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Large Language Models (LLMs) are of great interest in vulnerability detection and repair. The effectiveness of these models hinges on

the quality of the datasets used for both training and evaluation. Our investigation reveals that a number of studies featured in

prominent software engineering conferences have employed datasets that are plagued by high duplication rates, questionable label

accuracy, and incomplete samples. Using these datasets for experimentation will yield incorrect results that are signi�cantly different

from actual expected behavior. For example, the state-of-the-art VulRepair Model, which is reported to have 44% accuracy, on average

yielded 9% accuracy when test-set duplicates were removed from its training set and 13% accuracy when training-set duplicates were

removed from its test set. In an effort to tackle these data quality concerns, we have retrained models from several papers without

duplicates and conducted an accuracy assessment of labels for the top ten most hazardous Common Weakness Enumerations (CWEs).

Our �ndings indicate that 56% of the samples had incorrect labels and 44% comprised incomplete samples—only 31% were both

accurate and complete. Finally, we employ transfer learning using a large deduplicated bug-�x corpus to show that these models can

exhibit better performance if given larger amounts of high-quality pre-training data, leading us to conclude that while previous

studies have over-estimated performance due to poor dataset quality, this does not demonstrate that better performance is not

possible.

1. Introduction

There are many recent publications presenting systems that use neural models to detect and repair security vulnerabilities in programs[1]

[2][3][4][5][6]. In the past few months a number of reports have surfaced concerning the quality of the datasets employed to train and test

these systems in an effort to characterize their performance[6][7]. We join these other works by reporting here on the many data quality

problems embodied in what we will call the VulRepair dataset, �rst employed in the work of Fu et al.[2] This dataset is a combination of

Big-Vul[8] and CVE�xes[9].

We �rst encountered the data quality problems in the VulRepair dataset while attempting to understand the performance of several

systems that employed it. At �rst, we took the results at face value. However, when replicating their behavior and looking at the speci�c

repairs being made by the systems, it became clear that they exhibited effects associated with data leakage–the model was able to make

repairs to vulnerable code that required it to have information available only in the repaired code.

Once we identi�ed the existence of numerous duplicate samples in the data collection, we realized there might be other data quality

issues as well. Some of the problems in BigVul and CVE�xes datasets are reported by Ding et al.[7]  in the context of vulnerability

detection, which deals primarily with the issue of duplicate samples that lead to data leakage.

This paper, on the other hand, reports initial results of our comprehensive review of the quality of the VulRepair data set and its effect on

expected model performance.

A number of papers have been written employing the VulRepair dataset. The �rst is the report describing VulRepair in November 2022[2],

which introduced this dataset’s use in �ne-tuning a CodeT5-based system. This same dataset was employed by Zhang et al. in an August

2023 paper evaluating CodeT5, CodeBERT, GraphCodeBERT, UniXcoder, and CodeGPT models trained on the VulRepair dataset[3]. Huang
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et al. employed the VulRepair dataset in a September 2023 paper benchmarking security-related tasks with CodeT5, CodeBERT,

GraphCodeBERT, UniXcoder, and PLBART[4].

Fu et al. reported further work leveraging VRepair’s pre-training bug-�x dataset in conjunction with the VQM vulnerability �ne-tuning

dataset for program repair tasks. That report asserts that VRepair[1] was initially pre-trained on a dataset having 23,607 C/C++ functions,

however, this claim appears to be incorrect as VRepair was pre-trained on a bug-�x dataset that has 534,848 training samples and 10,000

validation samples (see Chen et al.[1] last sentence of Section 4.21). We conducted a brief analysis of both the pre-training bug-�x dataset

and VQM vulnerability �ne-tuning dataset[10] used in that paper. The pre-training dataset contains 21,246 training samples and 2,362

validation samples. Our review revealed 18,622 duplicated entries in the training set and 782 duplicates in the validation set. After

removing those, 1,579 cross-set duplicates (in both train and validation) were identi�ed, that is to say, all of the validation set samples were

present in the training set. Additionally, our analysis uncovered a substantial overlap between the bug-�x dataset and the VQM

vulnerability �ne-tuning dataset. Speci�cally, there were 511 matching entries in the test set, 243 in the validation set, and 1,747 in the

training set of the vulnerability dataset that overlapped with the bug-�x dataset. The detailed analysis is discussed in Section 6. These

�ndings make it clear that retraining is necessary in order to understand the expected performance of the models reported in that work.

In this paper, we analyze the effect some of the data quality problems in the VulRepair dataset have had on skewing the expected

performance of VulRepair, CodeBERT, GraphCodeBERT, and UniXcoder when applied to repair of security vulnerabilities. In addition we

consider the impact of pre-training models with the deduplicated VRepair bug-�x dataset, addressing the duplicate entries present in the

original VRepair pre-training dataset as discussed in Section 3.1.3.

Our analysis incorporates the following steps:

�. Replicate the results of previous papers using a more robust approach involving �nding the mean performance of multiple models

�ne-tuned using different seeds.

�. Determine the impact of duplicate samples on the performance of these models.

�. Determine the performance impact of inconsistent labeling.

�. Partially identify and analyze the inaccurate labeling.

�. Partially identify and analyze the incomplete data samples.

�. Determine the impact of pre-training with the deduplicated VRepair bug-�x dataset.

These data-quality-driven analyses are addressed by the following research questions:

RQ1: Can we replicate the results of VulRepair, CodeBERT, GraphCodeBERT, and UniXcoder?

RQ2A: What is the performance of the models after removing all duplicate data from the VulRepair dataset (removing cross-set

duplicates from the training dataset)?

RQ2B: What is the performance of the models after removing all duplicates from the VulRepair dataset (removing cross-set duplicates

from the test dataset)?

RQ3A: What is the performance of the models after removing duplicates and inconsistently labeled samples from the VulRepair

dataset (removing cross-set duplicates and inconsistent samples from the training dataset)?

RQ3B: What is the performance of the models after removing duplicates and inconsistently labeled samples from the VulRepair

dataset (removing cross-set duplicates and inconsistent samples from the test dataset)?

RQ4A: What effect does removing duplicate data from VulRepair have on the repair of vulnerabilities included in the top ten CWEs.

RQ4B: How does identifying and analyzing inaccurate and incomplete samples of the top ten CWEs in the test set of the deduplicated

VulRepair dataset change our understanding of its performance?

RQ5: What is the performance of the systems after pre-training with a deduplicated bug-�x dataset?
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Scripts used to verify data duplication and to replicate experiments are available from https://github.com/Anurag-Swarnim-

Yadav/DatasetQuality.

2. Dataset Quality

In this section, we brie�y review a few properties that must be satis�ed by samples contained within a dataset in order to ensure that

systems trained on it do not overestimate their performance on unseen data as a result of poor generalization. A more complete

discussion of this topic can be found in Croft et al.[11]  which deals with datasets for software vulnerability detection. The data quality

attributes discussed by Croft et al. are standardized in the ISO/IEC 25012 data quality framework[12]. They employ these attributes in an

analysis of several datasets including Big-Vul. Let’s consider the data quality attributes relevant to our work.

2.1. Uniqueness

A datum is unique if it is represented exactly once within the dataset. Supervised learning systems typically employ datasets that are

partitioned into one or more of training, validation, and test sets. Duplicates within any of these subsets can lead to biased model

performance. Duplicates across these subsets lead to data leakage which can have the negative result of overestimating model

performance.

2.2. Consistency

In the context of software vulnerability repair datasets, a datum is consistent if it does not appear in the dataset with con�icting labels.

There are two possible reasons for a single code sample to be labeled in different ways in a data set:

�. The labels employed do not partition the space of possible data, that is, they are not exclusive of each other.

�. At most one of the labels for such a sample is the appropriate label and all other labels are incorrect.

Inconsistent labels arising from either of these causes are inappropriate for machine learning systems intended to identify or repair

security vulnerabilities. If the system is to identify the unique class associated with a program vulnerability, it must be trained using

samples with only a single label. On the other hand, if the system is to repair such vulnerabilities, then inconsistent labels will make it

more dif�cult to learn class-speci�c repairs.

2.3. Accuracy

A datum in a dataset is accurate if it embodies semantic label correctness. In the setting of a vulnerability dataset aimed at program repair,

this means samples must correctly identify code as being vulnerable or correct. If the dataset identi�es the particular vulnerability

exhibited by code, that vulnerability must be present in the sample. If the dataset marks the vulnerable code, it must mark it correctly. If a

repaired sample is provided, the vulnerability must be correctly repaired. And if the dataset marks the repaired code, it must mark it

correctly.

Numerous samples in the VulRepair dataset are labeled with the wrong CWE tag. This occurs for a variety of reasons. In some cases, a

change appears in a commit that addresses a CVE but the speci�c change is unrelated to that CVE. In other cases the CWE labels from

Big-Vul and CVE�xes do not agree as a result of a change to the NIST database during the time between the creation of the two data

collections.

In some cases, correct code is labeled as being incorrect. Other samples contain incomplete target patches. In addition to such labeling

problems, there are meta-problems associated with the sample labeling approach adopted by these datasets. One such case is samples in

which code must be moved in order to address a vulnerability. Applying <Startbug> and <EndBug> labels to such incorrectly placed code
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is con�ated with the use of these tags to identify code that must be changed in-place. Perhaps we need an alternate mechanism to

identify repairs that involve code motion rather than modi�cation.

2.4. Completeness

A vulnerability repair dataset sample is considered to be complete if the sample itself contains all information necessary to determine that

the identi�ed vulnerability exists and is correctly repaired.

2.5. Discussion

When Fu et al. published their work on VulRepair, their dataset was assigned two different quality certi�cations by ACM, namely, Artifacts

Available and Artifacts Evaluated - Reusable[13]. The second of these badges is to be assigned only to artifacts that have successfully

completed “an independent audit.” The nature of the audit is not reported, but clearly that audit did not effectively assess the data quality

attributes discussed above.

Construction of datasets containing the numbers of samples necessary to effectively �ne-tune code language models to deal with

security vulnerability repair is a dif�cult task. Attempts to construct such data sets in an automated way have been fraught with data

quality problems. We discuss our recommendations concerning construction and maintenance of such datasets in Section 7.

3. Methodology

3.1. Dataset

3.1.1. Types of Duplicates

A training dataset can have two types of duplicates: in-set duplicates and cross-set duplicates. Both categories introduce bias in some

form. An in-set duplicate is a sample that appears multiple times within one of either the training, validation, or test set. Test-set

duplicates can distort performance estimates, either positively or negatively, based on whether the duplicate is correctly or incorrectly

repaired. Validation set duplicates can cause training to stop prematurely or continue longer than necessary, depending on whether the

duplicates are correctly repaired. Training set duplicates introduce a slight bias toward favoring correct results on duplicated entries over

non-duplicated ones. Cross-set duplicates are identical samples that are present in two or more of the training, validation, and test sets.

Cross-set duplicates introduce data leakage if samples from the training or validation sets are present in the test set, as the model has

already encountered those samples during training. As a result, the model can memorize responses to these speci�c instances, leading to

a high evaluation score, over�tting, and a compromised ability to generalize. To ensure our analysis was free of duplicates, we

implemented a two-step process. First, we eliminated in-set duplicates within each of the three datasets (training, validation, and test

sets). This step removed repeated entries within each set. Next, we addressed cross-set duplicates by removing any instances that

appeared in multiple sets. This process prevents data leakage, ensuring that no data from the training set appears in the validation or test

sets, thereby improving the validity of our model evaluation.

3.1.2. Method for Identifying Duplicates

The simplest way to identify duplicates is to perform an exact string match between the samples or compare string hashes. We have

implemented deduplication by applying the Pandas drop_duplicates() method to the input data. Pandas drop_duplicates() performs an

element-wise comparison of the data in the DataFrame to identify exact duplicates. We kept the �rst occurrence of a duplicate in each

case. This addresses the uniqueness attribute discussed in Section 4.2 but the VulRepair dataset also suffers from consistency problems

discussed in Section 4.3. To ensure consistency, we �rst remove the CWE pre-tag from all input samples and apply the drop_duplicates()
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method to help identify more duplicate samples. After removing the duplicates, we restore CWE pre-tags to the appropriate input

samples.

3.1.3. Pre-training

Chen et al.[1] introduced VRepair, a neural network model designed for vulnerability repair using a vanilla transformer architecture. The

model undergoes pre-training with a generic bug-�x corpus followed by �ne-tuning on a speci�c vulnerability dataset. In the bug-�x

corpus, each input buggy function is pre�xed with a CWE-XXX tag, which denotes the type of CWE category, followed by the buggy

function itself. The sections of the code in the buggy function that contain bugs are demarcated with <S2SV_StartBug> and

<S2SV_EndBug> tags. The <S2SV_StartBug> tag indicates the beginning of the buggy snippet, while <S2SV_EndBug> marks its end. As

the pre-training corpus is not tailored to speci�c bug types, all buggy functions are tagged with CWE-000. The corresponding

corrections in the patched versions of these snippets are marked with <ModStart>, indicating the start of the corrected code, and end

with <ModEnd>, marking the conclusion of the modi�cation that repairs the vulnerability. Table 1 presents the dataset overview, featuring

534,858 training samples and 10,000 validation samples. Our analysis identi�ed 6,192 in-set duplicates in the training set and 4 in the

validation set, as well as 247 cross-set duplicates. The presence of such duplicates points out the need for a thorough dataset cleaning

before using it for pre-training.

Samples Train Validation

Total Samples (TS) 534,858 10,000

In-Set Duplicates (IS Dup) 6,192 4

Samples Left (SL = TS - IS Dup) 528,666 9,996

Cross-Set Duplicates (CS Dup) 247

Table 1. Bug-�x Dataset Analysis

3.1.4. Fine-tuning

For all of our �ne-tuning experiments, we use the VulRepair[2]  dataset provided on Hugging Face[14]. The dataset was created by

combining two existing vulnerability datasets, Big-Vul[8]  and CVE�xes[9]. Both datasets were gathered by crawling CVE databases and

extracting information such as CWE ID, CVE ID, and git commit link related to the vulnerabilities, with the Big-Vul dataset encompassing

vulnerabilities from 2002 to 2019, and CVE�xes covering vulnerabilities from 1999 to 2021. The VulRepair dataset consists of a train and

test set. As with VRepair, each input in both the train and validation set is pre�xed with a CWE-XXX tag, which denotes the CWE category

of the vulnerability, followed by the vulnerable function. The training set consists of samples that span 93 unique CWEs and the test set

spans 74 unique CWEs. The sections of the vulnerable code that contain vulnerabilities are demarcated with <S2SV_StartBug> and

<S2SV_EndBug> tags and the corrected code is marked with <ModStart> and <ModEnd> as per Chen et al. described above. Table 2

presents an overview of the dataset. The dataset has 6,776 training samples and 1,707 test samples.

Our examination of the uniqueness of the VulRepair dataset samples revealed the presence of numerous in-set and cross-set duplicates.

Overall, we identi�ed 1593 duplicates in the training set, 91 duplicates in the test set, and 796 cross-set duplicates. The prevalence of

duplicates can largely be attributed to the overlap of samples resulting from merging the Big-Vul and CVE�xes which contain many of the

same samples with con�icting labels.
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Samples Train Test

Total Samples (TS) 6,776 1,706

In-Set Duplicates (IS Dup) 1,593 91

Samples Left (SL = TS - IS Dup) 5,183 1,615

Cross-Set Duplicates (CS Dup) 796

Table 2. VulRepair Dataset Analysis-Uniqueness

We performed another analysis addressing labeling consistency in the VulRepair dataset in which we removed the CWE-XXX tags from

the input sequences in both training and test sets, to reveal numerous samples we refer to as CWE-duplicates. Table 3 presents our

analysis.

Samples Train Test

Total Samples (TS) 6,776 1,706

In-Set Duplicates (IS Dup) 1,858 111

Samples Left (SL = TS - IS Dup) 4,918 1,595

Cross-Set Duplicates (CF Dup) 923

Table 3. VulRepair Dataset Analysis-Consistency

Compared to Table 2, we identi�ed an additional 265 (1858-1593) in-set duplicates in the training set and 20 (111-91) in the test set, as well

as 127 (923-796) more cross-set duplicates. This analysis underscores the necessity of addressing both duplicate and mislabeled entries to

ensure the effectiveness of machine learning models in vulnerability repair tasks.

3.2. Models

3.2.1. VulRepair/CodeT5

CodeT5[15] is a pre-trained encoder-decoder model that extends the T5 architecture by incorporating token-type information tailored to

coding languages. It is pre-trained with the CodeSearchNet dataset, which has both programming language-only as well as

programming and natural language data. Further re�nement of the model is conducted through �ne-tuning tasks such as code defect

detection and summarization.

3.2.2. CodeBERT

CodeBERT[16] is a bimodal, pre-trained model adept at processing both natural language (NL) and various programming languages (PL).

It incorporates two key components: standard masked language modeling (MLM) and replaced token detection. In MLM, a certain
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percentage of the input tokens are randomly masked, and the model is trained to predict the original tokens based solely on the context

provided by the remaining unmasked tokens. The replaced token detection approach extends this by replacing some tokens with other

plausible alternatives, challenging the model not only to predict the original tokens but also to identify which tokens have been altered.

Implementation of these components enhances CodeBERT and boosts the model’s ef�ciency and effectiveness for handling unimodal

and bimodal tasks. CodeBERT is trained using data from GitHub repositories across six programming languages, including function-level

natural language documentation alongside the corresponding code.

3.2.3. GraphCodeBERT

GraphCodeBERT[17]  is a pre-trained model focusing on semantic-level structures over syntactic-level structures in a programming

language. In addition to implementing masked language modeling (MLM), it incorporates structure-aware pre-training tasks. These

tasks enable the model to comprehend and anticipate data �ows and dependencies within the code, aligning the learned representations

of the raw source code with its corresponding structural (data �ow) representations. This enhances its capacity to interpret and generate

code, taking into account both its textual and structural elements.

3.2.4. UniXcoder

UniXcoder[18]  is a cross-modal pre-trained model designed speci�cally for programming languages, aimed at enhancing both code-

related understanding and generation tasks. The model undergoes pre-training using three distinct language modeling tasks: masked

language modeling, unidirectional language modeling, and a denoising objective. To improve code representation, UniXcoder integrates

multiple modalities, including Abstract Syntax Trees (AST) and code comments. It employs mask attention matrices combined with

pre�x adapters to guide model behavior and utilizes a one-to-one mapping method to convert the tree-structured AST into sequential

formats. This multifaceted approach allows UniXcoder to capture a deeper understanding of code semantics and structure.

3.3. Evaluation Metrics

We use perfect prediction/exact-match as implemented by Fu and Zhang et al.[2][3] to evaluate the performance of these models.

3.4. Experiment Setup

3.4.1. Pre-training hyperparameter settings for bug-�x

For the pre-training of our dataset, we employed the default parameters consistent across the prior studies. We used the Adam optimizer

with a learning rate of 2e-5, and set the input and output sequence lengths to 512 and 256, respectively. The training is designed to run for

75 epochs; however, training will stop early if the evaluation loss does not change over three consecutive epochs. This early stopping

mechanism helps prevent over�tting. The batch size for both training and evaluation is set at 128. During inference, we experimented

with beam sizes 1,3,5 and 50 to explore the impact of beam size on model performance, which is detailed in Section 4.5.

3.4.2. Fine-tuning hyperparameter settings for VulRepair

We adhered to the standard training practices established in previous research for the �ne-tuning phase. The Adam optimizer was used

with a learning rate of 2e-5 and the input and output sequence lengths were maintained at 512 and 256, respectively. The training

duration was set for 75 epochs. A �xed beam size of 50 was used during inference, following the practices of prior studies. For transfer

learning, we assessed the model with a collection of beam sizes ranging from 1 to 50 to determine their effects. These �ndings are

discussed in Section 4.5.
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3.4.3. Hardware parameters

All training and evaluation was performed on NVIDIA A100-SXM4-80GB GPUs.

3.5. Mean Performance

In an attempt to provide robust performance evaluations, each result is reported as the mean performance of six networks trained using

different random seeds. We have noted signi�cant performance differences in which perfect prediction rate can vary by more than one

and one half times from one seed to another.

3.6. Data Attributes Analysis

Determining the accuracy and completeness attributes for each sample was performed manually, as no de�nitive oracle exists to

guarantee the presence or absence of vulnerabilities in a speci�c piece of code. Our analysis is con�ned to individual functions rather

than the entire code base, which means our measures of accuracy and completeness are restricted to the function level. Our primary

objective is to con�rm that the identi�ed buggy function associated with a particular CWE vulnerability clearly contains the vulnerability

and is accurately classi�ed under the correct CWE. After verifying the accuracy, we evaluate the available code changes.

We implemented the following subsequent steps to ascertain the functional relevance of the identi�ed vulnerable sample in relation to

the assigned CWE label.

�. For each instance in the VulRepair dataset, extract the CVE-ID and code commit that addresses the vulnerability. The CVE-ID is

crucial for cross-validation with the NVD database, which serves as the foundation for the VulRepair database.

�. Review pertinent details related to the vulnerable sample, such as a description of the vulnerability and applied �x as documented in

the commit message.

�. Analyze the code changes in a code commit as well as the entire function to understand the relevance of the assigned CWE label.

�. Examine the �xed code to ensure it contains comprehensive information necessary for the relevant code changes.

�. Scrutinize the data attributes of the vulnerable sample.

�. If the data attributes could not be examined, we classi�ed such samples as unveri�able samples. This classi�cation indicates that

either the vulnerable sample or the repaired code lacked the necessary information to determine the data attributes.

4. Results

We �rst replicate the results of the respective previous works to get a baseline performance estimate on the VulRepair dataset. We follow

that by eliminating defective samples in the VulRepair set that fail to satisfy the data quality attributes of uniqueness and consistency,

and then we analyze samples for accuracy and completeness. We follow that by investigating the impact of transfer learning on model

performance.

4.1. Replication

This experiment aims to replicate the results of code repair methods whose performance on the VulRepair dataset has been reported.

RQ1: Can we replicate the result of VulRepair, CodeBERT, GraphCodeBERT, and UniXcoder?
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Dataset Number of Samples Comments

Train 6,776 Contains IS and CS duplicates

Test 1,706 Contains IS and CS duplicates

Table 4. VulRepair Hugging Face Dataset Overview

Table 4 shows the number of samples in the VulRepair dataset.

Result: The detailed results of this experiment are shown in Table 18 and recapped in Table 5 which shows reported perfect prediction

(PP) scores (see citations in the table) and our replicated scores. The mean replicated performance for VulRepair is somewhat lower than

published reports while CodeBERT, GraphCodeBERT, and UniXcoder are slightly higher.

Models PP Reported PP Replicated Change

VulRepair/CodeT5

44%[2] 40.42% -3.58%

44.96%[3] -4.54%

CodeBERT

31%[2] 33.20% +2.20%

32.94%[3] +0.74%

GraphCodeBERT 37.98%[3] 38.51% +0.53%

UniXcoder 40.62%[3] 40.96% +0.34%

Table 5. Model Performance on RQ1

Note: Huang et al.[4] results are NOT reported as they used

PPL and BLUE metrics instead.

4.2. Uniqueness

In these experiments, we consider the effect of remediating VulRepair dataset uniqueness defects on the performance of the models �ne-

tuned with that dataset.

In order to make minimal changes to the semantic content of the dataset, we preserve all unique data in the training and test sets—but

cross-set duplicates must be removed from one set or the other. This means the proportion of samples in the training and test sets will

vary from experiment to experiment and will not match that of the original dataset. To understand the resulting bias in our estimates of

performance, we run the models in two different ways to determine the impact of �rst removing the cross-set duplicates from the

training set and then removing them from the test set. Our hypothesis was that removing them from the test set will yield poorer

performance because test samples that were subject to data leakage would be less likely to be correctly repaired. Furthermore we would

expect that removing such samples from the training set will yield even poorer performance because of the signi�cant reduction in

training samples. We preserve all unique elements in both the training and test sets. The number of samples in these modi�ed train/test
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sets are reduced by this process, however, the amount of information in this modi�ed set is unchanged from the original set because

every unique sample is included.

RQ2A: What is the performance of the models after removing all duplicates data from the VulRepair dataset (removing cross-set

duplicates from the training dataset)?

For this research question, we �rst removed in-set duplicates and then removed cross-set duplicates from the training dataset to avoid

data leakage issues and keep the test set as large as possible. Table 6 presents our analysis.

Samples Train Test

Unique Samples (US = SL - CS DUP) 4,387 1,615

Table 6. RQ2A Dataset Composition (removing cross-set duplicates from the training set). See Table 2 for SL and CS DUP.

Model PP RQ2A % PP Replicated

VulRepair 8.91% 22.0% (8.91/40.42)

CodeBERT 5.58% 16.8% (5.58/33.20)

GraphCodeBERT 5.31% 13.7% (5.31/38.51)

UniXcoder 4.82% 11.8% (4.82/40.96)

Table 7. Model Performance on RQ2A

Result: Detailed results of this experiment are shown in Table 19 and recapped in Table 7 where column PP RQ2A shows perfect prediction

scores on running on RQ2A dataset and % PP Replicated shows the fraction of perfect prediction in our replicated results from the

VulRepair dataset shown in Table 5. All models suffered extreme performance degradation when duplicates were removed from the

dataset, providing perfect prediction rates ranging from 12 to 22% of the rates they achieved when trained with a set that exhibited data

leakage.

RQ2B: What is the performance of the models after removing all duplicates from the VulRepair dataset (removing cross-set duplicates

from the test dataset)?

In this research question, we removed cross-set duplicates from the test dataset, keeping the train set as large as possible. Table 8

presents our analysis.

Samples Train Test

Unique Samples (US = SL - CS DUP) 5,183 819

Table 8. RQ2B Dataset composition (removing cross-set duplicates from the test set). See Table 2 for SL and CS DUP.
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Models PP RQ2B % PP Replicated

VulRepair 13.17% 33% (13.17/40.42)

CodeBERT 8.83% 27%  (8.83/33.20)

GraphCodeBERT 9.22% 24%  (9.22/38.51)

UniXcoder 9.10% 22%  (9.10/40.96)

Table 9. Model Performance on RQ2B

Result: As predicted, performance of all models was much better in RQ2B than RQ2A. Detailed results are shown in Table 20 and recapped

in Table 9. The increase in training samples from 4,387 to 5,183 provided perfect prediction increases of about 50% over RQ2A in all cases,

but still much lower (a third or less) than the performance when trained with the VulRepair dataset.

4.3. Consistency

In this section, we consider the impact that inconsistent labeling has on these models using the same two approaches as before. Recall

that inconsistent labels are associated with samples that have the identical buggy and repaired code, but different CWE labels. Again, we

remove these from the training set in one experiment and the test set in another.

RQ3A: What is the performance of the models after removing duplicates and inconsistently labeled samples from the VulRepair

dataset (removing cross-set duplicates and inconsistent samples from the training dataset)?

Table 10 presents our analysis. See Table 3 for SL and CS DUP.

Samples Train Test

Unique Samples (US = SL - CS DUP) 3,995 1,595

Table 10. RQ3A Dataset composition (removing cross-set duplicates and inconsistent samples from the training set)

Models PP RQ3A % PP Replicated

VulRepair 7.14% 17.7% (7.14/40.42)

CodeBERT 3.59% 10.8% (3.59/33.20)

GraphCodeBERT 3.75% 9.7% (3.75/38.51)

UniXcoder 4.11% 10.0% (4.11/40.96)

Table 11. Model Performance on RQ3A
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Result: Detailed results of this experiment are shown in Table 21. Table 11 shows that all models suffered further performance

degradation from the results shown in RQ2A. This suggests that data leakage from the sample code occurs even when the CWE tag is

incorrect.

RQ3B: What is the performance of the models after removing duplicates and inconsistently labeled samples from the VulRepair

dataset (removing cross-set duplicates and inconsistent samples from the test dataset)?

Table 12 presents our analysis based on Table 3.

Samples Train Test

Unique Samples (US = SL - CS DUP) 4,918 672

Table 12. RQ3B Dataset composition (removing cross-set duplicates and inconsistent samples from the test set)

Models PP RQ3B % PP Replicated

VulRepair 10.27% 25.5% (10.27/40.24)

CodeBERT 5.38% 16.2%  (5.38/33.20)

GraphCodeBERT 6.25% 16.2%  (6.25/38.51)

UniXcoder 6.18% 15.0%  (6.18/40.96)

Table 13. Model Performance on RQ3B

Result: Table 13 summarizes the results of Table 22 and shows that just as was seen in the uniqueness experiments, providing more

training data (4,918 vs. 3,995 samples) yielded performance increases in each of the models tested, but the performance is well below that

yielded on the RQ2B dataset.
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Rank CWE

Total Samples VulRepair CodeBERT GraphCodeBERT UniXcoder

RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B

1 CWE-787 53 33 22 32.7% 3.5% 2.3% 17.6% 2.5% 0.0% 24.8% 2.5% 0.0% 28.0% 5.0% 1.5%

2 CWE-79 1 0 0 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

3 CWE-125 170 68 67 29.9% 5.9% 6.5% 30.8% 10.8% 8.7% 38.2% 11.0% 10.5% 42.7% 12.2% 10.0%

4 CWE-20 152 73 63 44.8% 13.2% 9.0% 33.9% 7.3% 6.1% 38.4% 10.3% 7.9% 39.0% 9.6% 7.7%

5 CWE-78 3 1 1 22.2% 0% 0% 22.2% 0% 0% 33.3% 0% 0% 44.4% 0% 0%

6 CWE-89 5 1 1 56.7% 0% 0% 40.0% 0% 0% 53.3% 0% 0% 56.7% 0% 0%

7 CWE-416 55 29 17 51.2% 6.9% 0% 40.9% 5.8% 0% 48.8% 9.2% 0% 48.8% 6.3% 0%

8 CWE-22 8 2 2 33.3% 0% 0% 29.2% 0% 0% 33.3% 0% 0% 35.4% 0% 0%

9 CWE-352 2 2 2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

10 CWE-434 - - - - - - - - - - - - - - -

449 209 175 38.0% 8.05% 6.0% 31.3% 7.3% 5.5% 37.8% 8.85% 6.9% 40.2% 9.0% 6.8%

Table 14. Model Performance on RQ1 vs RQ2B vs RQ3B - Top10CWEs

4.4. Revisiting the Top 10 CWEs

One of the interesting and compelling results in the initial VulRepair paper[2]  is a table discussing performance of VulRepair on CWE

samples appearing in the 2021 comparitech list of the top 10 CWEs[19]. Fu et al. reported that 38% of the 449 such samples in the

VulRepair dataset were correctly repaired but we observed a substantial reduction in model performance, highlighting the critical role

that these defective samples play in model effectiveness. We now turn to the question of how much the removal of inaccurate and

incomplete samples will reduce the top 10 dataset.

RQ4A: What effect does removing duplicate data from VulRepair have on the repair of vulnerabilities included in the top ten CWEs.

We �rst revisit this question in Table 14. The detailed results are in Tables 23 to 30. We report the performance of each of the models

studied on the top 10 CWEs, showing their performance when duplicate and inconsistent samples are removed from consideration. First,

we note the signi�cant reduction in the number of top 10 CWE samples–only 39% remain when the defective samples are removed. But

of even greater concern is the fact that across all four models, when these samples are removed the average performance drops to 17% of

the original performance on average. For instance, looking at the performance of CodeBERT on the RQ1 dataset, the model achieved

31.3%. However, when evaluated on the RQ3B dataset, its performance fell to just 5.5%, resulting in an average performance drop to 17%.

This highlights how heavily the samples introduced errors.

That means that the performance report on the top 10 CWEs was severely overestimated as a result of data leakage.

RQ4B: How does identifying and analyzing inaccurate and incomplete samples of the top ten CWEs in the test set of the deduplicated

VulRepair dataset change our understanding of its performance?

Once duplicate samples are removed from the VulRepair dataset, many inaccurate and incomplete samples will remain. We were able to

address this question only in part, however, due to time constraints we were only able to consider 8 of the top 10 categories.
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4.4.1. Accuracy

In this work, the primary determiner of accuracy is the correctness of the CWE label associated with a vulnerable sample. Accuracy plays

an essential role during model training and validation. An incorrect label potentially leads the model to learn an incorrect pattern

associated with given CWE type, thereby adversely affecting model evaluation. The accuracy of sample labeling is largely determined by

the methods used in data collection. The VulRepair dataset collection process involved gathering data related to real-world vulnerabilities

and tracing the sample to its vulnerability �x commit. These links are derived from external vulnerability reports listed in databases such

as the NVD. This method assumes that each vulnerability �x commit is exclusively dedicated to addressing that vulnerability, overlooking

potential confounding factors. These factors include non-functional changes (such as stylistic modi�cations), tertiary alterations (such as

adjustment of various variables and multiple functions in a way that is unrelated to the vulnerability), and tangled commits (where a

single change addresses multiple issues simultaneously)[20].

In Table XV we show the number of samples from RQ2B that remain when only accurate samples are included in 8 of the top 10 CWEs.

Note that these inaccurate samples form a superset of inconsistent samples (such as are removed in RQ3B). Removing inaccurate samples

preserves only 44% (30/68) of the unique samples. Given the extremely small numbers in each category, the statistical importance of the

results becomes much less apparent.

Rank CWE Type Name RQ2B Samples Accurate Complete Accurate & Complete

1 CWE-787 Out-of-bounds Write 33 15 18 12

2 CWE-79 Cross-site Scripting 0 0 0 0

5 CWE-78 OS Command Injection 1 0 0 0

6 CWE-89 SQL Injection 1 1 1 1

7 CWE-416 Use After Free 29 11 18 7

8 CWE-22 Path Traversal 2 1 0 0

9 CWE-352 Cross-Site Request Forgery 2 2 1 1

10 CWE-434 Dangerous File Type - - - -

Total 68 30 38 21

Table 15. RQ2B Data Quality - Top10CWEs

4.4.2. Completeness

The concept of completeness is pivotal and pertains to the acquisition of comprehensive information necessary to identify and remedy

vulnerabilities within a given dataset or individual CWE sample (VulRepair sample). In some cases, not all of the code necessary to either

understand or repair a vulnerability is available in the sample itself. Such incomplete samples can adversely affect the learning ef�cacy of

the model, thus leading to incomplete or ineffective model prediction. During analysis, we observed that many samples lack relevant

code related to the vulnerability repair. These samples were subsequently classi�ed as unveri�able samples. Also discussed in Section 3.6.

When incomplete samples are removed from the dataset, only 56% (38/68) of samples remain as shown in Table XV. Furthermore, when

we remove those samples that are either inaccurate or incomplete, we are left with less that 1/3 of the unique samples, and only 16.5%
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(21/127 for the 8 CWE categories) of the samples reported in Fu et al.[2] We would hesitate to try to draw signi�cant conclusions about

performance of a model from such a small collection of samples.

4.5. Transfer Learning

As discussed in the introduction and detailed in the related work, Fu et al.[5] did not utilize the bug-�x dataset provided by Chen et al.

[1] The pre-training using the employed bug-�x dataset is compromised by a high number of in-set and cross-set duplicates, as well as

signi�cant overlap between the bug-�x pre-training dataset and the vulnerability �ne-tuning dataset. This signi�cantly undermines the

purpose of pre-training on the bug-�x dataset before �ne-tuning. This suggest that the results presented based on that training set

require reevaluation.

Zhang et al.[3] and Antonio et al.[6] also present results of transfer learning in their respective papers, but both suffer from data leakage

issues in pre-training and �ne-tuning. Both authors used the bug-�x dataset for pre-training, but it contains 6,192 duplicate entries in

the training dataset, 4 duplicate entries in the validation dataset, and 247 cross-set duplicates. Therefore that dataset needs to be cleaned

before it can be effectively employed. Furthermore, both authors used the VulRepair dataset, which is plagued by high duplication rates.

While Antonio et al. addressed cross-set duplicates they did not address in-set duplicates and inconsistently labeled samples leading to

potential bias. Thus, the performance of transfer learning remains dubious. All of these previously reported transfer learning results

employed data sets with quality issues.

In this section, we evaluate the documented approach presented by Chen et al.[1], which suggests that using a larger, generic bug-�x

corpus can improve the performance of vulnerability repair models but only with datasets that are free from duplicate entries. We have

three training scenarios. The �rst scenario, termed the bug-�x scenario, involves training the model solely on the de-duplicated bug-�x

dataset of Chen et al.[1]. The hyperparameter settings for this scenario are described in 3.4.1. The second scenario, which we call the

vulnerability repair scenario, focuses exclusively on training using the RQ3B dataset. The hyperparameter settings for this scenario are

described in 3.4.2. The third scenario, the transfer learning scenario, involves a two-step training process where the model is initially

trained on the bug-�x dataset and subsequently �ne-tuned on the RQ3B dataset. This structure allows us to evaluate model effectiveness

under different training conditions and ascertain the bene�ts of transfer learning in enhancing model performance on vulnerability

repair tasks.

In this section, we also analyze model performance across different beam sizes, which serves two critical purposes. First, as highlighted

in previous research, a smaller beam size is more feasible for manual inspection of the generated repairs[5][6]. Second, this analysis

provides a clearer picture of how the model performs at various beam sizes compared to prior studies, which helps pinpoint irregularities

in reported model performance across different studies. For instance, recent �ndings by VQM[5]  report their new vision-transformer

model achieves accuracy rates of 32.33%, 42.72%, and 45.14% at beam sizes of 1, 3, and 5, respectively. In the same study, VulRepair attains

accuracy rates of 29.65%, 39.85%, and 42.79% at the corresponding beam sizes. Because of the data quality issues in the bug-�x dataset

model used to train them, these likely overestimate model performance. In contrast, research by Antonio et al.[6]  reports lower

performance for the VulRepair model, with accuracy scores of 12.28%, 17.58%, and 18.64% at the same beam sizes. This discrepancy is

almost surely due to data leakage in both the bug-�x and vulnerability repair datasets as well as inconsistently labeled samples in the

vulnerability dataset.
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Models

Beam = 1 Beam = 3 Beam = 5

BF TL BF TL BF TL

VulRepair 3.6% 13.5% 7.4% 19.0% 7.6% 20.2%

CodeBERT 3.0% 12.5% 4.6% 17.3% 5.4% 18.9%

GraphCodeBERT 2.2% 11.5% 4.6% 16.9% 5.8% 19.0%

UniXcoder 1.9% 12.9% 5.2% 18.1% 6.6% 19.7%

Table 16. Bug-Fix and Transfer Learning Performance at Beam size of 1,3 and 5

Note: BF = Bug-Fix, TL = Transfer Learning

Tables 16 present the results of bug-�x and transfer learning achieved by the models at beam sizes 1, 3, and 5. Detailed outcomes are

reported in Table 31. As anticipated, VulRepair exhibited a performance decline compared to the �ndings reported by Fu et al.[5] However,

it achieved superior results relative to Antonio et al.[6].

Table 17 present the overall result of the models in three different scenarios: bug-�x training, vulnerability training, and transfer learning

at beam size 50.

Models

Beam = 50

BF VR TL

VulRepair 6.55% 10.27% 18.67%

CodeBERT 11.76% 5.38% 24.55%

GraphCodeBERT 11.76% 6.25% 25.42%

UniXcoder 11.31% 6.18% 26.07%

Table 17. Transfer Learning Performance at Beam size 50

Note: BF = Bug-Fix, VR = Vulnerability Repair and TL = Transfer Learning

These results clearly show that pre-training with a large corpus can provide improved performance on security vulnerability repair,

achieving results nearly as good as models trained on the de-duplicated VulRepair dataset. But the more important result is that

employing models pre-trained with bug-�x and using deduplicated VulRepair data for transfer learning lets each model achieve

performance that is slightly better than that or our RQ3B experiment with a beam size of 50 even when a beam size of just 1 is used and

more than twice that of RQ3B with a beam size of 5. As shown in Table 16.
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Figure 1. %PP as a Function of Beam Size for RQ5 (Transfer Learning)

To more fully understand the impact of beam size on performance of training the models with transfer learning, we evaluated these

models using beam sizes in the range 1 to 50 as reported in Tables 32 to 35. Figure 1 shows the results of this analysis. It demonstrates

that VulRepair/CodeT5 reaches its best performance around beam size 5, whereas the rest of the models show diminishing performance

improvements thereafter. This behavior is different from that reported in Fu et al.[2]  and our experiments RQ1 through RQ3B where

performance increases through beam size 50. We are uncertain of the cause of this change in behavior. Choosing an appropriate beam

size for program repair represents a trade-off between programmer effort and possible better performance. This work suggests that a

beam size somewhere between 5 and 10 may be most appropriate for the task of program repair.

5. Threats to Validity

As the goal of this paper is to show how the effect of dataset quality issues may have caused inappropriate estimates of model

performance and this work is aimed at comparing reported performance to that of the same models with dataset quality issues removed,

the primary threats to the validity of our reported results arise from two issues:

�. The model implementations we have employed may be faulty.

�. The dataset quality improvements we have applied may be �awed.

We have taken precautions against model implementation errors by employing the referenced authors’ websites for VulRepair and

CodeBERT[21] as well as GraphCodeBERT and UniXCoder[22]. Minimal changes were made to the code, namely

�. The CodeBERT model was modi�ed to generate output to a CSV �le.

�. The number of GPUs for GraphCodeBERT and UniXcoder were modi�ed for RQ1, RQ2A, RQ2B, RQ3A, RQ3B, and RQ5.

The datasets we have used by the previous authors are available from the sources cited in their respective works. Determination of label

accuracy and completeness for results on the top 10 CWEs was initially carried out by author 1 and those samples that raised questions

were also inspected by author 2. We are open to the possibility that errors may have occurred in this analysis. That is why all the data and

analysis notes are available from our github site.
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The more compelling issue associated with data quality in the VulRepair dataset, concerns the issues of accuracy and completeness. The

work reported in Sections 4.4.1 and 4.4.2 regarding accuracy and completeness only partially identi�es and analyzes inaccurate and

incomplete samples from the RQ2B test set samples that were used to create results for the referenced experiments. The amount of labor

required to scour the entire dataset for such defective samples could not be carried out in time for this presentation. It is certain that

numerous inaccurate and incomplete samples persist in that dataset’s training, validation, and test samples. The full extent of the effect

of these samples on model performance is still unknown.

6. Related Work

Mastropaolo et al.[6]  investigate different training strategies for vulnerability repair. They begin by replicating the VulRepair work,

identifying issues with cross-set duplicates in the VulRepair dataset. However, they were unable to fully resolve the problem due to the

presence of unresolved duplicates with label mismatches, i.e., inconsistent labels (duplicate code with con�icting CWE tags). This resulted

in 259 cross-set duplicate samples in the test set and 49 in the validation set overlapping with the training set. Additionally, the dataset

contains in-�le duplicates, comprising 1,424 in the training set, 35 in the validation set, and 109 in the test set. In total, the dataset suffers

from 1,424 duplicates in the training set, 84 in the validation set, and 368 in the test set.

Test set duplicates can skew performance estimates either positively or negatively, depending on whether the duplicated instances are

correctly or incorrectly repaired. Validation set duplicates may lead to premature termination of the training process or cause it to run

longer than necessary, contingent on the correctness of the repairs for these duplicates. Training set duplicates introduce a slight bias,

preferentially enhancing the model’s performance on duplicated entries compared to non-duplicated ones. These issues are addressed in

Sections 4.2 and 4.3 of our paper. While Mastropaolo et al. limit their evaluation to CodeT5, we extend the analysis by including

CodeBERT, GraphCodeBERT, and UniXCoder, demonstrating their superior performance compared to CodeT5 at beam sizes of 10 or more.

Furthermore, unlike Mastropaolo et al.[6], we performed a manual analysis of the top 10 CWE categories in the dataset, verifying the

accuracy and completeness of the samples, which is crucial for understanding the characteristics of vulnerability samples. Our �ndings

also indicate that transfer learning outperforms the prompt tuning method used by the authors.

Ding et al.[7] similarly highlight issues with exact code duplicates and low label accuracy in datasets like CVE�xes and BigVul. Their focus,

however, is on the effectiveness of large language models (LLMs) for vulnerability detection, which is distinct from program repair. Their

work lacks a comprehensive evaluation of models on deduplicated datasets, instead proposing a new method for constructing a robust

dataset and evaluating models on it. Their proposed dataset is not well-suited for program repair as many samples lack CWE types which

are essential for characterizing vulnerability samples and training repair models.

Fu et al.[5]  reported further work on program repair by introducing a vision transformer model leveraging the bug-�x provided by

VRepair[1] and vulnerability datasets (VQM). The authors claim that VRepair was initially pre-trained on a bug-�x dataset of 23,607 C/C++

functions. In fact, as noted in Section 1, VRepair was pre-trained on a bug-�x dataset with 534,848 training and 10,000 validation

samples[1]. Our analysis of the bug-�x dataset[10] used for VQM pre-training revealed that it contains 21,246 training samples and 2,362

validation samples. We identi�ed 17,303 duplicate entries in the training set and 666 duplicates in the validation set, reducing the dataset

to 3,943 unique training samples and 1,695 unique validation samples. Following the removal of in-set duplicates, we also performed a

cross-set duplicate analysis, which identi�ed 1,613 duplicates shared between the training and validation sets. During manual

veri�cation, we noticed several samples appeared identical except for misplaced <S2SV_StartBug> and <S2SV_EndBug> tags, which the

Pandas drop_duplicates() will not identify as matches even though their code is identical. After removing these tags and reanalyzing the

data, we found an extra 1319 (18,622 - 17303) duplicate entries in the training set and 116 (782 - 666) duplicates in the validation set,

leaving 2,624 unique training samples and 1,579 unique validation samples. A subsequent cross-set duplicate check revealed that all of the

validation set code samples are present in the training set, suggesting signi�cant data overlap. Additionally, we observed that the pre-tag
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of the samples in the bug-�x dataset includes vulnerability CWE tags, indicating that these samples belong to vulnerability categories

rather than generic bug-�x categories (CWE-000). This observation led us to suspect potential data leakage between the bug-�x and

�ne-tuned vulnerability datasets (VQM). To investigate further, we conducted a cross-set duplicate analysis by comparing the test,

validation, and training sets from the �ne-tuned vulnerability dataset against the training set of the bug-�x dataset used by VQM. Our

analysis revealed 511 matching entries out of 1,090 test set samples, 243 matches from the 536 validation set samples, and 1,747 duplicates

from the 3,790 training set samples in the bug-�x dataset’s training set. These results demonstrate a signi�cant overlap between the

datasets. These �ndings raise concerns about data leakage, which could have contributed to the reported performance results of 32.33%,

42.72%, and 45.14% at beam sizes of 1, 3, and 5, respectively. Given this overlap, we contend that retraining the model without these

duplicates is necessary to assess its true performance accurately.

Another recent work, DiverseVul[23], is a vulnerability dataset that follows an automated labeling approach, collecting vulnerability-�xing

commits from open-source databases such as NVD, assuming that all such commits modify only the vulnerable function. This approach

introduces signi�cant label noise, however, with the dataset being reported as only 60% accurate. Furthermore, this dataset does not

include repaired code and is unsuitable for use in vulnerability repair systems.

7. Conclusion

When one trains a model to correctly repair program vulnerabilities, its accuracy depends on several critical factors concerning data

employed in training or �ne-tuning. First, the presence of the actual vulnerability within each buggy program sample is essential.

Second, each buggy sample program must be accurately described using a Common Weakness Enumeration (CWE) label that correctly

identi�es the type of vulnerability. Additionally, for each sample needing repair, it is crucial that the <StartBug> and <EndBug> tags are

precisely placed to assist the model in recognizing and understanding the vulnerability. Finally, when validating the model’s output, it is

imperative to compare it against a reference code that is complete and contains no missing tokens. These components are vital to

ensuring that the model’s predictions are both accurate and reliable. We observed that a signi�cant number of samples in various

datasets lack one or more of these criteria, adversely affecting the overall performance of vulnerability repair models.

The work we reported was veri�ed over multiple runs of models trained with different random seeds. When reporting model

performance, it is crucial to report the mean accuracy because signi�cant variations in performance are observed even when testing on

the same dataset.

Our work has replicated the results of others using datasets with uniqueness and consistency defects removed. The results we achieved

removing only these two kinds of problems make is clear that previous studies have overestimated the capabilities of the models. We

demonstrated that simply pre-training a model with a large corpus of bug-�x data can yield performance similar to the actual

performance of the reported systems on a deduplicated VulRepair dataset and that employing transfer learning can improve them

dramatically more. We have seen nothing that proves that automated program repair is beyond the capability of LLMs, only that the

datasets we have used to train and test such systems are hopelessly small and have been riddled with errors.

We showed that inconsistently labeled samples, repeating the same buggy and repaired code with different CWE tags, yield over-

estimated performance similar to duplicate samples. All of the models tested showed the impact of data leakage from such samples.

The value of high-quality, large datasets to support program repair cannot be overstated. Collecting and curating these datasets is a

monumental task. The ACM artifact review and badging effort is a good start, but if we are to address the needs of the security

vulnerability repair community, it needs to be expanded. The fact that the primary dataset studied here received an Artifacts Evaluated-

Reusable badge (as discussed in Section 2.5) indicates both the dif�culty of such evaluations and the need to take extreme care. Such

datasets should be the property and responsibility of the community with well-de�ned methods for contributions and public auditing.

Only when we can trust our data can we trust our results.
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Appendix A. Detailed Results

Models Seed 26312 Seed 43511 Seed 67732 Seed 70757 Seed 95541 Seed 123456 Average PP

VulRepair 0.4349 0.4197 0.4244 0.3511 0.4244 0.371 40.42% (2.4255/6)

CodeBERT 0.3294 0.3687 0.3406 0.2327 0.3992 0.3212 33.20% (1.9918/6)

GraphCodeBERT 0.4238 0.3904 0.3576 0.3857 0.3804 0.3728 38.51% (2.3107/6)

UniXcoder 0.4045 0.4174 0.4467 0.3986 0.3499 0.4402 40.96% (2.4573/6)

Table 18. Performance Of Models on RQ1

Models Seed 26312 Seed 43511 Seed 67732 Seed 70757 Seed 95541 Seed 123456 Average PP

VulRepair 0.096 0.1053 0.0786 0.1034 0.0848 0.0663 8.91% (0.5344/6)

CodeBERT 0.0545 0.0514 0.0588 0.0471 0.0588 0.0644 5.58% (0.3350/6)

GraphCodeBERT 0.057 0.0495 0.0545 0.0508 0.0514 0.0551 5.31% (0.3183/6)

UniXcoder 0.0601 0.0557 0.0483 0.0477 0.0378 0.0396 4.82% (0.2892/6)

Table 19. Performance Of Models on RQ2A

Models Seed 26312 Seed 43511 Seed 67732 Seed 70757 Seed 95541 Seed 123456 Average PP

VulRepair 0.1551 0.0965 0.1575 0.1526 0.1111 0.1172 13.17% (0.79/6)

CodeBERT 0.1038 0.0769 0.0916 0.0891 0.0842 0.0842 8.83% (0.5298/6)

GraphCodeBERT 0.1001 0.0965 0.094 0.0916 0.083 0.0879 9.22% (0.5531/6)

UniXcoder 0.083 0.1197 0.1062 0.0794 0.0904 0.0672 9.10% (0.5459/6)

Table 20. Performance Of Models on RQ2B
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Models Seed 26312 Seed 43511 Seed 67732 Seed 70757 Seed 95541 Seed 123456 Average PP

VulRepair 0.0834 0.074 0.0777 0.0445 0.0665 0.0821 7.14% (0.4282/6)

CodeBERT 0.0426 0.042 0.0326 0.0307 0.032 0.0357 3.59% (0.2156/6)

GraphCodeBERT 0.0376 0.0364 0.0351 0.042 0.0376 0.0364 3.75% (0.2251/6)

UniXcoder 0.0426 0.042 0.0364 0.0445 0.037 0.0439 4.11% (0.2464/6)

Table 21. Performance Of Models on RQ3A

Models Seed 26312 Seed 43511 Seed 67732 Seed 70757 Seed 95541 Seed 123456 Average PP

VulRepair 0.1012 0.0878 0.0923 0.1071 0.1101 0.1176 10.27% (0.6161/6)

CodeBERT 0.0521 0.0506 0.058 0.0551 0.0565 0.0506 5.38% (0.3229/6)

GraphCodeBERT 0.0625 0.0506 0.0685 0.058 0.067 0.0685 6.25% (0.3751/6)

UniXcoder 0.061 0.0625 0.0685 0.0685 0.0565 0.0536 6.18% (0.3706/6)

Table 22. Performance Of Models on RQ3B

Model

Seed 26312 Seed 43511 Seed 67732 Seed 70757 Seed 95541 Seed 123456 Average PP

RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B

VR 22 1 1 18 0 0 18 1 0 12 2 0 17 2 1 17 1 1 32.7% 3.5% 2.3%

CB 11 1 0 8 0 0 8 2 0 6 0 0 14 1 0 9 1 0 17.6% 2.5% 0.0%

GCB 16 1 0 14 1 0 12 1 0 14 1 0 11 1 0 12 0 0 24.8% 2.5% 0.0%

UX 15 2 0 16 2 1 18 2 1 12 1 0 10 2 0 18 1 0 28.0% 5.0% 1.5%

Note: RQ1, RQ2B, and RQ3B present total correct predictions out of 53, 33, and 22 total samples, respectively.

Table 23. Model Performance on RQ1, RQ2B and RQ3B - CWE-787
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Model

Seed 26312 Seed 43511 Seed 67732 Seed 70757 Seed 95541 Seed 123456 Average PP

RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B

VR 52 5 4 54 3 3 57 4 4 43 6 5 54 3 5 45 3 5 29.9% 5.9% 6.5%

CB 49 8 6 58 8 6 61 6 5 36 7 6 60 8 6 50 7 6 30.8% 10.8% 8.7%

GDB 71 7 6 66 7 6 56 9 8 67 7 7 65 7 7 65 8 8 38.2% 11.0% 10.5%

UX 75 9 7 74 8 6 79 11 7 73 7 7 57 8 7 77 7 6 42.7% 12.2% 9.95%

Note: RQ1, RQ2B, and RQ3B present total correct predictions out of 170, 68, and 67 total samples, respectively.

Table 24. Model Performance on RQ1, RQ2B and RQ3B - CWE-125

Model

Seed 26312 Seed 43511 Seed 67732 Seed 70757 Seed 95541 Seed 123456 Average PP

RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B

VR 73 12 5 68 8 4 73 11 5 61 9 9 71 10 6 63 8 5 44.8% 13.2% 8.99%

CB 52 7 5 58 5 3 50 6 5 39 5 2 61 5 4 49 4 4 33.9% 7.3% 6.1%

GDB 63 8 5 58 8 4 56 7 5 58 6 5 57 9 6 58 7 5 38.4% 10.3% 7.9%

UX 56 7 6 60 10 6 64 8 6 57 6 4 54 7 4 65 4 3 39.0% 9.6% 7.7%

Note: RQ1, RQ2B, and RQ3B present total correct predictions out of 152, 73, and 63 total samples, respectively.

Table 25. Model Performance on RQ1, RQ2B and RQ3B - CWE-20

Model

Seed 26312 Seed 43511 Seed 67732 Seed 70757 Seed 95541 Seed 123456 Average PP

RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B

VR 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 22.2% 0% 0%

CB 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 22.2% 0% 0%

GDB 1 0 0 2 0 0 1 0 0 1 0 0 1 0 0 0 0 0 33.3% 0% 0%

UX 2 0 0 2 0 0 1 0 0 1 0 0 1 0 0 1 0 0 44.4% 0% 0%

Note: RQ1, RQ2B, and RQ3B present total correct predictions out of 3, 1, and 1 total samples, respectively.

Table 26. Model Performance on RQ1, RQ2B and RQ3B - CWE-78
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Model

Seed 26312 Seed 43511 Seed 67732 Seed 70757 Seed 95541 Seed 123456 Average PP

RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B

VR 2 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 56.7% 0% 0%

CB 2 0 0 1 0 0 2 0 0 2 0 0 3 0 0 2 0 0 40.0% 0% 0%

GDB 3 0 0 3 0 0 2 0 0 3 0 0 3 0 0 2 0 0 53.3% 0% 0%

UX 3 0 0 3 0 0 3 0 0 3 0 0 2 0 0 3 0 0 56.7% 0% 0%

Note: RQ1, RQ2B, and RQ3B present total correct predictions out of 5, 1, and 1 total samples, respectively.

Table 27. Model Performance on RQ1, RQ2B and RQ3B - CWE-89

Model

Seed 26312 Seed 43511 Seed 67732 Seed 70757 Seed 95541 Seed 123456 Average PP

RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B

VR 33 4 0 31 1 0 30 2 0 23 2 0 28 2 0 24 1 0 51.2% 6.9% 0%

CB 21 3 0 24 0 0 23 3 0 11 2 0 30 1 0 26 1 0 40.9% 5.8% 0%

GDB 30 5 0 27 4 0 25 3 0 27 2 0 27 0 0 25 2 0 48.8% 9.2% 0%

UX 26 1 0 27 5 0 29 4 0 27 0 0 23 1 0 29 0 0 48.8% 6.3% 0%

Note: RQ1, RQ2B, and RQ3B present total correct predictions out of 55, 29, and 17 total samples, respectively.

Table 28. Model Performance on RQ1, RQ2B and RQ3B - CWE-416

Model

Seed 26312 Seed 43511 Seed 67732 Seed 70757 Seed 95541 Seed 123456 Average PP

RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B

VR 3 0 0 3 0 0 3 0 0 2 0 0 3 0 0 2 0 0 33.3% 0% 0%

CB 2 0 0 3 0 0 2 0 0 1 0 0 3 0 0 3 0 0 29.2% 0% 0%

GDB 3 0 0 3 0 0 2 0 0 3 0 0 3 0 0 2 0 0 33.3% 0% 0%

UX 3 0 0 3 0 0 3 0 0 3 0 0 2 0 0 3 0 0 35.4% 0% 0%

Note: RQ1, RQ2B, and RQ3B present total correct predictions out of 8, 2, and 2 total samples, respectively.

Table 29. Model Performance on RQ1, RQ2B and RQ3B - CWE-22
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Model

Seed 26312 Seed 43511 Seed 67732 Seed 70757 Seed 95541 Seed 123456 Average PP

RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B RQ1 RQ2B RQ3B

VR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0% 0% 0%

CB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0% 0% 0%

GDB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0% 0% 0%

UX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0% 0% 0%

Note: RQ1, RQ2B, and RQ3B present total correct predictions out of 2, 2, and 2 total samples, respectively.

Table 30. Model Performance on RQ1, RQ2B and RQ3B - CWE-352

Model Beam = 1 Beam = 3 Beam = 5 Beam = 50

VulRepair 3.57% (0.0357) 7.29% (0.0729) 7.59% (0.0759) 6.55% (0.0655)

CodeBERT 2.98% (0.0298) 4.61% (0.0461) 5.36% (0.0536) 11.76% (0.1176)

GraphCodeBERT 2.23% (0.0223) 4.61% (0.0461) 5.8% (0.058) 11.76% (0.1176)

UniXcoder 1.93% (0.0193) 5.21% (0.0521) 6.55% (0.0655) 11.31% (0.1131)

Note: Pre-training is only done once on seed 26312.

Table 31. Performance Of Models on RQ5 using RQ3B dataset - Pre-training

Seed Beam = 1 Beam = 3 Beam = 5 Beam = 10 Beam = 20 Beam = 30 Beam = 40 Beam = 50

26312 0.1324 0.1890 0.1964 0.2024 0.1905 0.1845 0.1845 0.1845

43511 0.1354 0.1815 0.1875 0.1935 0.186 0.1875 0.1801 0.1786

67732 0.1399 0.1890 0.2068 0.2024 0.1994 0.2009 0.1994 0.1964

70757 0.1399 0.1994 0.2143 0.2068 0.2054 0.1994 0.2024 0.2009

95541 0.1414 0.1994 0.2098 0.2128 0.2054 0.1964 0.1905 0.186

123456 0.1220 0.1830 0.1979 0.186 0.183 0.1771 0.1786 0.1741

Average PP 13.53% 19.03% 20.21% 20.0% 19.5% 19.17% 19.0% 18.67%

Table 32. VulRepair Performance on RQ5 using RQ3B dataset - Transfer Learning
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Seed Beam = 1 Beam = 3 Beam = 5 Beam = 10 Beam = 20 Beam = 30 Beam = 40 Beam = 50

26312 0.119 0.1711 0.189 0.2068 0.2262 0.2336 0.2411 0.2455

43511 0.124 0.1696 0.189 0.2054 0.2232 0.2366 0.2411 0.2411

67732 0.128 0.1815 0.1935 0.2158 0.2292 0.2351 0.2396 0.2455

70757 0.131 0.1756 0.2009 0.2232 0.2396 0.244 0.247 0.253

95541 0.128 0.1682 0.1786 0.2039 0.2307 0.2426 0.2455 0.2485

123456 0.118 0.170 0.183 0.1979 0.2143 0.2277 0.2351 0.2396

Average PP 12.47% 17.27% 18.9% 20.83% 22.67% 23.67% 24.17% 24.55%

Table 33. CodeBERT Performance on RQ5 using RQ3B dataset - Transfer Learning

Seed Beam = 1 Beam = 3 Beam = 5 Beam = 10 Beam = 20 Beam = 30 Beam = 40 Beam = 50

26312 0.125 0.1786 0.1949 0.2173 0.2396 0.2485 0.2589 0.2619

43511 0.128 0.1845 0.2054 0.2247 0.2426 0.253 0.2574 0.2634

67732 0.1131 0.1756 0.1905 0.2143 0.2351 0.244 0.253 0.2649

70757 0.1131 0.1741 0.1964 0.2188 0.2321 0.247 0.253 0.2574

95541 0.1161 0.1696 0.1905 0.2173 0.2292 0.2396 0.2411 0.247

123456 0.0952 0.131 0.1592 0.183 0.2068 0.2143 0.2202 0.2307

Average PP 11.51% 16.89% 18.95% 21.33% 23.17% 24.17% 24.67% 25.42%

Table 34. GraphCodeBERT Performance on RQ5 using RQ3B dataset - Transfer Learning

Seed Beam = 1 Beam = 3 Beam = 5 Beam = 10 Beam = 20 Beam = 30 Beam = 40 Beam = 50

26312 0.1339 0.1741 0.1904 0.2202 0.2381 0.244 0.25 0.256

43511 0.1369 0.1889 0.2024 0.2262 0.247 0.2515 0.2604 0.2649

67732 0.1339 0.1875 0.2054 0.2307 0.2426 0.253 0.2649 0.2723

70757 0.1250 0.1741 0.1949 0.2232 0.2426 0.256 0.2619 0.2664

95541 0.1235 0.1845 0.1964 0.2202 0.2381 0.247 0.253 0.256

123456 0.1235 0.1786 0.1890 0.2128 0.2307 0.2381 0.2455 0.2485

Average PP 12.94% 18.13% 19.74% 22.17% 24.0% 24.83% 25.67% 26.07%

Table 35. UniXcoder Performance on RQ5 using RQ3B dataset - Transfer Learning
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