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Cryptocurrencies fluctuate in markets with high price volatility, which becomes a great challenge for

investors. To aid investors in making informed decisions, systems predicting cryptocurrency market

movements have been developed, commonly framed as feature-driven regression problems that focus solely

on historical patterns favored by domain experts. However, these methods overlook three critical factors

that significantly influence the cryptocurrency market dynamics: 1) the macro investing environment,

reflected in major cryptocurrency fluctuations, which can affect investors’ collaborative behaviors, 2) overall

market sentiment, heavily influenced by news, which impacts investors’ strategies, and 3) technical

indicators, which offer insights into overbought or oversold conditions, momentum, and market trends are

often ignored despite their relevance in shaping short-term price movements. In this paper, we propose a

dual prediction mechanism that enables the model to forecast the next day’s closing price by incorporating

macroeconomic fluctuations, technical indicators, and individual cryptocurrency price changes.

Furthermore, we introduce a novel refinement mechanism that enhances the prediction through market

sentiment-based rescaling and fusion. In experiments, the proposed model achieves state-of-the-art

performance (SOTA), consistently outperforming ten comparison methods in most cases. Our code and data

can be found at https://github.com/aamitssharma07/SAL-Cryptopulse

I. Introduction

Cryptocurrencies have recently become a topic of conversation due to their great impact on the financial world.

This heightened attention is fueled by several factors including the sudden drops and shocks in cryptocurrency

markets[1], which offer opportunities for substantial returns, and the innovative technologies underpinning

these assets, such as Blockchain[2][3]. Unlike traditional financial markets such as bonds and stocks, the

cryptocurrency market is characterized by a comparatively smaller market capitalization and pronounced

volatility in short-term fluctuations[4], creating a unique and challenging investment landscape. This volatility
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stems from a complex interplay of factors that perpetuate a self- fulfilling cycle. On one hand, a large

proportion of cryptocurrency investors seek short-term investments to exploit opportunities for rapid and

substantial returns[5], thereby intensifying market volatility. On the other hand, given this context, these

investors tend to be highly sensitive to market-influencing events reported in news[6], such as regulatory

actions and fraud events, with their often exaggerated reactions further fueling market fluctuations.

Regardless, cryptocurrency is increasingly recognized as a viable alternative investment avenue by those with

higher risk tolerances or an interest in short-term, high-yield opportunities[7]. Therefore, the ability to

accurately predict short-term cryptocurrency prices not only holds significant practical importance but also

contributes integrally to understanding the dynamics of the financial markets as a whole.

Many studies have employed machine learning techniques such as SVM[8]  and Random Forests[8]  to forecast

the returns of major cryptocurrencies based on historical price data. However, these methods often suffer from

varied and unstable performance across different timescales and cryptocurrencies[8], due to their inability to

capture complex and rapidly changing market dynamics. To address this, recent research has focused on using

deep learning models like LSTM, bi-LSTM, GRU[9][10][11]  and CNN-LSTM[12]  to forecast the prices of major

cryptocurrencies. However, this study group is confined only to the top few cryptocurrencies by market

capitalization, ignoring those with different behaviors and lower liquidity. Furthermore, these studies primarily

relied on historical price data and did not incorporate technical indicators and sentiment analysis, potentially

overlooking the influence of overbought or oversold market conditions, market sentiment shifts, and external

news events on price volatility.

More recently, researchers have integrated market sentiment by analyzing news data and integrating it with

historical price data to predict cryptocurrency prices, specifically focusing on Bitcoin and Ethereum[13][14]. NLP

approaches are employed to categorize news sentiment, which is then fed into deep learning models like LSTM,

along with the historical price data, to predict future prices[15]. However, such studies are rare and typically

limited to specific cryptocurrencies because they rely on manually labeling sentiment data, which is labor-

intensive and doesn’t scale well for real-time predictions across multiple cryptocurrencies[15], and using

investors’ expectations caused by news alone as a trading strategy has been found to be inadequate, as

concluded by Brown and Cliff[16].

To overcome the above-mentioned challenges, this paper introduces “CryptoPulse,” a novel framework

designed for forecasting next-day closing prices by leveraging three primary factors: 1) broad market sentiment

as reflected in real-time news, 2) complex dynamics of price changes embedded in the historical data and

technical indicators of the target cryptocurrency, and 3) macro investing environment indicated by the
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fluctuations of major cryptocurrencies. In particular, the key contributions and highlights of this paper are

summarized as follows:

Formulated a novel framework for next-day cryptocurrency forecasting, leveraging short-term observations

of key market indicators including market sentiment, macro investing environment, technical indicators,

and inherent pricing dynamics.

Designed a novel prompting strategy using few-shot learning and consistency-based calibration for

effective LLM-based market sentiment analysis of cryptocurrency news.

Developed a dual-prediction mechanism that separately forecasts prices based on macro conditions and

cryptocurrency dynamics, then fuses them using a market sentiment-driven strategy for enhanced

accuracy.

Conducted extensive evaluations on a newly curated, large-scale real-world dataset to demonstrate our

model’s effectiveness in next-day price prediction against ten comparison methods. This dataset, sourced

from Yahoo Finance1 and Cointelegraph2, along with the source code, will be publicly available for download

upon acceptance.

II. Problem Formulation

Let   denote the set of historical price data for   cryptocurrencies, such as Bitcoin, Ethereum, and

others. For the  -th cryptocurrency, the sequence   consists of a series of feature vectors  .

Each vector   includes opening, closing, high, low prices, trading volume along with the technical indicators such

as stochastic %k, stochastic %d, momentum, william’s %r, a/d oscillator, disparity 7 and rate of change of the  -th

cryptocurrency on day  . In addition to the price and technical indicators data, a collection of news articles is

gathered daily from Cointelegraph, a major news outlet in the cryptocurrency sector. These collected articles

are denoted as  , where   represents the set of articles for day   where   is

the  -th news article.

Given the data described above, our objective is as follows: On day  , can we predict the closing price of a target

cryptocurrency for the following day (i.e., day  ), using the    days of historical market prices, technical

indicators and corresponding cryptocurrency news as observations? This can be mathematically formulated as

where   represents the predicted closing price for the target cryptocurrency indexed as   on the day  ,

and   denotes our proposed predictive model. This question is crucial for automated cryptocurrency trading,

especially in the realm of medium-frequency trading strategies[17][18].
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III. Methodology

In this section, we present our proposed model, CryptoPulse, which consists of three major components: 1)

macro market environment-based next-day fluctuation prediction, 2) price dynamics-based fluctuation

prediction, and 3) market sentiment-based dual-prediction rescaling and fusion. Also, an essential

preprocessing step is employed to prepare the input data by calculating a set of technical indicators for each

trading day, using price data of past few days to capture essential market patterns. An overview of the model is

shown in Figure 1.

Figure 1. Overview of CryptoPulse architecture for next-day closing price prediction.

A. Technical Indicator-Based Preprocessing

In this subsection, we incorporate seven technical indicators commonly used in market movement

prediction[19][20][21], including Stochastic %K, Stochastic %D, Williams %R, Accumulation/Distribution (A/D)

Oscillator, Momentum, Disparity 7, and Rate of Change (ROC). The detailed computation process for each

indicator is outlined below.

The Stochastic %K indicator is traditionally used to measure the current closing price relative to the lowest low

and highest high over a specified period. It helps identify overbought or oversold conditions, providing signals

for potential market reversal points[22].

where    is the closing price on day  ,    is the lowest price over the past    days (i.e.,  ), and 

 is the highest price over the same period. A Stochastic %K value above 80 implies that the asset may be

overbought, while values below 20 suggest it may be oversold.

Stochastic %K = × 100,
− (N)pt p−

t

(N) − (N)p+
t p−

t
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pt t (N)p−
t 14 N = 14

(N)p+
t
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The Stochastic %D is a 3-day simple moving average of the Stochastic %K line. This smoothed indicator

provides a clearer trend by eliminating the noise present in the %K line, and is often used to confirm buy or sell

signals by traders[22]:

where    is the Stochastic %K value on the  -the previous day, and   the number of periods for the

moving average.

Williams %R is a momentum indicator that measures the level of the closing price relative to the high-low

range over a specified period, usually 14 days. The indicator ranges from -100 to 0, with readings below -80

indicating oversold conditions and readings above -20 indicating overbought conditions. This indicator

provides insights into potential price reversals based on market sentiment[22]:

where   is the highest price over the past   days (i.e.,  ),   is the lowest price over the same

time, and   is the closing price on day  .

The Accumulation/Distribution (A/D) Oscillator measures the cumulative buying and selling pressure in the

market. It is calculated by taking the difference between the A/D line and its moving average. A rising A/D

Oscillator suggests that buying pressure is increasing, which may indicate a bullish trend, while a declining

oscillator may suggest bearish sentiment[23]:

where    is the highest price on day  ,    is the lowest price on day  , and    is the closing price on the

previous day.

The Momentum indicator measures the rate of change of a security’s price over a specified period. This

indicator can signal potential reversals or continuations in trends. A rising momentum indicates that the price

is increasing at an accelerating rate, while a declining momentum suggests a deceleration in price movement:

where   is the closing price at day   and   is the closing price   days prior to day  . We set   to 10.

Disparity 7 compares the current price of a security to a 7-day moving average. A positive disparity indicates

that the price is above the moving average, suggesting overbought conditions, while a negative disparity

indicates that the price is below the moving average, suggesting oversold conditions. This indicator helps

traders assess the strength of price movements relative to historical averages:
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where   is the closing price on day   and   is the 7-day moving average of the closing price.

At last, the Rate of Change (ROC) measures the speed at which the price changes over a specified period. It is

calculated by comparing the current price to the price from a specific number of periods ago. A high ROC

indicates a rapid price increase, while a low or negative ROC may indicate a price decline. This indicator is useful

for identifying potential trend reversals and assessing market momentum[22]:

where   is the closing price on day  , and   is the closing price   days ago, with  .

B. Macro Market Environment-Based Fluctuation Prediction

The overall macro market environment (e.g., gold and dollar value, policy and public attention, etc.) plays a

crucial role in influencing cryptocurrency price volatility[24]. However, directly quantifying the macro investing

environment remains challenging and most existing studies[25][26]  narrow their focus to specific market

indicators for particular cryptocurrencies. In this paper, we propose leveraging the collective behavior of the

top    cryptocurrencies as a proxy to understand the macro investment environment’s influence on the

cryptocurrency market.

Mathematically, let    represent a length-    series of observations from the target cryptocurrency,

extracted from  . Note that we did not use the technical indicators. Only the first five direct market data points

are used: opening price, closing price, high, low, and trading volume. Similarly, let    denote a

corresponding series of the same length  , derived from historical price observations of the top 

  cryptocurrencies by market capitalization. We first process these series by embedding their values and

positions using a 1D convolutional layer along the temporal dimension and a sinusoidal positional encoding

layer[27], then add these embeddings separately for each series. The resulting embedded observations are

represented as   and  , respectively.

Next, we seek to modulate the correlation and interaction between price fluctuation patterns embedded in the

target cryptocurrency information    and the macro environment represented by  . We formulate this

task as directing the model to learn which sub-series of market behaviors from the top    cryptocurrencies can be

aggregated to most effectively approximate the macro investing environment:
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where    represents the learned representation of the macro investing environment, and the

function    cyclically shifts the input tensor along the temporal dimension by    steps. The attention

weight    for each sub-series is calculated by using the target cryptocurrency    as the query, while all

possible shifts of   serve as both keys and values:

Technically, the attention function   can be any time series similarity function. In our experiments, we

utilize the period-based similarity calculation method, as introduced in the paper[28].

At last, we use the learned macro investing tensor   to directly predict the next day’s closing price fluctuation

of the target cryptocurrency  . Specifically,    goes through a position-wise feed-forward layer[27],

followed by two separate linear layers along the temporal and feature dimensions. Since these linear layers are

used multiple times in this paper, we will refer to this process as   in the subsequent sections. The estimated

fluctuation is then employed to generate the first prediction for the next-day price:  , where 

  is a scaling factor whose calculation is detailed in Section  III-D. In our experiments, we use the top 5

cryptocurrencies to approximate the macro environment.

C. Price Dynamics-Based Fluctuation Prediction

The task of predicting the next day’s closing price, based on historical observations and technical indicators of

the target cryptocurrency    falls under multivariate to univariate time series forecasting. However, we

observed that allowing the model to directly predict the next day’s price results in poor projections. We believe

this issue stems from the extreme volatility of cryptocurrencies, which can cause the model to make overly

drastic predictions. This problem can be mitigated by first predicting the next day’s fluctuation and then using

the previous day’s closing price to reconstruct the next day’s price:

where   is the second price prediction, which is constructed based on the predicted fluctuation ( ) and

the last observed price  ,    is a scaling factor introduced in Section  III-D and    is our prediction model. In

terms of model design, we observed that Transformer layers and linear layers often yield comparable results, a

phenomenon also noted in the study[29]. For efficiency in computation, we modified the NLinear

structure[29]  to forecast  . Specifically, a linear layer along the timeline is applied on    with a last-day

closing price based normalization.
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D. Market Sentiment-Guided Dual-Prediction Rescaling and Fusion

As mentioned in Section  I, news media significantly influences fluctuations in cryptocurrency markets[30][6]

[31]. However, incorporating this factor into prediction models is challenging because traditional sentiment

analysis models[32][15] often rely on datasets manually annotated for specific scenarios, which are not scalable

for real-time analysis in the dynamically changing cryptocurrency market. The recent advancements in LLMs

offer an alternative approach for sentiment analysis without requiring extensive fine-tuning on annotated

datasets. Nevertheless, designing an effective prompting strategy is crucial for analyzing cryptocurrency news,

as recent studies[33]  have found that prompt patterns significantly influence the responses of LLMs across

various tasks.

In this paper, we combined a “think-tank discussion”-like prompt pattern with the few-shot learning technique

to simulate a situation where a group of cryptocurrency traders collaboratively determines the market’s

reaction to specific news. Recent work suggests that few-shot learning can enhance accuracy and reliability[34]

[35]. However, we found that few-shot learning alone is insufficient. Firstly, the LLM’s responses are unstable

and sometimes yield different outcomes even with the same prompt. Secondly, the model’s performance is

vulnerable to noisy contexts, which are common in cryptocurrency news. For example, sentences like “the

movie is good,” if injected into the news, could increase misclassification. As a result, we incorporated a “think-

tank discussion”-like prompt pattern into the few-shot learning technique by repeating the following block

multiple times with   examples for three different sentiment labels (i.e., 3-way- -shot learning):

[m] different cryptocurrency traders are reading this news. Each trader will assign a sentiment

label from [“negative”, “positive”, “neutral”]. Then, each trader will share their label with the

group. The majority label will be accepted. Return the majority label without any other text. The

news is [news content] Label: [True sentiment label]

It’s worth noting that this approach aligns with consistency-based calibration methods[36][37], which use

agreement scores among LLM “voters” to determine confidence. Our method, however, is more efficient and

cost-effective, as it doesn’t require running the LLM multiple times with the same prompt. In our experiments,

we set   to 3 and used GPT-3.5-Turbo[38] for sentiment analysis.

Using cryptocurrency market sentiment directly is challenging since it’s volatile and may introduce noise into

the system; however, we found that market sentiment can be used to regularize the range of fluctuation

predictions. First, we embed the sentiment vector during the observation window using the previously

introduced embedding structure. The resulting tensor    serves two purposes. First, it passes through the 

 structure from Section III-B, followed by a   activation function, to produce  , which is used

k k

m

s
emb

ζ(⋅) Tanh κ ∈ (−1, 1)
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to regularize the range of price changes in the fluctuation prediction. Second, the embedded sentiment tensor is

combined with    to determine how to fuse the previous two predictions. This is crucial because market

environment-based predictions are less volatile, while price dynamics predictions are more volatile, and combining

them enhances the model’s generality across different cryptocurrencies:

Mean Squared Error (MSE) between predicted and true next-day prices is used as the loss function. To

regularize, we applied a dropout rate of 0.1 to the output of each sublayer. For optimization, we used the ADAM

optimizer[39] with an initial learning rate of 0.0005, which is halved after each epoch.

x
emb
g

= γ ∗ + (1 − γ) ∗ , γ = ζ([ ; ]).p̂
i
L+1 p̂

i,1
L+1 p̂

i,2
L+1 x

emb
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Method

Bitcoin Ethereum Tether Binance Coin

MAE MSE CORR MAE MSE CORR MAE MSE CORR MAE MSE CORR

SVM 0.5530 0.4239 0.0083 0.4420 0.3006 0.2317 0.3884 0.2552 0.2715 0.6887 0.6086 0.6072

RF 0.5338 0.3778 0.0159 0.4808 0.3398 -0.372 1.2149 3.8364 -0.0804 0.6513 0.5827 -0.1409

GRU 0.2299 0.0976 0.9810 0.1427 0.0387 0.9702 0.4731 0.3722 0.5120 0.1249 0.0294 0.9900

LSTM 0.3396 0.2458 0.9445 0.1952 0.0888 0.9494 0.5147 0.4988 0.4456 0.2129 0.1036 0.9529

Bi-LSTM 0.3235 0.2126 0.9675 0.1947 0.0751 0.9594 0.4464 0.3779 0.4864 0.1933 0.0714 0.9775

CNN-LSTM 0.2749 0.1294 0.9403 0.3511 0.2548 0.8420 0.4946 0.4064 0.3361 0.2268 0.0902 0.9649

DLinear 0.2975 0.1859 0.9725 0.4009 0.3555 0.4701 0.3963 0.2893 0.3098 0.2213 0.0816 0.9791

Linear 0.3625 0.3199 0.9433 0.2600 0.1376 0.8748 0.4474 0.3510 0.2503 0.6565 0.8487 0.3896

NLinear 0.1376 0.0306 0.9879 0.1065 0.0202 0.9815 0.3627 0.2283 0.6577 0.0948 0.0212 0.9902

Autoformer 0.1604 0.0408 0.9848 0.1594 0.0383 0.9667 0.3929 0.2656 0.6130 0.1627 0.0447 0.9805

CryptoPulse 0.0607 0.0095 0.9961 0.0529 0.0065 0.9937 0.3249 0.1891 0.6946 0.0563 0.0103 0.9949

Method

Solana Top 10 Top 15 Top 20

MAE MSE CORR MAE MSE CORR MAE MSE CORR MAE MSE CORR

SVM 0.5375 0.4269 0.1289 0.4305 0.2967 0.3191 0.4377 0.2955 0.3321 0.7813 2.3293 0.2077

RF 0.6302 0.5464 -0.1028 0.6337 0.8240 -0.1880 0.7689 1.0265 -0.2067 0.9955 2.6771 -0.1491

GRU 0.1709 0.0592 0.9822 0.3742 1.9460 0.8295 0.3142 1.6011 0.8839 0.4132 1.7916 0.9091

LSTM 0.3246 0.1805 0.9404 0.4811 2.1543 0.7970 0.3520 0.8895 0.8379 0.5340 1.7531 0.8745

Bi-LSTM 0.2979 0.1553 0.9210 0.3215 0.6710 0.8076 0.3394 1.1232 0.8468 0.5018 1.7740 0.8770

CNN-LSTM 0.2655 0.1565 0.9436 0.4000 1.2353 0.7054 0.3490 0.8692 0.7689 0.5266 1.6552 0.8063

DLinear 0.4651 0.4820 0.5740 0.3239 0.2873 0.6892 0.3123 0.2499 0.7314 0.3973 0.4790 0.7504

Linear 0.2228 0.1013 0.9486 0.3721 0.4585 0.5743 0.3640 0.3925 0.6366 0.4408 0.5934 0.7025

NLinear 0.1410 0.0297 0.9839 0.1565 0.0517 0.8865 0.1429 0.0430 0.9185 0.1387 0.0421 0.9380

Autoformer 0.1474 0.0351 0.9814 0.2037 0.0842 0.8435 0.1919 0.0720 0.8841 0.1939 0.0744 0.9089

CryptoPulse 0.0511 0.0064 0.9962 0.0905 0.0301 0.9073 0.0758 0.0224 0.9364 0.0774 0.0225 0.9516
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†
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‡

‡

‡
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‡

‡
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†
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IV. Experiment

A. Dataset

We conducted experiments using a large-scale, real-world dataset compiled from multiple sources. The dataset

primarily consists of three parts: (1) historical price data for various cryptocurrencies, (2) traditional technical

indicators commonly used in market analysis, and (3) news related to the cryptocurrency market. The detailed

data collection process is explained below.

Price History of Cryptocurrencies: We sourced the cryptocurrency price dataset from Crypto Real-Time Prices

on Yahoo Finance, a widely recognized financial information platform in the U.S.[40]. As of May 24, 2024, there

were approximately 13,217 cryptocurrencies actively traded in the global market3. To ensure data quality, we

limited our dataset to cryptocurrencies with a market capitalization exceeding $8 billion and a start date before

2024, covering the period from January 1, 2021, to April 1, 2024. This results in 75 cryptocurrencies, which

represent 92.18% of the total market capitalization as of May 24, 2024, and provide a comprehensive and robust

reflection of the overall cryptocurrency market. This broad coverage allows for more generalizable insights

from our study’s findings. For each trading day, detailed price-related information, including the Opening, High,

Low, Closing, and Volume for each cryptocurrency, was recorded.

Technical indicators: Utilizing the collected price data, we calculated and incorporated a comprehensive set of

seven widely-used technical indicators[19][20][21]  into the dataset. Traditionally, these indicators have been

commonly used by market analysts to gain deeper insights into market trends.

Crypto Market News: We collected cryptocurrency news from Cointelegraph, a major news outlet that provides

analysis and reviews on high-tech finance, cryptocurrencies, and blockchain developments[41]. The dataset

contains 25,210 news articles from Cointelegraph, spanning the period from January 1, 2021, to April 1, 2024.

Each article includes the publication date, title, and content.

B. Experiment Setup

We fixed the observation window at 7 days (i.e.,  ) and split the dataset chronologically into training,

validation, and test sets using a 7:1:2 ratio. All results are averaged over five experiments.

L = 7
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Figure 2. Deep Learning vs. traditional models on data without sentiment.
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Figure 3. Comparison of RNN-based models.

Metrics: To comprehensively evaluate our models, we employ a combination of widely adopted metrics

following previous work[29][42], such as Mean Squared Error (MSE), Mean Absolute Error (MAE) and cross-

correlation (CORR). Let   denote the ground truth closing price for a cryptocurrency on day  , and   represent

the corresponding predicted value, where  , and    is the total number of observations. These

metrics are defined mathematically as follows:

It is important to note that the vanilla cross-correlation metric is typically used to evaluate how closely two

time series align with each other across different time lags. However, in our case of next-day cryptocurrency

price prediction, we are primarily interested in the similarity between our predicted prices and the ground truth

prices without any lags. To ensure the correlation results are bounded between 0 and 1, a normalizer is

yi i ŷ i

i = 1, 2, . . . ,n n

MAE

MSE

CORR

= | − |,
1

n
∑
i=1

n

yi ŷ i

= ( − ,
1

n
∑
i=1

n

yi ŷ i)
2

= .
∑

n
i=1 yiŷ i

∑
n
i=1 y

2
i ∑

n
i=1 ŷ

2
i

− −−−−−−−−−−−−
√

(13)
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introduced in the denominator. A higher similarity between the predicted time series and the actual price

sequence results in a value closer to 1.

Comparison Methods: Ten other state-of-the-art (SOTA) baseline methods are used for comparison in our

experiments. For all models, we adopted the same settings as outlined in the original papers, except for the

moving window methods, where we set the window size to 3. Larger window sizes (e.g., 25 in Autoformer)

encompass the entire observation window, leading to poor results. To ensure a fair comparison, for models that

can directly incorporate technical indicators and sentiment labels alongside price history without modifying

the model, we report their performance using the full dataset in the main results. Superscripts are added to

differentiate the model variants based on the dataset configurations used for testing.

The selected models include four general time series forecasting methods: DLinear[29], NLinear[29], Linear[29],

and Autoformer[28]; three RNN-based methods adapted for cryptocurrency forecasting: LSTM[10][15], GRU[10],

and Bi-LSTM[10]; one hybrid RNN method, CNN-LSTM[12]; and two traditional machine learning approaches,

both adapted for cryptocurrency forecasting: SVM[8] and RF[8].

C. Main Results

In this subsection, we evaluate the performance of our proposed model, CryptoPulse, by comparing it with ten

SOTA models. Due to space limitations, we cannot present individual results for all 75 cryptocurrencies;

however, the results exhibit consistent patterns. To provide a representative overview, we report the

performance in Table I for the top five cryptocurrencies by market value, along with the average performance

for the top 10, 15, and 20 cryptocurrencies. This approach reflects the models’ predictive power at both the

individual cryptocurrency level and the broader market trend level. All results are averaged over five

experiments.

As shown in Table I, our model consistently and significantly outperforms the comparison methods across all

cases. Specifically, for the top 5 individual cryptocurrencies, our model improves MAE by 10.4% to 63.8% and

MSE by 17.2% to 69.0% as compared to the best comparison method. When extending the evaluation from the

top 5 to the top 10, 15, and 20 cryptocurrencies, the performance boost becomes even more consistent, with

improvements in MAE ranging from 42.2% to 46.9%, and in MSE from 41.8% to 47.9%. This observation

underscores the effectiveness of our model’s design, showing that incorporating macroeconomic environment

approximation, technical indicators and market sentiment analysis can indeed improve performance in

cryptocurrency price forecasting.

Apart from the direct observations of the main results, we also identified several important findings. We argue

that understanding the rationale behind these insights can help us better identify the key factors that
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contribute to improved cryptocurrency prediction performance. To achieve this, we conducted a comprehensive

analysis, posing and answering the following questions:

Figure 4. MAE comparison between linear and transformer-based models.
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Figure 5. MSE comparison between linear and transformer-based models.

Are traditional machine learning models expressive enough for this task? It’s widely demonstrated that deep

neural network models often outperform traditional machine learning models due to their superior expressive

capacity. However, traditional models can still achieve comparable performance when the task is relatively

simple. In Table I, we observe that both traditional models (SVM and RF) performed significantly worse than

deep learning models. To rule out the possibility that this performance gap was due to sentiment data, which

the two traditional models don’t natively support, we conducted an ablation study on our model and the Linear

model (the smallest deep learning model among the comparison methods), referred to as   and 

, by removing the sentiment data. As shown in Figure  2, both traditional models still consistently

underperform, except in the case of USDT prediction, where    performs slightly worse than SVM.

These results suggest that the weak performance of traditional models may be due to their insufficient

expressive capability.

Are RNN-based models outdated? We observed that RNN-based models can still achieve comparable

performance in some cases. Among the four RNN-based comparison models, the best one outperforms the

Linear model in MAE or MSE in 12 out of 16 cases, DLinear in 9 out of 16 cases, and Autoformer in 3 out of 16

cases. No single RNN-based model consistently outperforms the others, but in general, we found that the GRU

CryptoPulsexs

Linearxs

Linearxs
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performs better than the other RNN models, as shown in Figure  3. We argue that this may be due to the

relatively simple recurrent architecture of the GRU, which is less prone to overfitting the highly dynamic

patterns in cryptocurrency data. Due to space limitations, we didn’t include the figure for MSE performance;

however, as we can see in Table  I, similar patterns are observed as in MAE. Another finding is that the

predictions of RNN-based models are more stably correlated to the ground truths across all cases than those of

the DLinear and Linear models. Therefore, RNN-based models remain important comparison methods in the

scenarios presented in this paper. However, our model not only outperforms RNN-based models across all cases

but is also more computationally efficient.

Figure 6. MAE comparison of models with sentiment data removed.

Figure 7. MSE comparison of models with sentiment data removed.

Are linear models always better than Transformer-based models? Another question we explore is whether

linear models consistently outperform Transformers in the prediction scenarios introduced in our paper, as

observed by[29] in other tasks. Our findings indicate that this is not necessarily the case. As shown in Figure 4

and  5, DLinear and Linear models perform worse than Autoformer, while NLinear consistently outperforms

Autoformer, though their performance remains comparable. Since linear models do not explicitly account for
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correlations across different time series, we argue that the data factors we used (such as price-related

information, technical indicators, and sentiment) can indeed enhance predictions when considered together in

forecasting tasks. Transformer-based models can better modulate these complex correlations due to their

larger model size. We also observed that DLinear and Linear models exhibit instability in our forecasting task,

being sensitive to the high volatility of price swings. This is especially evident when using MSE as the metric, as

shown in Figure 5.

Can trend analysis benefit performance? Series decomposition is a common approach in general time-series

forecasting, and we wondered if trend analysis is equally important in our task. Both DLinear, our model, and

Autoformer explicitly account for trend patterns in the time series, while all RNN-based models implicitly

capture changes across different time points. We found that trend analysis can be a double-edged sword. On the

one hand, as shown in Figure 4 and 5, when moving-average-based trends are improperly modulated, models

like DLinear can experience instability. This is largely due to the extreme volatility of cryptocurrencies, which

disrupts the moving average and leads to erratic trend patterns. On the other hand, models like Autoformer are

better at balancing seasonal and trend-cyclical components in the time series, producing more stable

forecasting results. The short observation window may also contribute to this effect; however, it is necessary

since long-term patterns are rarely present in the cryptocurrency market to aid in next-day predictions.

D. Ablation Study

In this subsection, we conducted a comprehensive analysis of each group of financial features in our dataset and

examined their impact on the forecasting results.

First, we examined the impact of sentiment data on cryptocurrency prediction. To do this, we performed an

ablation study on all linear-based and Transformer-based models by removing the news sentiment from the

dataset. These models are denoted with an    subscript. The experiment results are visualized in Figure  6

and 7, where the performance of each ablation is indicated by the height of each bar. For convenience, a black

horizontal line is used to represent the performance of each model when using the full features, i.e., price

history, technical indicators, and market sentiments. It is evident that the sentiment data generated using our

proposed LLM-based analysis approach improves the forecasting performance (i.e., the black line falls within

the bars). However, in this ablation test, we observed that NLinear outperforms its full feature set version in 5

out of 8 cases. We believe the primary reason for this is that NLinear’s normalization relies on the continuity of

the time series. Treating sentiment labels as a time series may introduce noise into the model, as it’s common

for some days to have no cryptocurrency-related news, leading to missing values in the time series. Once again,

we observed the instability of the DLinear and Linear models, reflected by the significant differences in

performance with and without sentiment data in some test cases.

xs
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Second, we removed the technical indicators from the feature set and conducted ablation studies on all linear-

based and Transformer-based models, as well as our own. These models are denoted with an    subscript.

Figure 8 and 9 report the experimental results, with black horizontal lines indicating each model’s performance

when using the full feature set. Overall, including technical indicators leads to improvements. DLinear and

Autoformer benefit the most from the inclusion of technical indicators, while our model shows slight

improvement. This is expected, as technical indicators used in traditional financial analysis are designed to be

less sensitive to short-term market fluctuations. In other words, they are hand-crafted results of trend analysis

based on financial domain knowledge. As a result, models that rely on automated trend analysis can gain

insights from incorporating these indicators.

Figure 8. MAE comparison of models with technical indicators data removed.

Figure 9. MSE comparison of models with technical indicators data removed.

E. Robustness

Finally, we compared the robustness of different models by calculating the standard deviation of MAE across 5

independent experiments. The results were then averaged over the top 5, top 10, top 15, and top 20

xi
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cryptocurrencies. A lower standard deviation indicates more consistent performance across different training

runs, reflecting greater robustness. To avoid overcrowded figures, we focused on the results of the Linear-based

and Transformer-based models, as well as our model, as they demonstrated the best performance across all

experiments. The results are presented in Figure  10. As observed, our model exhibits the smallest standard

deviation during training for the top 10, 15, and 20 cryptocurrencies. For the top 5, its variation in evaluation

results is comparable to the best-performing models. Additionally, we noted that our model is particularly

robust when dealing with cryptocurrencies that have relatively smaller market capitalizations (which are

typically more volatile), a challenge where both Linear and DLinear models tend to struggle.

Figure 10. Standard deviation of MAE across models for top cryptocurrencies.

V. Conclusion

In this paper, we present “CryptoPulse”, a new approach to predicting the next-day closing prices of

cryptocurrencies. This model integrates three primary factors: fluctuations in the macro environment, changes

in individual cryptocurrency prices and technical indicators, and the current crypto market mood. By

leveraging a dual prediction mechanism, the model captures both the macro market environment and the

specific price and technical indicator dynamics of the target cryptocurrency. Moreover, a fusion component

based on the market sentiment information integrates these predictions to improve the results. The
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experimental evaluation shows that our model achieves higher accuracy in predicting cryptocurrency

fluctuations compared to ten different methods, making it suitable for application in the highly unpredictable

cryptocurrency market.
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Footnotes
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