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Abstract. The concept of a metric on the manifold of Monge potentials is introduced
for hydrodynamic vortex system. The concept of coherence of continuous vortex structures is
formulated in terms of the deviation of geodesic lines on a given manifold. Criteria of decay
and collapse of a vortex continual system are established.
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1. Introduction

The possibility of introducing a metric on manifolds associated with hydrodynamic flows of
various types have been repeatedly discussed in the many articles [1]–[5], however the results
available to date are either overly general (which makes it difficult development of techniques
suitable for describing flows of specific types) [6]–[7], or require the introduction of significant
restrictions and solutions-oriented problems with a priori strictly specified setting additional
conditions, the physical content of which requires special analysis [8]–[10]. If we consider a
hydrodynamic flow as a statistical system in a state close to equilibrium, then its geometric
properties can be studied using the general Amari–Weinhold [11]–[12] technique, using the
possibility of introducing Riemannian topology on the Gibbs manifolds, determined by the
relations between the thermodynamic potentials p = p(ρ, T ) and s = s(u, ρ). In particular, if
we turn to models of a real flow in the form of a set of Onsager point vortices, one can obtain
meaningful differential–functional relations that are expressions for the heat capacities of the
vortex ensemble and geodesic equations connecting the states levels of system equilibrium.

In this paper we consider the methods of investigations the geometric representation of a
Hamiltonian dynamical system, the corresponding set of hydrodynamic conservation laws, by
using the Lagrangian and Hamiltonian geometry on phase manifolds.

2. Hamiltonian formalism for a hydrodynamic system in terms of
Monge potentials

Locally, the state of a hydrodynamic system can be described density, speed and entropy
density (in the general case of a compressible medium) at a given point (x, t) ∈ KN+1 ⊂
RN+1 (x ∈ RN≤3, t ∈ R1

+), that is totality quantities {ρ(x, t);v(x, t); s(x, t)}. Hydrodynamic
equations describing their change over time have form:

ρt + (ρv)x = 0, (ρv)t + (ρv2)x = −px, (ρs)t + (ρvs)x = 0, (1)

where p = p(x, t) is a scalar field pressure Using the representation velocity fields via Monge
potentials {

(
[α]M

)
}|α=1,m ∈ Ym, highlighting in the expansion of the velocity field gradient term
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and a set of quasi-solenoidal ones:

v = −([4]M) · ([1]M)x − s · ([2]M)x − ([3]M)x at m = 4,

Where [α]M(x, t) — some scalar fields. For flows c s = const [3]M +s · [2]M → [2]M , [4]M → [3]M
(in this case m = 3).

To ensure unambiguous selection of these fields IV additional conditions must be specified.
Let us take the following as conditions I, II, III :

I) D̂[4]M ≡ 0, II) D̂[1]M ≡ 0, III) D̂[2]M ≡ T,

where D̂(...) ≡ (...)t +v · (...)x — total time derivative operator, T = T (x, t) — thermodynamic
field of temperature. Let us take the fourth additional condition to be the relation for specific
enthalpy of flow:

w(x, t) = ([4]M) · ([1]M)t + s · ([2]M)t + ([3]M)t − v2/2.

Euler’s equations (1) with conditions I–IV are equivalent to the consequences Whitham’s
variational principle δ

∫ ∫
p dxdt = 0, and where is the Lagrangian density (pressure) based on

the thermodynamic relation u = wp/ρ:

p
(
{[α]M}; {[α]Mx}, {[α]Mt}

)
= ρ(wu) = ρ

(
([4]M) · ([1]M)t+ (2)

+s · ([2]M)t + ([3]M)t −
1

2

(
− ([4]M) · ([1]M)x − s · ([2]M)x − ([3]M)x

)2 − u(ρ, s)
)
.

Here u(ρ, s) is the specific internal energy of the flow (the caloric equation of state of the
medium is assumed to be known).

Let’s move on to the Hamiltonian representation , for which we define the canonically
conjugate variables {[α]M} “momentums of the Monge representation” [α]P :

[1]P =
∂p

∂([1]Mt)
= ρ[4]M, [2]P =

∂p

∂([2]Mt)
= ρs, [3]P =

∂p

∂([3]Mt)
= ρ (m = 4);

[1]P =
∂π

∂([1]Mt)
= ρ[3]M, [2]P =

∂π

∂([2]Mt)
= ρ (m = 3).

Let’s introduce Hamilton function H
(
{[ζ]M}, {[α]P}

)
by conversion Legendre Lagrangian density:

H ≡
m−1∑
α=1

[α]P · [α]Mt − p =
1

2[β0]P

(m−1∑
α=1

[α]P · [α]Mx

)2
+ [β0]Pu([β1]P, [β0]P ),

where : β0(m) = m− 1, β1(m) = 2 for m = 4, β1(m) = 0 for m = 3.
We will consider the Hamiltonian space Wm = (Ym, H), H : T ∗Ym → R1 having a

fundamental tensor gαβ
(
{[µ]M}, {[η]P}

)
= 1

2
∂2H/∂[α′]P∂[β]P ; corresponding Riemannian element

of the interval dσ2
W =

∑
α,β g

αβd[α]M ⊗ d[β]M . As an example, we give the explicit form of the
metric coefficients for simplest case m = 3, N = 2:

g11 =
[1]M2

x1
+ [1]M2

x2

[2]P
, g12 = g21 = −[1]P

[1]M2
x1

+ [1]M2
x2

[2]P 2
,
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g22 = [1]P
2
[1]M2

x1
+ [1]M2

x2

[2]P 3
+ 2

du([2]P )

d[2]P
+ [2]P

d2u([2]P )

d[2]P 2
,

and at the same time the determinant det
(
gαβ

)
= |[1]Mx|2[2]P−1(2u′ + [2]Pu′′) ̸≡ 0. It should

be noted that the above values gαβ (as well as their analogues for m = 4) do not depend
directly on the Monge potentials (new “config variables”). This significantly simplifies the further
consideration of geometrodynamic properties vortex motion of a hydrodynamic medium.

3. Canonical connections of Hamiltonian space and geodesic equations

An N -line connection on T ∗Ym is characterized by d-tensor fields

DΓ(N) =
(
Hα

βγ, C
βγ
α

)
,

that is, a system of generalized Christoffel coefficients (H,C), which in the general case are
functions of Monge potentials [µ]M and canonically conjugate to them pseudo-impulses [µ]P .

Pay attention to the specific dependency structure only from the momenta of the components
of the fundamental tensor gαβ = gαβ([µ]P ).

This will result in cancellation coefficients

Hα
βγ ≡ 1

2
gαη(δζgηγ + δγgβζ − δζgβγ), δµ = ∂/∂[µ]M + Nµν∂/∂[µ]P,

Nµν =
1

4
{gµν , H} − 1

4

(
gµη∂

2H/∂[ν]M∂[η]P + gνη∂
2H/∂[µ]M∂[η]P

)
– are the nonlinear connection coefficients of the Hamiltonian space Wm.

Thus, horizontal trajectories of N -linear connection D are described by a system of differential
equations

d2[α]M/dt2 = d[α]P/dt−Nµαd
[µ]M/dt = 0.

From a physical point of view, more interesting is the analysis of vertical trajectories
(including [α]M0 ∈ Ym) with respect to the considered N -linear connection D, characterized by
a system of differential equations that are analogues of the Euler–Lagrange equations:

d2[α]P

dt2
− Cβγ

α

(
[α]M, {[η]P}

)∣∣∣∣
[α]M=[α]M0

d[β]P

dt

d[γ]P

dt
= 0, (3)

Cβγ
α = −1

2
gαζ

(
∂gζγ
∂[β]P

+
∂gβη
∂[γ]P

− ∂gηγ
∂[η]P

)
.

Let us present the values of some generalized Christoffel coefficients Cβγ
α :

C11
1 = − [1]P |[1]Mx|2

[2]P 4
− [1]P

2|[1]Mx|2

[2]P 5
, C21

1 =
|[1]Mx|2

[2]P 3
+

[1]P
2|[1]Mx|2

[2]P 5
,

C22
1 = −

2[1]P |[1]Mx|2

[2]P 4
+

[1]P
[1]Mx

2[2]P 2

(
3[2]Mx

[2]P 2
−

3[2]P
2[2]Mx + 3[1]P

2[1]Mx

[2]P 4
+
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+3u′′([2]P ) + [2]Pu′′′([2]P )

)
−

[1]M2
x

2[2]P 3
,

C12
1 =

[1]M2
x

2[2]P 3
+

2[1]P
2[1]M2

x

[2]P 5
− [1]P

[1]Mx

[2]P 2

(
3[2]Mx

[2]P 2
−

−
3[2]P

2[2]Mx + 3[1]P
2[1]Mx

[2]P 4
+ 3u′′([2]P ) + [2]Pu′′′([2]P )

)
.

The above equations (3) can be considered as the basic equations when studying the stability
of the dynamics of a vortex fluid flow, initially described by the system of Euler equations. The
main information contained in their decisions relates to the shape of the geodetic trajectory
in “momentum” space (in fact, on the manifold of densities of scalar flow characteristics). Of
particular interest are closed trajectories that are naturally associated with periodic hydrodynamic
structures of various scales.

4. Deviation of geodesics on Monge manifolds and its connection
with the evolution of coherent hydrodynamic systems

The question naturally arises about the stability of periodic orbits in momentum space. For
research deviations from the geodetic motion described by the equation ( 3), we represent

[α]P = [α]P0 + ϵ[α]Π + O(ϵ2), (4)

where [α]P0 — solution equation ( 3), ϵ — small parameter, [α′]Π(t) — magnitude of deviation
from the exact solution [α]P0. Let’s substitute expression ( 4) into UEL (3):

0 =
d2[α]P0

dt2
− Cβγ

α

(
[α]M, {[η]P0}

)∣∣∣∣
[α]M=[α]M0

d[β]P0

dt

d[γ]P0

dt
+

+ϵ

(
d2[α]Π

dt2
− 2Cβγ

α

(
[α]M0, {[η]P0}

)d[β]P0

dt

d[γ]Π

dt
−

−Cβγ
α,η

(
[α]M0, {[η]P0}

)d[β]P0

dt

d[γ]P0

dt
[η]Π(t)

)
+ O(ϵ2).

Transforming the expression in brackets with the factor ϵ, we obtain an analogue of the Jacobi
equation ( Jacobi-Cartan equation) for the deviation vector with components {[α]Π}:

D2
p([α]Π)

dt2
+

(
d[β]P0

dt

)(
d[γ]P0

dt

)
([η]Π)Sβγη

α = 0, (5)

where : Dp[α]Z/dt ≡ d[α]Z/dt − Cβγ
α

(
[α]M0, {[η]P}

)
[β]Z(dγP0/dt), Sβγη

α — d– tensor curvature
trajectories :

Sβγη
α =

∂Cβγ
α

∂[η]P
− ∂Cβη

α

∂[γ]P
+ Cµβ

α Cβη
µ − Cµη

α Cβγ
µ .

Equation (5) describes the evolution of the vector of deviations from the geodesic motion
and when considering the (λ, ϵ)-congruence (λ is an affine parameter along the streamline,
proportional to time t) closed trajectories, one can trace the change in density characteristics
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(ρ, ρ[3]M,ρs) hydrodynamic structure, containing this congruence. At the same time, it is not
assumed that the system is strictly limited in the spatial sense, that is, this system has non-
local correlation properties ( which is typical for coherent structures of various genesis). If the
solution of the Jacobi–Cartan system has stable limit cycles, then the system has a set of
certain (quasi)stationary states (associated with given cycles)

Consider a simple special case of the Jacobi–Cartan equation (5), when it is assumed that
the quantities [1,2]Mx = [1,2]M̃ are permanent. In this case, the connectivity coefficients Cβγ

α and
the components of the curvature tensor Sβγη

α depend only on the variables [α]P0 (for m = 3):

C11
1 = − [1]P0|[1]M̃ |2

[2]P
4
0

− [1]P
2
0 |[1]M̃ |2

[2]P
5
0

, i t. d.

In the case under consideration, (5) takes the form of a 2nd order ODE system:

d2([α]Π)

dt2
+ K1

(
[1]P0, [2]P0

)d([α]Π)

dt
+ K2

(
[1]P0, [2]P0

)
[α]Π+

+
d([β]P0)

dt

d([γ]P0)

dt
Sβγη
α

(
[1]P0, [2]P0

)
· [η]Π = 0.

Considering this system as an equation for the vector deviation variable [α]Π with “frozen”
coefficients, one can see an analogy with the system of equations (with dissipative terms)
describing the dynamics a set of coupled oscillators (it is possible to find the conditions for the
occurrence of a self-oscillatory mode). If we additionally set P2 = const, then for the simplest
case m = 3 we arrive at the case of one ODE for variable [1]P (≡ ρ[3]M); its solution is oscillations
increasing/decreasing in amplitude.

5. Conclusion

The use of the geometric apparatus for analyzing hydrodynamic flows makes it possible to
identify very significant aspects of their evolutions associated with the formation and decay of
large-scale vortex systems (coherent structures).

Determination of local tendencies of congruence of geodetic lines (density, entropy) towards
closure/intersection or divergence gives a scenario for the development of behavior of the entire
observed system. Application of the formalism of Hamiltonian geometry on Monge manifolds
allows you to fairly transparently and deeply analyze the situation in hydrodynamic flow.

Список литературы
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