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Abstract

This study uses finite power series as the basis function and interpolation and collocation

techniques to study a class of implicit block methods of a seventh-derivative type. Discrete

schemes are implicit two-point block methods that are obtained by selecting collocation points

carefully and unevenly in order to improve the stability of the methods through testing.

Nevertheless, in contrast to other current numerical equations, these methods require seventh-

derivative functions. The novel techniques are identified, examined, and shown to be A-stable

and convergent. Newton Raphson’s approach is used to accomplish method implementation.

Trials demonstrated the effectiveness and precision of the derived equations in terms of

computational time and absolute errors on a variety of first-order initial value issues, such

as first-order, second-order linear differential systems and SIR model. When compared to

similar methods that are currently in the literature, the suggested methods produce better

numerical results.

Keywords: Seventh-derivative functions, implicit block method, interpolation and

non-uniform collocation.

1. Introduction

Over the years, stiff differential equations have been explored in an effort to create suitable

and reliable numerical methods. It is important to remember that [1] was the first to study

the most effective numerical strategy for solving stiff ODEs. Diverse academics define this

fascinating field of study in different ways. As such, it can be described as ill-conditioned

equations. First order initial value problems of the form of Equation (1), should be examined

in order to reveal the nature of the ill-conditioning’s stiffness and to highlight the necessity of
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developing effective numerical techniques for stiff differential equations:

y′ = f(x, y), a ≤ x ≤ b, y(0) = y0, (1)

where the step size is denoted by h and xn = x0 + nh. According to [2], The initial value

problems with stiff ordinary differential equations occur in many field of engineering science,

particularly in the studies of electrical circuits, vibrations, chemical reactions and so on. Stiff

differential equations are ubiquitous in astrochemical kinetics, many non-industrial areas like

weather prediction and biology. A set of differential equations is ’stiff’ when an excessively

small step is needed to obtain correct integration.

Furthermore, a stiff system of equations is one for which |λmax| (where λ is the eigenvalues)

is enormous, meaning that only unreasonable restrictions on h (that is, an excessively small h

that necessitates an excessive number of steps to solve the initial value problem) can guarantee

the stability, the error bound, or both. In this context, enormous refers to a scale of 1
b
. Thus,

an equation with |λmax|, may also be viewed as stiff if we must solve it for great values of time,

where f : [xn, xN ]×Rm → Rm in (1) is continuous and differentiable; so that, f is assumed

to satisfy the existence and uniqueness theorem within the interval of [a, b]; while stability is

clearly necessary, it is not sufficient to acquire precise solutions to stiff ordinary differential

equation systems. One frequently noticed occurrence, is that many implicit methods appear

to fall short of the predicted accuracy order when used to stiff situations. We refer to this

process as order reduction. Runge-Kutta techniques undoubtedly result in order reduction,

while backward differentiation formula techniques do not. Furthermore, because step-size

is limited to preserve the methods’ potential accuracy, explicit methods are unable to solve

stiff ODEs. Using proper implicit methods solves this problem (see [3]). Nonetheless, a few

well-known numerical techniques are the Runge-Kutta methods in [6], the Euler method by

[4], and linear multistep approaches in [5]. Furthermore, many research and engineering

domains face challenging problems of a rigid character that are outside the scope of the

aforementioned approaches. Thus, there is a need to create more practical approximation

techniques. Furthermore, for stiff IVPs, [7] developed a diagonally implicit block backward

differentiation formula. Implicit linear block multistep algorithms for first-order stiff and non-

stiff IVPs have been devised and implemented, respectively, in [9, 12, 13, 15, 17, 19, 20].

Remarkably, [21, 22] also created and applied an implicit four-point hybrid block integrator on

stiff models connected to specific real-world scenarios, using a technique that was almost as

good as other approaches already in use. In [23, 24], an additional implicit block technique has

been explored for utilizing the Chebyshev polynomial to solve stiff IVPs. Nevertheless, their

techniques rely on the approximation of perturbed collocation.

Among other places, [25, 26, 27, 28] have proposed applications of multi-derivatives block

approaches to first-order stiff initial-value problems. Higher derivative approaches, however,

generally have the drawback of requiring the provision and evaluation of derivatives functions,

leading to a greater number of function evaluations. Therefore, if numerical methods are not
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sufficiently stable, that is, if the numerical errors are not checked by the zero-stability and

consistency properties—this shortcoming can lead to round-off errors in the global iterations.

As a result, using collocation and interpolation techniques, [29] developed and used the fourth

derivative k−point block formula on first-order stiff IVPs. Similarly, for solving (1), [30]

suggested a third derivative trigonometrically fitted block technique of a low order 2. Equation

(1) was solved by [31] using second-derivative methods. Furthermore, [33] considered a seventh-

order second-derivative block technique for solving (1) directly, with numerical results better

than those in [34].

The work in [35], developed a continuous implicit seventh-eight approach of uniform order

8 for the direct solution of (1) by using a power series basis function using collocation and

interpolation techniques. But the previously mentioned also took into account relevant issues

as the Prothero-Robinson oscillatory problem, the growth and SIR models. In [22], an optimal

family of block techniques is applied to solve models of infectious diseases using fixed and

adaptive strategies. The approaches, did not only take into account the numerical accuracy

but also the precision factor among others, which is, the negative logarithm of the absolute

errors of the methods.

Summarily, in contrast to conventional approaches, the idea behind the inclusion of seventh-

derivative is to investigate the effect of non-uniform distribution of collocation points on the

stability of numerical methods with higher-order accuracy for direct solution of (1). The

proposed methods, are a group of discrete schemes of function of first order with type seventh-

derivative, which makes them significant. In contrast to other existing approaches that

have a constant kth−points of collocation, they also have strategic non-uniform distribution

and positioning of collocation points with a higher-order of accuracy. Although providing

the previously indicated total derivative functions in the proposed approaches, is a burden

imposed by these techniques. However, the significance of the derived methods is demonstrated

by their efficiency and correctness. Second, the point collocation strategy used cannot be

generalized because it has not been verified in the formulation of higher-order numerical

methods. Thirdly, the new methods become cumbersome correspondingly to the complexity

of differential equation systems, as the derivative functions have to be provided. Tests on

numerical examples, however, show that our obtained formulae are workable on first-order,

second-order IVPs and application difficulty in biology (SIR model).

For that reason, the present study is structured as follows: The proposed methods are

derived in section two, the analysis of the numerical properties is shown in section three,

the implementation strategy is presented in section four, the numerical experiment is shown in

section five, the methods are applied in real-world scenarios in section six, and the conclusion

and future research are presented in section seven.
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2. Derivation of the seventh-derivative methods

Consider the following power series polynomial:

y(x) =
k+8∑
j=0

ajx
j, (2)

with its derivatives given as:

y′(x) =
k+8∑
j=0

jajx
j−1 = f(x, y), (3)

y′′(x) =
k+8∑
j=0

j(j − 1)ajx
j−2 = g(x, y), (4)

y′′′(x) =
k+8∑
j=0

j(j − 1)(j − 2)ajx
j−3 = u(x, y), (5)

y′′′′(x) =
k+8∑
j=0

j(j − 1)(j − 2)(j − 3)ajx
j−4 = v(x, y), (6)

...

with the following as seventh-derivative:

y(7)(x) =
k+8∑
j=0

j(j − 1)(j − 2)(j − 3)(j − 4)(j − 5)(j − 6)ajx
j−7 = q(x, y). (7)

Note that:

y′n+i = fn+i, i = 0(1)k, y′′n+i = gn+i, i = 1, . . . k, y′′′n+i = un+i, i = k, y
(4)
n+i = vn+i, i = k, y

(5)
n+i =

wn+i, i = k, y
(6)
n+i = mn+i, i = k, y

(7)
n+i = qn+i, i = k(1). Where aj′s ∈ R in (2)–(7) are found using

Gaussian elimination method. Therefore, (2) and (3)–(7) are then interpolated and collocated

at xn and xn+l, l = 0(1)k (where k is the step number and k = 2) to give the following block

figures:

CC C C C C C C C C C

I I I
xn

h

xn+1

h

xn+2

h

xn+3

2h

xn+5

2h

xn+7 xn+9

2h

xn+11

2h

xn+13

2h

xn+14

h

xn+16

2h

Figure 1: Seventh-derivative non-uniform two-step block figure for 7D2PIB1

Which yields the following equation system:

PX = Q, (8)
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CC C C C C C C C C C

I I I
xn

h

xn+1

h

xn+2

h

xn+3

2h

xn+5

2h

xn+7 xn+8

h

xn+10

2h

xn+12

2h

xn+14

2h

xn+16

2h

Figure 2: Seventh-derivative non-uniform two-step block figure for 7D2PIB2

Where,

P =



1xn x2
n x3

n x4
n x5

n x6
n x7

n x8
n x9

n x10
n

0 1 2xn+l 3x
2
n+l 4x

3
n+l 5x4

n+l 6x5
n+l 7x6

n+l 8x7
n+l 9x8

n+l 10x9
n+l

...
...

...
...

...
...

...
...

...
...

...

0 0 2 6xn+k 12x
2
n+k 20x3

n+k 30x4
n+k 42x5

n+k 56x6
n+k 72x7

n+k 90x8
n+k

0 0 0 6 24xn+k 60x2
n+k 120x3

n+k 210x4
n+k 336x5

n+k 504x6
n+k 720x7

n+k

0 0 0 0 24 120xn+k 360x
2
n+k 840x3

n+k 1680x4
n+k 3024x5

n+k 5040x6
n+k

0 0 0 0 0 120 720xn+k 2520x
2
n+k 6720x3

n+k 15120x4
n+k 30240x5

n+k

0 0 0 0 0 0 720 5040xn+k 20160x
2
n+k 60480x3

n+k 151200x4
n+k

0 0 0 0 0 0 0 5040 40320xn+1 181440x
2
n+1 604800x

3
n+1

0 0 0 0 0 0 0 5040 40320xn+k 181440x
2
n+k 604800x

3
n+k



,

X =

(
a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10

)⊤
,

Q =

(
yn, fn, fn+1, fn+2, f

′
n+k, f

(2)
n+k, f

(3)
n+k, f

(4)
n+k, f

(5)
n+k, f

(6)
n+1, f

(6)
n+k

)⊤
.

After (8) is solved for aj′s ∈ R, j = 0(1)10 by multiplying the inverse of matrix P with Q and

substitution made into (2), gives the LMM below using Maple 18 soft environment:

y(xn+ξ) = α0(ξ)yn + h

k∑
j=0

βj(ξ)fn+j + h2
∑
j=3

βj(ξ)gn+k + h3
∑
j=4

βj(ξ)un+k

+h4
∑
j=5

βj(ξ)vn+k + h5
∑
j=6

βj(ξ)wn+k + h6
∑
j=7

βj(ξ)mn+k + h7
9∑

j=8

βj(ξ)
k∑

i=1

qn+i, (9)

Therefore, the parameters α0(ξ) and βj(ξ) are obtained for ξ = x − xn, so that the coefficients of

yn+1 and yn+2 are normalized. Therefore,

α0 = 1, (10)
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β0 = ξ − 3
2
ξ2

h + 2
3

ξ3

h2 + 7 ξ4

8h3 − 63 ξ5

40h4 + 7
6
ξ6

h5 − 1
2
ξ7

h6 + 33 ξ8

256h7 − 43 ξ9

2304h8 + 3 ξ10

2560h9 , (11)

β1 =
128 ξ3

3h2 − 112 ξ4

h3 + 672 ξ5

5h4 − 280 ξ6

3h5 + 40 ξ7

h6 − 21
2

ξ8

h7 + 14 ξ9

9h8 − 1
10

ξ10

h9 , (12)

β2 =
3
2
ξ2

h − 130 ξ3

3h2 + 889 ξ4

8h3 − 5313 ξ5

40h4 + 553 ξ6

6h5 − 79 ξ7

2h6 + 2655 ξ8

256h7 − 3541 ξ9

2304h8 + 253 ξ10

2560h9 , (13)

β3 =
−5
2 ξ2 + 44 ξ3

h − 441 ξ4

4h2 + 525 ξ5

4h3 − 91 ξ6

h4 + 39 ξ7

h5 − 1311 ξ8

128h6 + 583 ξ9

384h7 − 25 ξ10

256h8 , (14)

β4 = 2 ξ2h − 45 ξ3

2 + 217 ξ4

4h − 1281 ξ5

20h2 + 133 ξ6

3h3 − 19 ξ7

h4 + 639 ξ8

128h5 − 853 ξ9

1152h6 + 61 ξ10

1280h7 , (15)

β5 = −ξ2h2 + 23 ξ3h
3 − 419 ξ4

24 + 203 ξ5

10h − 14 ξ6

h2 + 6 ξ7

h3 − 101 ξ8

64h4 + 15 ξ9

64h5 − 29 ξ10

1920h6 , (16)

β6 =
1
3ξ

2h3 − 17 ξ3h2

9 + 4 ξ4h − 109 ξ5

24 + 28 ξ6

9h − 4
3
ξ7

h2 + 45 ξ8

128h3 − 181 ξ9

3456h4 + 13 ξ10

3840h5 , (17)

β7 =
−1
15 ξ

2h4 + 14 ξ3h3

45 − 37 ξ4h2

60 + 41 ξ5h
60 − 67 ξ6

144 + 1
5
ξ7

h − 17 ξ8

320h2 + 23 ξ9

2880h3 − ξ10

1920h4 , (18)

β8 = −2h5ξ2

315 + 2h4ξ3

105 − 1
36h

3ξ4 + 11h2ξ5

450 − hξ6

72 + 13 ξ7

2520 − 7 ξ8

5760h + ξ9

6048h2 − ξ10

100800h3 , (19)

β9 =
2h5ξ2

315 − 5h4ξ3

189 + 1
20h

3ξ4 − 49h2ξ5

900 + 1
27hξ

6 − 9 ξ7

560 + 5 ξ8

1152h − 121 ξ9

181440h2 + ξ10

22400h3 . (20)

At ξ = h and ξ = 2h, evaluate (11) – (20), and substitute into (9) to obtain the newly developed

seventh-derivative implicit block methods, abbreviated as “7D2PIB1 and 7D2PIB2” correspondingly.

yn+1 = yn +
5639

23040
hfn +

121

45
hfn+1 − 44551

23040
hfn+2 +

1289

768
h2gn+2 − 7687

11520
h3un+2

+
287

1920
h4vn+2 − 583

34560
h5wn+2 +

1

5760
h6mn+2 − 257

604800
h7qn+1 +

121

907200
h7qn+2, (21)

yn+2 = yn +
11

45
hfn +

128

45
hfn+1 − 49

45
hfn+2 +

4

3
h2gn+2 − 26

45
h3un+2 +

2

15
h4vn+2

− 2

135
h5wn+2 − 2

4725
h7qn+1 +

2

14175
h7qn+2. (22)

In a similar manner, 7D2PIB2, the second formula, is obtained and given as follows:

yn+1 = yn +
1663

11520
hfn +

121

45
hfn+1 − 21119

11520
hfn+2 +

2837

1920
h2gn+2 − 2687

5760
h3un+2

− 257

5040
h4vn+1 +

1343

20160
h4vn+2 − 113

120960
h5wn+2 − 37

33600
h6mn+2 +

121

907200
h7qn+2, (23)
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yn+2 = yn +
13

90
hfn +

128

45
hfn+1 − 89

90
hfn+2 +

17

15
h2gn+2 − 17

45
h3un+2 − 16

315
h4vn+1

+
16

315
h4vn+2 +

h5wn+2

945
− 2

1575
h6mn+2 +

2

14175
h7qn+2. (24)

3. The stability analysis of the methods

With the proposed numerical techniques, this section provides the numerical properties and theorems

(without proofs).

Theorem 3.1. Convergence [6]: The necessary and sufficient conditions for the linear multistep

method (LMM) of (21)–(24) to be convergent are that it must be consistent and zero-stable.

Theorem 3.2. The necessary and sufficient condition for the method given by (21)–(24) to be zero-

stable is that it satisfies the root condition (See [6]).

Definition 3.1. Zero-stability [11]

The numerical methods in (21) – (24) are said to be zero-stable if no root of te first characteristic

polynomial has a modulus greater than one and that every root with modulus one is simple.

Definition 3.2. A-stability : A numerical method is said to be A-stable if the whole of the left-half

plane z : ℜ(z) ≤ 0 is contained in the region z : ℜ(z) ≤ 1. Where ℜ(z) is the stability polynomial of

the proposed method. (See [6]).

Definition 3.3. A(α)-stability : A numerical algorithm is said to be A(α)-stable for some α ∈ [0, π2 ] if

the wedge Sα = {z : |Arg(−z)| < α, z ̸= 0} is contained in its region of absolute stability. (See, [8]).

Definition 3.4. Linear Multistep Method(LMM): A linear multi-step method is a computation

method for determining the numerical solution of initial value problems of ODEs which form a linear

relation between yn+j and fn+j . This is a method which requires starting values from several previous

steps for the approximation of solution at the current step. For instance, in the method k−step, the

values of y− computed at the previous k−step, that is, xn+j = xn + jh, j = 1(0)k − 1 are used to

calculate yn+k (see [32]).

Definition 3.5. Interpolation and collocation: Collocation is the evaluation of the differential system

of the basis or trial function at some selected grid points while interpolation is the evaluation of the

approximate solution also at some selected grid points. This collocation method is widely considered

as a means of providing numerical solution to ordinary differential equations (see [32]).

Definition 3.6. Block method: A block method can be seen as a set of linear multistep method

simultaneously applied to initial value problems and then combined to yield a better approximation.

In other words, the set of new values derived by each application of the method is known as block. That

is, at each iteration of the algorithm, the values of yn+1, yn+2..., yn+k are computed simultaneously

(see [6]).
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3.1. The Order of the 7D2PIB1 and 7D2PIB2

To determine the order of the derived methods, (21) – (24) are rewritten in block form, to give the

linear operator:

L(y(x);h) = A(1)Ym − A(0)Ym−1 − h
(
B(0)Fm−1 − B(1)Fm

)
− h2C1Gm − h3C2Um

−h4C3Vm − h5C4Wm − h6C5Mm − h7C6Qm, (25)

Where,

A(1) =

1 0

0 1

 , A(0) =

0 1

0 1

 , B(0) =

0 5639
23040

0 11
45

 , B(1) =

 121
45

128
45

−44551
23040 −49

45

 ,

C(1) =

0 1289
768

0 4
3

 , C(2) =

0 − 7687
11520

0 −26
45

 , C(3) =

0 287
1920

0 2
15

 , C(4) =

0 − 583
34560

0 − 2
135

 ,

C(5) =

0 − 1
5760

0 − 2
135

 C(6) =

− 257
604800

121
907200

− 2
4725

2
14175

 , Ym =

yn+1

yn+2

 , Ym−1 =

yn−(k−1)

yn

 ,

F (Ym) =

fn+1

fn+k

 , F (Ym−1) =

fn−(k−1)

fn

 , Gm =

f ′
n+1

f ′
n+k

 , Um =

f
(2)
n+1

f
(2)
n+k

 , Vm =

f
(3)
n+1

f
(3)
n+k

 ,

Wm =

f
(4)
n+1

f
(4)
n+k

 , Mm =

f
(5)
n+1

f
(5)
n+k

 , Qm =

f
(6)
n+1

f
(6)
n+2

 .

Recall that fn+l, l = 0(1)k are the first-order derivative functions in x, y.

By comparing coefficients in powers of h and y, using Taylor series expansion of (25), gives:

L(y(x);h) = q0y(x) + q1hy
′(x) + q2h

2y′′(x) + . . . + qph
pyp(x) + . . .

+qp+1h
p+1yp+1(x) + . . . ,

(27)

In the form of (27), (21) and (22) are equivalent to:
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qi =



(1)i

i! − (1) (0)
i

i! − 1
(i−1)!

(
5639
23040(0)

i−1 + 121
45 (1)

i−1 − 44551
23040(2)

i−1

)
− 1

(i−2)!

(
0(0)i−2 + 0(1)i−2 + 1289

768 (2)
i−2

)
− 1

(i−3)!

(
0(0)i−3 + 0(1)i−3 − 7687

11520(2)
i−3

)
− 1

(i−4)!

(
0(0)i−4 + 0(1)i−4 + 287

1920(2)
i−4

)
− 1

(i−5)!

(
0(0)i−5 + 0(1)i−5 − 583

34560(2)
i−5

)
− 1

(i−6)!

(
0(0)i−6 + 0(1)i−6 + 1

5760(2)
i−6

)
− 1

(i−7)!

(
0(0)i−7 − 257

604800(1)
i−7 + 121

907200(2)
i−7

)
,

(2)i

i! − (1) (0)
i

i! − 1
(i−1)!

(
11
45(0)

i−1 + 128
45 (1)

i−1 − 49
45(2)

i−1

)
− 1

(i−2)!

(
0(0)i−2 + 0(1)i−2 + 4

3(2)
i−2

)
− 1

(i−3)!

(
0(0)i−3 + 0(1)i−3 − 26

45(2)
i−3

)
− 1

(i−4)!

(
0(0)i−4 + 0(1)i−4 + 2

15(2)
i−4

)
− 1

(i−5)!

(
0(0)i−5 + 0(1)i−5 − 2

5(2)
i−5

)
− 1

(i−6)!

(
0(0)i−6 + 0(1)i−6 + 0(2)i−6

)
− 1

(i−7)!

(
0(0)i−7 − 2

4725(1)
i−7 + 2

14175(2)
i−7

)



= 0, i = 7(1)10.

Similarly, the 7D2PIB2 order is as follows:
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qi =



(1)i

i! − (1) (0)
i

i! − 1
(i−1)!

(
1663
11520(0)

i−1 + 121
45 (1)

i−1 − 21119
11520(2)

i−1

)
− 1

(i−2)!

(
0(0)i−2 + 0(1)i−2 + 2837

1920(2)
i−2

)
− 1

(i−3)!

(
0(0)i−3 + 0(1)i−3 − 2687

5760(2)
i−3

)
− 1

(i−4)!

(
0(0)i−4 − 257

5040(1)
i−4 + 1343

20160(2)
i−4

)
− 1

(i−5)!

(
0(0)i−5 + 0(1)i−5 − 113

120960(2)
i−5

)
− 1

(i−6)!

(
0(0)i−6 + 0(1)i−6 − 37

33600(2)
i−6

)
− 1

(i−7)!

(
0(0)i−7 + 0(1)i−7 + 121

907200(2)
i−7

)
,

(2)i

i! − (1) (0)
i

i! − 1
(i−1)!

(
13
90(0)

i−1 + 128
45 (1)

i−1 − 89
90(2)

i−1

)
− 1

(i−2)!

(
0(0)i−2 + 0(1)i−2 + 17

15(2)
i−2

)
− 1

(i−3)!

(
0(0)i−3 + 0(1)i−3 − 17

45(2)
i−3

)
− 1

(i−4)!

(
0(0)i−4 − 16

315(1)
i−4 + 16

315(2)
i−4

)
− 1

(i−5)!

(
0(0)i−5 + 0(1)i−5 + 1

945(2)
i−5

)
− 1

(i−6)!

(
0(0)i−6 + 0(1)i−6 − 2

1575(2)
i−6

)
− 1

(i−7)!

(
0(0)i−7 + 0(1)i−7 + 2

14175(2)
i−7

)



= 0, i = 7(1)10.

Note that q0 = q1 = q2 = q3 = q4 = q5 = q6 = 0, i = 0(1)6, considering the initial terms in qi

correspondingly.

Thus, if q0 = q1 = q2 = . . . = qp = 0 and qp+1 ̸= 0, then the linear operator L(y(x);h) in (25) and

the associated continuous linear multistep methods in (21)–(24) are said to be of order p. Given that

qp+1 is the error constant, the local truncation error is given by:

tn+k = qp+1h
(p+1)y(p+1)(xn) + 0(hp+2). (28)

Consequently, with qi above, the order and error constants for “7D2PIB1 and 7D2PIB2” are examined

as follows:
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Table 1: Order and error constants

Method Order, p Error constant (qp+1)

7D2PIB1 10 − 5881
7185024000

D(11) (y) (x)h11 + O (h12)

10 − 23
28066500

D(11) (y) (x)h11 + O (h12)

7D2PIB2 10 − 3931
12573792000

D(11) (y) (x)h11 + O (h12)

10 − 31
98232750

D(11) (y) (x)h11 + O (h12)

3.2. Zero-Stability

The block methods in (21)–(24) have a zero-stability polynomial that may be stated by evaluating:

R(t) =
∣∣(A(0)t − A(1))

∣∣ , (29)

The characteristic roots for 7D2PIB1 and 7D2PIB2 are thus obtained by equating (29) to zero and

solve for t to give:

t = 0, 1. As a result, 7D2PIB1 and 7D2PIB2 in (21)–(24), are zero-stable according to Definition 3.1.

3.3. Consistency

Lemma 1. The new linear multistep methods in (9) is said to be consistent if and only if:

i p ≥ 1,

ii
k∑

j=0
αj = 0,

iii
1∑

j=0
j αj =

k∑
j=0

βj

iv η′(t) = β(t). (See [5]).

Let α0 = −1, α1 = 1, β0 = 5639
23040 , β1 = 121

45 , β2 = −44551
23040 , η(t) = t − 1, η′(t) = 1 and

σ(t) =
5639

23040
+

121

45
t − 44551

23040
t2,

where σ(t) and η(t) are the second and first characteristic polynomials, since a first-order ODE is

considered.

Remark:

1. Condition (i) is certainly satisfied, since the order p of the methods is 10 each.

2. It is clear also that condition (ii) is satisfied with the developed methods.

3. Again,
1∑

j=0
jαj =

k∑
j=0

βj = 1, upon evaluation of condition (iii), i.e., for the first scheme,

11



4. When t = 1, is substituted into condition (iv), it is also verified.

Hence, methods in (21)–(24) are found to be consistent.

Remark: The above conditions, are also verified and satisfied by the second 7D2PIB2 method.

3.4. Convergency

Inline with Theorem 3.1, since the newly derived block methods are consistent and zero-stable, they

converge.

Let yi and y(xi) be the approximate and exact solution of (1) respectively, then the absolute error is

evaluated by using the formula:

AbsErr = |(yi)t − (y(xi))t|, 1 ≤ t ≤ NS,

Where, NS is the total number of steps.

3.5. Linear stability

The absolute stability polynomials are presented below in the light of [14], using the test equations:

y′ = λh, with λ assumed to go through the negative eigenvalues of the Jacobian matrix. So that

substituting the above into (21)–(24) yields:

M(w, z) = −A1w + A0 + zB0 + zB1w + z2B2w + z3B3w + z4B4w + z5B5w

+z6B6w + z7B7w, (30)

Where z = λh and w(yn) = yjn+j , j = 1(1)7 is the difference equation shift operator. From which we

have the following expression as the stability polynomial:

πi(w, z) = |M(w, z)|, i = 1, 2. (31)

The following stability functions for 7D2PIB1 and 7D2PIB2, respectively, are produced by evaluating

(31) to determine the absolute stability regions:

π1(w, z) = − w2

285768000z
14 + w2

13608000z
13 − 23w2

27216000z
12 + w2

151200z
11 − 67w2

1814400z
10

+ 29w2

201600z
9 +

(
− 1291w2

3628800 − w
3628800

)
z8 +

(
− 127w2

604800 − w
604800

)
z7 + 11w2

1350 z
6

−7w2

135 z
5 + 19w2

90 z4 − 11w2

18 z3 +

(
223w2

180 − 7w
180

)
z2 +

(
−8

5w
2 − 2

5 w

)
z + w2 − w,

(32)

π2(w, z) = − w2

2381400z
11 + w2

113400z
10 − 23w2

226800z
9 + w2

1260z
8 − 367w2

75600 z
7 + 1817w2

75600 z6

+

(
−2923w2

30240 − w
30240

)
z5 +

(
523w2

1680 − w
5040

)
z4 − 7w2

9 z3 +

(
64w2

45 − w
45

)
z2

+

(
−17w2

10 − 3
10w

)
z + w2 − w.

(33)

From which π1 and π2 in (32) and (33) are then coded in a MATLAB R2023a software environment

and the region of absolute stability for each derived method is as shown in Figures 3 and 4 below.

Figures 3 and 4 indicate the region of absolute stability of the methods. The first method,
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Figure 3: Absolute Stability Region of 7D2PIB1
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Figure 4: Absolute Stability Region of 7D2PIB2

7D2PIB1, whose unstable region is the closed region, is larger than the second method, 7D2PIB2, as

precisely shown in Figure 5; implying that 7D2PIB2 has an open region of larger stability region than

7D2PIB1. However, both methods have regions of absolute stability that are left symmetric. Hence,

both developed formulae are A-stable inline with Definition 3.2.
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Figure 5: Compared absolute stability region of methods

4. Implementation of the methods

The simultaneous approximation of yn+l in the new methods was done using Newton Raphson’s

techniques on MATLAB (R2015a) software environment using: HP 655, windows 8.1 pro, processor:

AMD E1-1200 APU with Radeon(tm) HD graphics 1.40GHz, Installed memory(RAM): 6.00GB,

64−bits operating system, x64− based processor . Therefore, let y
(i+1)
n+l be the (i + 1)th iterations

for approximating yn+l and ej+1
n+1 = y

(i+1)
n+l − y

(i)
n+l,

y
(i+1)
n+l = y

(i)
n+l −

f(y
(i)
n+l)

f ′(y
(i)
n+l)

, l = 1(1)k. (34)

So that (34) can be rewritten as:

y
(i+1)
n+l − y

(i)
n+l = −[f(y

(i)
n+l)][f

′(y
(i)
n+l)]

−1, (35)

From which we get:

ej+1
n+1 = −[f(y

(i)
n+l)][f

′(y
(i)
n+l)]

−1, (36)

where,

f(y
(i)
n+l) =



yn+1 − yn − 5639
23040hfn − 121

45 hfn+1 + 44551
23040hfn+2 − 1289

768 h
2gn+2

+ 7687
11520h

3un+2 − 287
1920h

4vn+2 + 583
34560h

5wn+2 − 1
5760h

6mn+2

+ 257
604800h

7qn+1 − 121
907200h

7qn+2

yn+2 − yn − 11
45hfn − 128

45 hfn+1 + 49
45hfn+2 − 4

3h
2gn+2 + 26

45h
3un+2

− 2
15h

4vn+2 + 2
135h

5wn+2 + 2
4725h

7qn+1 − 2
14175h

7qn+2


= B,

and
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A =



1 − 121
45 h

∂fn+1

∂yn+1
+ 257

604800h
7 ∂qn+1

∂yn+1

44551
23040h

∂fn+2

∂yn+2
− 1289

768 h
2 ∂gn+2

∂yn+2
+ 7687

11520h
3 ∂un+2

∂yn+2
− 287

1920h
4 ∂vn+2

∂yn+2

+ 583
34560h

5 ∂wn+2

∂yn+2
− 1

5760h
6 ∂mn+2

∂yn+2
− 121

907200h
7 ∂qn+2

∂yn+2

−128
45 h

∂fn+1

∂yn+1
+ 2

4725h
7 ∂qn+1

∂yn+1
1 + 49

45h
∂fn+2

∂yn+2
− 4

3h
2 ∂gn+2

∂yn+2
+ 26

45h
3 ∂un+2

∂yn+2
− 2

15h
4 ∂vn+2

∂yn+2

+ 2
135h

5 ∂wn+2

∂yn+2
− 2

14175h
7 ∂qn+2

∂yn+2


.

Hence, the approximations: y
(i+1)
n+l = y

(i)
n+l + ej+1

n+1, as in step 6 of the algorithm below; while B

is a system of equations and A is a (2 × 2) Jacobian matrix, g, u, v, w,m and q are second, third,

fourth, fifth, sixth and seventh-derivatives respectively.

Since the new block is self-starting, it does not require starting formula to incorporate all the initial

values for the first-order IVPs. Therefore, approximate solutions yn+l are simultaneously generated.

Algorithm 1 Methods Algorithm

Input: Define initial guess: f(x), df(x), N, h, [a, b], where f(x) is the problem to be solved
and df(x) is the derivative function, e is the tolerance, N total number of iterations and h
is the step-size and [a, b] is the iterations interval.

Output: ynew = y
(i+1)
n+l , l=1,2.

1: Set tol, N, n = 0, a ≤ x ≤ b.
2: Define xn = a, yn = y(a), ynew = y

(i+1)
n+l , yold = y

(i)
n+l, [a, b], h = (b−a)

N
,

3: begin timing: tic,
4: for n = 1 : N − 1, do
5: x(n) = x0 + nh
6: while |(yold − ynew)| > tol, do
7: ynew = yold − A−1B, where A and B are defined above,
8: Let ynew = yold, i = 0(1)N − 1,
9: Goto 19
10: for n = n + 1, do
11: Goto 5
12: end for
13: if n ≥ N , then
14: Goto 6
15: end if
16: end while
17: Goto 8
18: end for
19: end timing: toc.

5. Numerical Experiment

The performance of the new methods is tested on the following first-order initial-value problems,

and where possible, comparisons are performed with a few chosen current methods of close or higher

orders. The following notations are used:

SIR model −→ Susceptible infected and recovered model.

LMM −→ Linear multistep method.

ODEs −→ Ordinary differential equations.
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IVPs −→ Initial value problems.

EINM −→ Error in new method [16].

1 SHBM −→ New one-step hybrid block method [18].

2 SHBM −→ New two-step hybrid block method [18].

7D2PIB1 and 7D2PIB2 −→ Seventh-derivative two-point implicit block 1 and 2 (derived methods),

|yn − y(xn)| −→ Absolute error computed at the end of mesh point over the chosen interval of

integration.

Problem 1. Consider the first-order system of stiff initial-value problem:

y′1 = −8y1 + 7y2, y1(0) = 1, h = 0.1,

y′2 = 42y1 − 43y2, y2(0) = 8,

Exact Solution:

y1(t) = 2e−x − e−50x

y2(t) = 2e−x + 6e−50x.

Source: [10]

Table 2: Comparison of Absolute Error for Problem 1 with h = 0.1

x Error in [10], p = 10 7D2PIB1, p = 10 7D2PIB2, p = 10

y1 y2 y1 y2 y1 y2

0.1 1.32e-06 8.10e-02 4.36e-03 2.62e-02 6.31e-04 3.79e-02

0.2 1.90e-08 5.50e-04 7.78e-05 4.67e-04 8.11e-06 4.870e-05

0.3 4.00e-09 3.70e-06 1.06e-06 6.37e-06 7.82e-08 4.69e-07

0.4 4.00e-09 2.10e-08 1.31e-08 7.88e-08 6.71e-10 4.02e-09

0.5 2.00e-09 3.00e-09 1.55e-10 9.28e-10 5.39e-12 3.24e-11

0.6 3.00e-09 2.00e-09 1.73e-12 1.07e-11 3.78e-14 2.55e-13

0.7 4.50e-09 2.90e-09 2.37e-14 1.68e-13 4.33e-15 6.77e-15

0.8 4.10e-09 3.70e-09 3.88e-14 4.44e-14 4.00e-15 4.11e-15

0.9 4.60e-09 4.00e-09 3.49e-14 3.81e-14 3.55e-15 3.78e-15

1.0 4.80e-09 4.60e-09 3.24e-14 3.59e-14 2.55e-15 2.44e-15
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Problem 2. Consider the first-order system of stiff initial-value problem:

y′1 = −9y1 + 95y2, y1(0) = 1, h = 0.1,

y′2 = −y1 − 97y2, y2(0) = 1,

Exact Solution:

y1(t) =
95
47e

−2x − 48
47e

−96x

y2(t) =
48
47e

−96x − 1
47e

−2x,

Source: [10]

Table 3: Comparison of Absolute Error for Problem 2 with h = 0.1

x Error in [10], p = 10 7D2PIB1, p = 10 7D2PIB2, p = 10

y1 y2 y1 y2 y1 y2

0.1 1.74e-04 1.74e-04 3.70e-04 3.70e-04 9.22e-04 9.22e-04

0.2 5.40e-08 5.30e-08 1.84e-07 1.84e-07 7.07e-07 7.07e-07

0.3 1.00e-09 4.00e-11 8.01e-11 8.07e-11 5.94e-10 5.94e-10

0.4 2.30e-09 3.50e-11 4.27e-13 2.99e-14 4.46e-13 4.95e-13

0.5 2.20e-09 3.10e-11 3.69e-13 3.88e-15 3.71e-14 7.95e-16

0.6 1.80e-09 2.70e-11 2.92e-13 3.08e-15 2.81e-14 2.93e-16

0.7 1.60e-09 2.20e-11 2.34e-13 2.47e-15 1.93e-14 2.04e-16

0.8 1.40e-09 2.00e-11 1.85e-13 1.95e-15 1.44e-14 1.49e-16

0.9 1.20e-09 1.60e-11 1.45e-13 1.53e-15 9.44e-15 9.98e-17

1.0 9.10e-10 1.40e-11 1.16e-13 1.22e-15 6.50e-15 6.68e-17

Problem 3. Consider the second-order initial-value problem:

y′′ = y′, y(0) = 0, y′(0) = −1, 0 ≤ x ≤ 1, h = 0.1,

Exact Solution:

y(x) = 1 − ex,

Source: [16]
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Table 4: Comparison of Absolute Error for Problem 3 with h = 0.1

x EINM [16], p = 10 7D2PIB1, p = 10 7D2PIB2, p = 10

0.1 4.462679e-11 0.000000e+00 2.220446e-16

0.2 9.864032e-11 1.387779e-16 0.000000e+00

0.3 1.635218e-10 5.551115e-17 1.110223e-16

0.4 2.409591e-10 1.110223e-16 2.220446e-16

0.5 3.328765e-10 0.000000e+00 2.220446e-16

0.6 4.414623e-10 0.000000e+00 2.220446e-16

0.7 5.692067e-10 1.110223e-16 4.440892e-16

0.8 7.189380e-10 0.000000e+00 4.440892e-16

0.9 8.938681e-10 0.000000e+00 6.661338e-16

1.0 1.097642e-09 0.000000e+00 8.881784e-16

Problem 4. Consider the first-order initial-value problem:

y′ = −y, y(0) = 1, 0 ≤ x ≤ 1, h = 0.1,

Exact Solution:

y(x) = e−x,

Source: [18]
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Table 5: Comparison of Absolute Error for Problem 4 with h = 0.1

x 1 SHBM [18], 2 SHBM [18], EINM [16], 7D2PIB1,

p = 10 p = 18 p = 10 p = 10

0.1 0.00e+00 4.10e-20 3.98e-11 0.00e+00

0.2 1.10e-20 6.10e-20 7.20e-11 0.00e+00

0.3 2.10e-20 8.10e-20 9.77e-11 1.11e-16

0.4 1.10e-20 1.11e-20 1.18e-10 0.00e+00

0.5 1.10e-20 1.21e-19 1.33e-10 2.22e-16

0.6 2.10e-20 1.31e-19 1.46e-10 2.22e-16

0.7 1.10e-20 1.41e-19 1.53e-10 1.67e-16

0.8 2.10e-20 1.41e-19 1.58e-10 0.00e+00

0.9 2.10e-20 1.51e-19 1.61e-10 5.55e-17

1.0 3.10e-20 1.41e-20 1.62e-10 0.00e+00

6. Application problem

Problem 5.

The SIR model is an epidemiological model that calculates the theoretical number of individuals

infected with an infectious disease in a closed population over time, as detailed in [35]. The fact that

these models incorporate coupled equations linking the number of susceptible individuals S(t), the

number of infected individuals I(t), and the number of recovered individuals R(t) is where the name

of this class of models originates. For many infectious diseases, this is an effective and straightforward

paradigm; encompassing rubella, mumps, and measles. The model’s flow chart is displayed as follows:

Susceptible Infectious Recovered
βI(x)S(x) γI(x)

Figure 6: The flow chart of the SIR model

The nonlinear differential system describing the SIR model flow chart is given by three coupled
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equations below:

dS
dt = µ(1 − S) − βIS

dI
dt=−µI − γI + βIS

dR
dt = −µR + γI


, (37)

Where µ, γ and β are positive parameters to be determined. Therefore, let y be given by:

y = S + I + R, (38)

By taking the derivative of (38) and summing (37) and (38) to give the SIR model of the form:

y′ = µ(1 − y), 0 ≤ x ≤ 1, h = 0.1, (39)

Whose exact solution is:

y(x) = 1 − 0.5e−0.5x.

Source: [16]

Table 6: Comparison of Absolute Error for Problem 5 in Equation (39) (SIR Model) with h = 0.1

x Error in [16], p = 10 7D2PIB1, p = 10 7D2PIB2, p = 10

0.1 3.198553e-13 0.000000e-00 0.000000e-00

0.2 6.086243e-13 0.000000e-00 0.000000e-00

0.3 8.685275e-13 0.000000e-00 0.000000e-00

0.4 1.101452e-12 1.1102230e-16 1.1102230e-16

0.5 1.309841e-12 0.000000e-00 3.330669e-16

0.6 1.495026e-12 1.1102230e-16 2.220446e-16

0.7 1.659228e-12 1.1102230e-16 2.220446e-16
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7. Discussion of Results

The solutions to Problem 1 are displayed in Table 2, and their efficiency curves are shown in Figures

7 and 8. The figures demonstrate that the suggested approaches exhibit better accuracy than the

method in [10] at several grid and approximate points of iterations. It is clear that the suggested

methods show enhanced accuracy at h = 0.1. The accuracy of the derived methods suggests that

they could have reduced absolute scale errors at smaller step-sizes, which can lead to an approximate

solution that approaches the genuine answer.

Similarly, [10] used an implicit block technique of uniform order 10 to solve problem 2. The suggested

formulae are used to solve the same. The efficiency curves for the results are displayed in Figures 9

and 10, and the results are given in Table 3. It is evident that the suggested approaches perform more

accurately with 7D2PIB2 than with 7D2PIB1 and similar methods in [10]. The data demonstrate that,

as iterations go on, the suggested approaches exhibit decreasing scale absolute errors at numerous

grid-points, indicating consistency in terms of numerical attributes.

In [16], Problem 3 was examined using a uniform block order of 10. Their approach was used straight

away without any starting values. With the efficiency curves displayed in Figure 11, the outcomes

of the obtained formulas are illustrated in Table 4. A straightforward comparison of our derived

approaches shows that 7D2PIB1 outperformed such a method of order 10 in [16], while outperformed

7D2PIB2 of the same order 10, although with minor equivalent performance in accuracy. The

competitive performances of 7D2PIB1, 7D2PIB2, and with such current approach in [16] are shown

in Figure 10. It is evident that at many grid points of the iterations, 7D2PIB1 exhibits convergence.

For Problem 4 in [16], a half-step numerical model has been derived for solving first and second-orders

respectively. The proposed approaches are implemented with a step size of h = 0.1. Numerical results,

as shown in Table 5, indicate how well the proposed formulae (7D2PIB1 and 7D2PIB2), perform in

comparison to that in [16] whose methods, is of uniform order 10. The convergence at average grid-

points of the iterations in 7D2PIB1 is shown in Figure 11, which outperforms, especially EINM of

uniform order 10.
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In [18], one-step and two-step hybrid block approaches of uniform order 10 and 18, respectively, were

used to solve problem 3. The suggested techniques are implemented using a step-size of h = 0.1.

Application results, as displayed in Table 5, demonstrate how well our initial formula, 7D2PIB1,

performs in comparison to those in [18], specifically, 2 SHBM of order 18, as well as EINM of order

10, in [16]. The convergence at average grid-points of the iterations in 7D2PIB1 is shown in Figure

12, which outperforms, especially for 1 SHBM and 2 SHBM of uniform order 10 and 18 respectively.

Using the suggested techniques, problem 5 in (39) is resolved. The outcomes, as shown in Table 6,

show the absolute errors and the discretized points over the integration interval. Figure 13 displays

the efficiency curves, which are also the graph of logarithm of the absolute errors against the logarithm

of grid-points. Figure 13 illustrates how the stiff nature of the modeled problem causes scale absolute

errors inaccuracies, especially in the 7D2PIB2 inter-nodes. In contrast to 7D2PBI2, Table 6 also

illustrates the convergence of 7D2PBI1 at most grid-points. Reasonably, 7D2PBI1 offers better results

over 7D2PBI2 for this specific Problem 5 in (39). Lastly, as Table 6 illustrates, the suggested methods

offer increased accuracy over the compared method in [35].

8. Summary

In this research, a novel class of computational methods of uniform order 10 with seventh-derivative

type, though of a first-order function have been designed using interpolation and collocation approach.

The methods utilized the advantages of non-uniform points of collocation to improve effective time cost

and accuracy in numerical methods iterations. Again, the new methods use seventh-derivative type,

which is unique to other existing numerical methods and have proven to be computationally stable

on ample number of test examples, including an application problem. It is noted from the results

that non-uniformity and positioning of collocation points influence accuracy of any given numerical

method(s). Finally, since all problems solved used a large step size, h = 0.1 and results indicate

efficiency and improved accuracy, it follows that smaller scale absolute errors are certainly possible

with smaller step-sizes, indicating close convergence or convergence of methods.

9. Conclusion and future research

A new family of computational techniques, with seventh-derivative type of implicit two-point block,

for the direct approximation of first-order initial-value problems of uniform order 10 each, have been

developed. Formulae were derived through interpolation and collocation techniques. The new methods

considered uneven points of collocation. They require seventh-derivative type, though of a first-order

function. It is established that uneven points of collocation affect numerical schemes accuracy, in terms

of absolute errors. The new methods are found to be A-stable and convergent. The convergence are

shown through test problems on first-order and second-order IVPs, including real-life problem as

SIR model and with comparison to such other existing methods. Results indicate that the new

approaches showed different numerical behaviors on different problems solved, while outperformed

such existing methods in literature. Summarily, 7D2PIB2 displayed better accuracy for Problems 1

and 2 than 7D2PIB1. While for Problems 4, 3 and 5, 7D2PIB1 displayed improved accuracy than

7D2PIB2. This indicate that the non-uniform points of collocation in 7D2PIB1, gives better accuracy
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than in 7D2PIB2. Our next future research will focus on developing and implementing efficient and

robust numerical methods with uneven collocation points to real-life problems in chemical reaction

in chemical engineering, models on drug magnetic nano-particle transport, population growth model,

tumor immune interaction model, biomass transfer, nutrient flow in an aquarium e.t.c and application

to higher-order stiff IVPs may be considered also.
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