0 61.7 72.4

Simple (R-152)[30] 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.7

STEmbedding[31] 83.8 81.6 77.1 70.0 77.4 74.5 70.8 77.0

HRNet[10] 82.1 83.6 80.4 73.3 75.5 75.3 68.5 77.3

MDPN[32] 85.2 88.5 83.9 77.5 79.0 77.0 71.4 80.7

CorrTrack[33] 86.1 87.0 83.4 76.4 77.3 79.2 73.3 80.8

Dynamic-GNN[34] 88.4 88.4 82.0 74.5 79.1 78.3 73.1 81.1

PoseWarper[13] 81.4 88.3 83.9 78.0 82.4 80.5 73.6 81.2

DCPose[14] 88.0 88.7 84.1 78.4 83.0 81.4 74.2 82.8

DetTrack[35] 89.4 89.7 85.5 79.5 82.4 80.8 76.4 83.8

SLT-Pose[36] 88.9 89.7 85.6 79.5 84.2 83.1 75.8 84.2

HANet[37] 90.0 90.0 85.0 78.8 83.1 82.1 77.1 84.2

KPM[38] 89.5 90.0 87.6 81.8 81.1 82.6 76.1 84.6

M-HANet[39] 90.3 90.7 85.3 79.2 83.4 82.6 77.8 84.8

FAMI-Pose[19] 89.6 90.1 86.3 80.0 84.6 83.4 77.0 84.8

DSTA[18] 89.3 90.6 87.3 82.6 84.5 85.1 77.8 85.6

TDMI-ST[20] 90.6 91.0 87.2 81.5 85.2 84.5 78.7 85.9

VREMD (Ours) 89.9 91.4 88.8 84.8 88.5 87.8 81.0 87.6
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Table 1. Comparisons with the state-of-the-art methods for video pose estimation on the validation sets

of the PoseTrack2017[40] dataset. Note that we aggregate temporal information from neighboring frames

(i.e., one frame to the left and one to the right).

Adaptive Deformable Cross block. Given the features   from the backbone, we subtract 

  from both    and    to obtain  . Adaptive Deformable Cross blocks (ADC) take the

concatenation of   and  , along with the enhanced feature   from HKME. After entering the ADC

block,    and    are �rst split, and then pass through a dual-branch structure that includes a

deformable cross attention (DCA) and a cross attention. The results from the dual branches are

concatenated and sent into an MLP for nonlinear transformation. After the �nal block, a fusion layer is

applied to integrate the bidirectional motion features to obtain an aggregated motion representation 

.

Deformable cross attention. Our deformable cross attention (DCA) predicts multiple o�sets at a single

point, rather than predicting o�sets at each point of the kernel as in the case of deformable

convolution. This endows it with a stronger ability to characterize the relationships between elements

and to �exibly handle di�erent scales. The concept of our cross mechanism is realized by

incorporating the enhanced feature   as a constraint to control the generation of o�sets in the spatial

domain, ensuring that only a subset of motion features are selected as keys and values for attention

computation. Speci�cally, the DCA can be represented by the following formulas:

where  ,  ,  ,  ,  ,  , and   are motion features   or  , query, point o�set, reference points

from  , sample features, number of sampling points, and embedding dimension, respectively.  ,  , 

,  ,  , and   denote the operations of matrix multiplication, concatenation, convolution,

o�set generation, bilinear interpolation, softmax, respectively.  ,  ,  , and   are all learnable

mapping matrices. The o�set   generated under the constraint of  , ensures the �ltering of spatial
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regions related to the human joints within the global domain, thereby facilitating adaptive motion cue

extraction from motion features.

Heatmap generation. We �rst split the key frame keypoint tokens    from    and then transform

them into   through an MLP and reshaping. By aggregating   and   and up-sampling, we obtain 

. The �nal pose heatmaps   are derived by adding   and   with equal weights.

Loss function. We adopt the established pose heatmap loss    to supervise the �nal predicted pose

heatmaps   to converge to the ground truth pose heatmaps  :

Experiments

Experimental Settings

Datasets. PoseTrack has become a crucial dataset in video-based human pose estimation benchmarks.

PoseTrack2017[40]  introduces 250 training videos and 50 validation videos, with 80,144 pose

annotations across 15 key points. PoseTrack2018[41]  expands to 593 training and 170 validation

videos, totaling 153,615 annotations. PoseTrack2021[42]  further enriches the dataset, particularly

improving the representation of smaller �gures and crowded scenes, reaching 177,164 pose

annotations, with recalibrated joint visibility �ags to better address occlusions.

Evaluation metric. To evaluate the e�cacy of our proposed model in pose estimation, we calculate the

average precision (AP) for each joint and then aggregate these values to obtain the mean average

precision (mAP).

Implementation details. Our VREMD framework is realized utilizing PyTorch. For feature extraction

on single frames, we adopt the most primitive Vision Transformer (ViT-L) architecture[15][43], pre-

trained on the COCO dataset[44], as our backbone. The input image size is �xed at 256 192. We

integrate a series of data augmentation techniques, consistent with methodologies employed in

previous works[13][14], comprising random rotation  , random scale [0.65, 1.35], truncation

(half body), and �ipping during training. The number of input frames is set to 3, consisting of one key

frame accompanied by two auxiliary frames sourced from preceding and succeeding neighbors,

respectively. This con�guration mirrors that of DCPose[14], rather than employing the �ve frame

input as seen in TDMI[20] and FAMI-Pose[19]. Our model is trained on a single RTX 4090 GPU for 20
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epochs with the backbone frozen. We utilize the AdamW optimizer with an initial learning rate of 2e-

3, which is then reduced by a factor of ten at the 16th epoch.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

AlphaPose[45] 63.9 78.7 77.4 71.0 73.7 73.0 69.7 71.9

TML++[29] - - - - - - - 74.6

MDPN[32] 75.4 81.2 79.0 74.1 72.4 73.0 69.9 75.0

PGPT[46] - - - 72.3 - - 72.2 76.8

Dynamic-GNN[34] 80.6 84.5 80.6 74.4 75.0 76.7 71.8 77.9

PoseWarper[13] 79.9 86.3 82.4 77.5 79.8 78.8 73.2 79.7

PT-CPN++[47] 82.4 88.8 86.2 79.4 72.0 80.6 76.2 80.9

DCPose[14] 84.0 86.6 82.7 78.0 80.4 79.3 73.8 80.9

DetTrack[35] 84.9 87.4 84.8 79.2 77.6 79.7 75.3 81.5

FAMI-Pose[19] 85.5 87.7 84.2 79.2 81.4 81.1 74.9 82.2

HANet[37] 86.1 88.5 84.1 78.7 79.0 80.3 77.4 82.3

M-HANet[37] 86.7 88.9 84.6 79.2 79.7 81.3 78.7 82.7

KPM[38] 85.1 88.9 86.4 80.7 80.9 81.5 77.0 83.1

DSTA[18] 85.9 88.8 85.0 81.1 81.5 83.0 77.4 83.4

TDMI-ST[20] 86.7 88.9 85.4 80.6 82.4 82.1 77.6 83.6

VREMD (Ours) 86.7 89.3 85.6 82.1 85.0 83.9 79.3 84.6

Table 2. Comparisons with the state-of-the-art methods for video pose estimation on the validation sets

of the PoseTrack2018[41] dataset.
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Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

Tracktor++ w. poses[48] - - - - - - - 71.4

CorrTrack[33] - - - - - - - 72.3

Tracktor++ w. corr.[48] - - - - - - - 73.6

DCPose[14] 83.2 84.7 82.3 78.1 80.3 79.2 73.5 80.5

FAMI-Pose[19] 83.3 85.4 82.9 78.6 81.3 80.5 75.3 81.2

DSTA[18] 87.5 87.0 84.2 81.4 82.3 82.5 77.7 83.5

TDMI-ST[20] 86.8 87.4 85.1 81.4 83.8 82.7 78.0 83.8

VREMD (Ours) 87.2 89.1 85.2 82.4 85.1 83.4 79.2 84.5

Table 3. Comparisons with the state-of-the-art methods for video pose estimation on the validation sets

of the PoseTrack2021[42] dataset.
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Figure 3. Qualitative comparison of our VREMD, DCPose[14], and TDMI[20] on the PoseTrack2017

dataset, featuring challenges such as pose occlusions, fast motion, and video defocus. Red solid

circles denote the inaccurate pose predictions.-
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Figure 4. Visual results of our VREMD on PoseTrack datasets. Challenging Scenarios such as fast

motion or pose occlusion are involved.

Method HKME BMD Mean

Baseline     80.2

(a) ✓   85.3

(b)   ✓ 85.6

(c) ✓ ✓ 87.6

Table 4. Ablation of di�erent components in our VREMD.

Comparison with State-of-the-art Approaches

Results on the PoseTrack2017 Dataset. We �rst benchmark our method on the

PoseTrack2017[40]  dataset. A total of 22 methods are compared and their performances on the

PoseTrack2017 validation set are summarized in Table  1. Our proposed VREMD consistently

outperforms existing state-of-the-art methods, reaching an mAP of 87.6. Compared to the latest top-

performing method TDMI-ST[20], our VREMD obtain a 1.7 mAP gain. The performance boost for
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challenging joints (i.e., wrist, ankle) is also promising: we attain an mAP of 84.8 (  3.3) for wrists and

an mAP of 81.0 (   2.3) for ankles. It is noteworthy that our VREMD operates e�ectively with fewer

input video frames than the most recent works[19][20], requiring just three frames as opposed to �ve.

These consistent and substantial improvements in e�ectiveness indicate the importance of

reinforcing the positional attributes of visual representations and integrating joint-related motion

dynamics. In addition, we present the visualized results, which include a comparison with existing

methods, for scenarios involving complex spatio-temporal interactions (e.g., pose occlusion, blur) in

Fig 3, demonstrating our method’s robustness. More visualization results are shown in Figure 4.

Results on the PoseTrack2018 Dataset. We further evaluate our VREMD on the PoseTrack2018 dataset,

and the detailed validation set results are showcased in Table 2. Once again, as illustrated in this table,

our VREMD surpasses all prior state-of-the-art methods, achieving the most exceptional outcomes.

We obtain the �nal performance of 84.6 mAP. The precision for wrists and ankles also shows a

noticeable improvement compared to TDMI-ST, scoring 82.1 ( 1.5) and 79.3 (  1.7) respectively.

Results on the PoseTrack2021 Dataset. Performance comparisons of our model and previous state-

of-the-art methods on the PoseTrack21 dataset are provided in Table  3. When evaluated on the

PoseTrack2021 validation dataset, the results highlight the outstanding performance of our model.

Achieving new state-of-the-art results, our model records an overall mAP of 84.5, outperforming

TDMI-ST by a margin of 0.7 mAP. Encouragingly, our method yields a 1.0 mAP improvement over the

previous best, attaining 82.4 at the wrist, and shows a 1.2 mAP advance, achieving 79.2 at the ankle,

which are recognized as di�cult joints to accurately predict. These results, once again, underscore the

robustness and superiority of our method in this domain.

Method Human mask Keypoint mask Mean

(a)     85.9

(b) ✓   86.5

(c)   ✓ 86.8

(d) ✓ ✓ 87.6

Table 5. Ablation of various designs in the HKME module.

↑

↑

↑ ↑

qeios.com doi.org/10.32388/BE97QE 16

https://www.qeios.com/
https://doi.org/10.32388/BE97QE


Method DC DA DCA (Ours) BS (Ours) Mean

(a) ✓       84.7

(b)   ✓     85.8

(c)     ✓   87.1

(d)     ✓ ✓ 87.6

Table 6. Ablation of various designs in the BMD module.

Ablation Study

We carry out extensive ablation studies centered on assessing the impact of individual components

within our VREMD architecture, encompassing the Human-Keypoint Mask Enhancement module

(HKME) and the Bidirectional Motion Disentanglement module (BMD). We additionally probe into the

e�cacy of diverse micro-designs incorporated in each module. All experiments are performed on the

PoseTrack2017 validation set.

Study on components of VREMD. We experimentally evaluate the e�ectiveness of each component in

our VREMD framework, detailing the quantitative results in Table 4. Firstly, we establish a baseline for

this experiment by coupling a Vision Transformer (ViT) Backbone with a pose detection head. (a)

Integrating the Human-Keypoint Mask Enhanced module (HKME) into the baseline yields a

substantial gain of 5.1 mAP. This substantial progress indicates that the dual-mask mechanism,

o�ering a coarse-to-�ne representation re�nement, facilitates improvements in human pose

estimation. (b) In the next setup, we exclusively incorporate the Bidirectional Motion

Disentanglement module (BMD) into the baseline system. Notably, the Adaptive Deformable Cross

(ADC) block, which originally utilized enhanced features from the HKME, now receives backbone

output features instead. The outcome achieves an mAP of 85.6, marking an increase of 5.4 mAP. Such a

signi�cant boost in performance unequivocally validates the BMD module’s pro�ciency in adaptively

excavating bidirectional temporal information, guiding accurate pose estimation. (c) Finally, we

incorporate both the HKME and BMD modules into our framework, attaining a culminating

performance of 87.6 mAP, which indicates that the synergy of these two components can lead to

further enhancements.
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Study on Human-Keypoint Mask Enhanced module. We then investigate the impact of the two mask

generation techniques in HKME on overall performance. We conduct four experiments and presented

them in Table 5. (a) Generating visual representations using only the spatio-temporal Transformers

network. (b) Producing a human mask for coarse �ltering of human-related tokens. (c) Calculating a

keypoint mask for basic joint token screening. (d) Utilizing dual masks, derived from methods (b) and

(c), for the progressive re�nement and enhancement of visual tokens, transitioning from coarse to

�ne detail. This table illustrates that method (a), which does not generate any masks, o�ers a slight

improvement of 0.3 mAP over the setting that removes HKME. Subsequently, applying the human

mask alone (b) and the keypoint mask alone (c) achieves respective performances of 86.5 mAP and

86.8 mAP. Although utilizing these masks individually can yield certain accuracy gains,

simultaneously employing both for coarse-to-�ne representation re�nement (d) leads to the optimal

results. This promising outcome attests to the superiority of our dual-mask paradigm, which provides

a prompt of human joints to the framework, enabling more accurate keypoint localization.

Study on Bidirectional Motion Disentanglement module. Additionally, we explore the in�uence of our

deformable cross attention (DCA) and bidirectional separation strategy. Four experiments are

performed and displayed in Table 6. (a) We �rst replace our Adaptive Deformable Cross (ADC) block

with the deformable conv (DC)[49], as adopted in previous works[14][19][20]. We observe a slight

performance decline, that is, a 0.6 mAP decrease. We speculate that the reason might be the feature

map obtained through the attention mechanism is more spatially dispersed and structurally diverse,

which is incompatible with the local adaptive variation characteristics of deformable conv. (b) We

further employ plain deformable attention (DA)[50]  and achieve an 85.8 mAP, which proves that

deformable attention is more suitable for our frameworks based on attention mechanisms. (c) We

propose a novel deformable cross attention (DCA), which integrates the advantages of adaptive

receptive �eld of deformable attention and selective feature highlighting of cross attention, achieving

an 87.1 mAP. (d) Finally, we apply a bidirectional separation (BS) strategy to independently capture

bidirectional motion dynamics, resulting in a 0.5 mAP improvement, unlike previous methods that

concatenate and jointly process bidirectional motion features. These results strongly demonstrate

that our method can more e�ectively capture task-relevant motion cues to facilitate pose estimation.
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Related Work

Image-based human pose estimation. Recent progress in deep learning architectures, as chronicled

in[15][51], coupled with the proliferation of extensive datasets referenced in[44][52], has catalyzed the

development of a multitude of deep learning methodologies. These methodologies, delineated in[10]

[53] and proposed for the purpose of image-based human pose estimation, predominantly align with

two distinct paradigms: bottom-up and top-down. Bottom-up approaches[54]  initiate with the

detection of individual body parts in an image and subsequently attempt to aggregate these parts into

a comprehensive human pose. The top-down paradigm[10][43]  start by detecting the bounding box

around the human body and then localize the target human’s keypoints within that area. However,

these image-based methods struggle when applied to video streams, since they fail to e�ectively

incorporate the temporal changes between frames. our research builds upon previous image-based

approaches, extending them with temporal dynamics capture speci�cally tailored for video pose

estimation.

Video-based human pose estimation. In the early stages, substantial approaches involve utilizing

optical �ow to establish motion-based assumptions[55]. These approaches commonly generate dense

optical �ow across frames to improve pose heatmap predictions, yet the technique is computationally

demanding and prone to errors when faced with marked deterioration in image quality. Recent

methods[18]  have shifted towards attempting to implicitly capture motion evidence from temporal

information by employing deformable convolutions. DCPose[14]  and PoseWarper[13]  model and

process pose temporal residuals and re-re�ne keypoint detection via multi-scale deformable

convolutions for accurate pose estimation. TDMI[20] introduces a multi-stage framework that encodes

temporal di�erences for dynamic context modeling, leveraging mutual information to uncover useful

temporal clues. Contrary to prior approaches that directly execute feature di�erence learning in the

global space, we strive to enhance visual representations through the aggregation of joint positions,

and to dissect representative joint-associated motion dynamics for more robust human pose

estimation.

Conclusion and Future Work

Conclusion. In this paper, we investigate the video-based human pose estimation task from the

perspective of local spatial perception and temporal cues disentanglement. A dual-stream architecture
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is designed to e�ectively capture spatio-temporal dependencies by collaboratively executing gradual

human joint focus and adaptive motion decoupling. Speci�cally, we present a Human-Keypoint Mask

Enhanced module that performs a coarse-to-�ne selective representation enhancement to assist the

framework in exploring human and joint regions. Additionally, we create a Bidirectional Motion

Disentanglement module to adaptively mine pose-related motion evidence. Our method signi�cantly

and consistently outperforms state-of-the-art performances on three benchmark datasets:

PoseTrack2017, PoseTrack2018, and PoseTrack2021.

Limitations and future works. We identi�ed two limitations in our model: (1) The accuracy of our head

joint localization is suboptimal. We believe this is due to good spatial separation of joints but

imperfect recognition of their relationships, causing interference from nearby joints, such as the

shoulder. We plan to address this by incorporating Graph Neural Networks (GNNs) to better capture

these interrelationships. (2) When the target person is severely occluded by others, our method may

mistakenly incorporate temporal cues from non-target individuals, reducing pose estimation

accuracy. We plan to optimize our visual and motion features using clustering techniques to address

this issue.
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