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Abstract

In this research, a class of implicit block methods of a seventh derivative type are examined

through interpolation and collocation techniques using finite power series as the basis function.

The discrete schemes, which are implicit two-point block methods, are obtained by carefully

and unevenly choose collocation points that ensure better methods’ stability via test. However,

these schemes require seventh derivative functions unlike other existing numerical formulae.

The new methods are found, investigated and proven to be convergent and A-stable. The

implementation of methods is achieved by using Newton Raphson’s method. Experiments show

the efficiency and accuracy of the developed formulae on different class of first-order initial value

problems, including SIR, growth models and Prothero-Robinson oscillatory problem and with

comparison to such existing methods. In addition, it is observed that uneven and positioning

of collocation points greatly influence the efficiency and accuracy of numerical methods.

Keywords: Seventh derivative functions, implicit block methods, Algorithm, numerical

stability, interpolation and collocation.

1. Introduction

Stiff differential equations have been studied over the years with a view to developing robust

numerical methods that will not only be robust but adequate. It is worthy to note that

[1], first examined the best approach in terms of numerical methods to solving stiff ODEs.

Several scholars have different definitions to this resounding area of research. Therefore, it

can be defined as equations that are ill-conditioned.To unveil the nature of stiffness of the

ill-conditioning and to motivate the need to formulate efficient numerical methods for stiff
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differential equations, consider the first order initial value problems of the form:

y′ = f(x, y), a ≤ x ≤ b, y(0) = y0, (1)

where, xn = x0 + nh, h is the step size. Also, a stiff system of equations is one for which

|λmax| is enormous, so that either the stability or the error bound or both can only be assured

by unreasonable restrictions on h (i.e., an excessively small h requiring too many steps to

solve the initial value problem). Enormous here means, enormous relative to a scale which

is 1
b
. Thus, an equation with |λmax| small may also be viewed as stiff if we must solve it for

great values of time, where f : [xn, xN ]×Rm → Rm in (1) is continuous and differentiable;

so that, f is assumed to satisfy the existence and uniqueness theorem within the interval of

[a, b]; while stability is clearly necessary, it is not sufficient to obtain accurate solutions to

stiff systems of ordinary differential equations. A phenomenon that is commonly observed

is that when applied to stiff problems, many implicit methods do not seem to achieve the

order of accuracy that is expected for the method. This phenomenon is called order reduction.

Certainly, order reduction occurs with Runge-Kutta methods, but not backward differentiation

formula methods. In addition, explicit methods fail on solving stiff ODEs as a result of step-size

being restricted to maintain the potential accuracy of the methods. This problem is overcome

by using appropriate implicit methods (see [2]). However, some of the famous numerical

methods, among others are the Euler method by [3], linear multistep methods in [4] and

Runge-Kutta methods in [5]. In addition, the methods mentioned above cannot solve difficult

problems with stiff nature that arise in many fields of science and engineering. Hence, the

need to develop more viable methods for approximation. Also, [6] formulated a diagonally

implicit block backward differentiation formula for stiff IVPs. In [8, 11, 12, 14, 16, 17, 19],

implicit linear block multistep methods for first-order stiff and non-stiff IVPs have been derived

and implemented respectively. Interestingly, [21] also developed and implemented an implicit

four-point hybrid block integrator on stiff models relating to some real-life situations with

method near optimal as with other existing methods. Another implicit block methods have

been considered for solving stiff IVPs using Chebyshev polynomial in [22, 23]. However, their

methods depend on the perturbed collocation approximation with shifted Legendre polynomials

as perturbation term.

More recently, are the applications of multi-derivatives block methods to first-order stiff initial

value problems [24]. However, higher derivative methods have a general disadvantage of having

to provide and evaluate derivatives of function thereby resulting to more functions evaluations.

Therefore, this drawback could result to round-off errors in the global iterations if numerical

methods are not sufficiently stable, that is, the numerical errors are not under check by the

zero stability and consistency properties.

Consequently, [25] derived and implemented fourth derivative k-point block formula on first-

order stiff IVPs through interpolation and collocation techniques. Similarly, [26] proposed a

third derivative trigonometrically fitted block method of a low order 2 for solving Equation (1).
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Others like [27], considered a family of third derivative multi-step methods for solving (1) and

a class of continuous third derivative block methods of order (k+3) for direct approximation of

(1) has also been derived through interpolation and collocation techniques by [28]. For second

derivative methods, [29, 30, 31] solved Equation (1) respectively.

Summarily, in this research, a class of seventh derivative implicit block methods are derived.

They are a collection of discrete schemes of a first order function with seventh derivative

type. The objectives are to derive higher-order derivative implicit block formulae which solves

(1) directly with increased stability and reduced computational time using interpolation and

collocation approach. The proposed methods require seven derivative functions unlike other

numerical methods. This technique makes the methods unique, though have the burden of

having to provide the aforementioned derivative functions, but the efficiency and accuracy of

the proposed methods prove their significance. Test on numerical examples indicate that our

derived formulae are viable on stiff IVPs.

Therefore, this research is organized as follows: section two gives the derivation of the proposed

methods, section three shows the analysis of the numerical properties, section four presents the

implementation strategy, section five shows the numerical experiment and section six displays

the real-life application of methods, section seven presents conclusion and future research.

2. Derivation of the seventh derivative methods

We consider the power series polynomial of the form:

y(x) =
k+8∑
j=0

ajx
j (2)

with its derivatives given as:

y′(x) =
k+8∑
j=0

jajx
j−1 = f(x, y) (3)

y′′(x) =
k+8∑
j=0

j(j − 1)ajx
j−2 = g(x, y) (4)

y′′′(x) =
k+8∑
j=0

j(j − 1)(j − 2)ajx
j−3 = u(x, y) (5)

y′′′′(x) =
k+8∑
j=0

j(j − 1)(j − 2)(j − 3)ajx
j−4 = v(x, y) (6)
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...

With the seventh derivative given as:

y(7)(x) =
k+8∑
j=0

j(j − 1)(j − 2)(j − 3)(j − 4)(j − 5)(j − 6)ajx
j−7 = q(x, y) (7)

Here, we define:

y′n+i = fn+i, i = 0(1)k, y′′n+i = gn+i, i = 1, . . . k, y′′′n+i = un+i, i = k, y
(4)
n+i = vn+i, i = k, y

(5)
n+i =

wn+i, i = k, y
(6)
n+i = mn+i, i = k, y

(7)
n+i = qn+i, i = k. Where aj′s ∈ R in Equations (2)–(7) are

found using Gaussian elimination method. Therefore, Equation (2) and Equations (3)–(7) are

then interpolated and collocated at xn and xn+l, l = 0(1)k (where k is the step number and

k = 2) to give the following system of equation using Maple 18 soft environment:

PX = Q (8)

Where,

P =



1 xn x2
n x3

n x4
n x5

n x6
n x7

n x8
n x9

n x10
n

0 1 2xn+l 3x
2
n+l 4x3

n+l 5x4
n+l 6x5

n+l 7x6
n+l 8x7

n+l 9x8
n+l 10x9

n+l

..

.
..
.

..

.
...

...
...

...
...

...
...

...

0 0 2 6xn+k 12x2
n+k 20x3

n+k 30x4
n+k 42x5

n+k 56x6
n+k 72x7

n+k 90x8
n+k

0 0 0 6 24xn+k 60x2
n+k 120x3

n+k 210x4
n+k 336x5

n+k 504x6
n+k 720x7

n+k

0 0 0 0 24 120xn+k 360x2
n+k 840x3

n+k 1680x4
n+k 3024x5

n+k 5040x6
n+k

0 0 0 0 0 120 720xn+k 2520x2
n+k 6720x3

n+k 15120x4
n+k 30240x5

n+k

0 0 0 0 0 0 720 5040xn+k 20160x2
n+k 60480x3

n+k 151200x4
n+k

0 0 0 0 0 0 0 5040 40320xn+1 181440x2
n+1 604800x3

n+1

0 0 0 0 0 0 0 5040 40320xn+k 181440x2
n+k 604800x3

n+k



X =



a0

a1
...

ak+8


, Q =

(
yn, fn+l, f

′
n+k, f

(2)
n+k, f

(3)
n+k, f

(4)
n+k, f

(5)
n+k, f

(6)
n+1, f

(6)
n+k

)⊤

Where, l = 0(1)k.

Equation (8) is then solved for aj′s ∈ R, j = 0(1)k and substitution made into Equation (2) gives the
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Linear Multi-step Method (LMM) of the form:

y(xn+ξ) = α0(ξ)yn + h
k∑

j=0

βj(ξ)fn+j + h2
∑
j=3

βj(ξ)gn+k + h3
∑
j=4

βj(ξ)un+k

+h4
∑
j=5

βj(ξ)vn+k + h5
∑
j=6

βj(ξ)wn+k + h6
∑
j=7

βj(ξ)mn+k + h7
9∑

j=8

βj(ξ)
k∑

i=1

qn+i, (9)

Therefore, the parameters α0(ξ) and βj(ξ) are obtained with ξ = x − xn as:

α0 = 1 (10)

β0 = ξ − 3
2
ξ2

h + 2
3

ξ3

h2 + 7 ξ4

8h3 − 63 ξ5

40h4 + 7
6
ξ6

h5 − 1
2
ξ7

h6 + 33 ξ8

256h7 − 43 ξ9

2304h8 + 3 ξ10

2560h9
(11)

β1 =
128 ξ3

3h2 − 112 ξ4

h3 + 672 ξ5

5h4 − 280 ξ6

3h5 + 40 ξ7

h6 − 21
2

ξ8

h7 + 14 ξ9

9h8 − 1
10

ξ10

h9
(12)

β2 =
3
2
ξ2

h − 130 ξ3

3h2 + 889 ξ4

8h3 − 5313 ξ5

40h4 + 553 ξ6

6h5 − 79 ξ7

2h6 + 2655 ξ8

256h7 − 3541 ξ9

2304h8 + 253 ξ10

2560h9
(13)

β3 =
−5
2 ξ2 + 44 ξ3

h − 441 ξ4

4h2 + 525 ξ5

4h3 − 91 ξ6

h4 + 39 ξ7

h5 − 1311 ξ8

128h6 + 583 ξ9

384h7 − 25 ξ10

256h8
(14)

β4 = 2 ξ2h − 45 ξ3

2 + 217 ξ4

4h − 1281 ξ5

20h2 + 133 ξ6

3h3 − 19 ξ7

h4 + 639 ξ8

128h5 − 853 ξ9

1152h6 + 61 ξ10

1280h7
(15)

β5 = −ξ2h2 + 23 ξ3h
3 − 419 ξ4

24 + 203 ξ5

10h − 14 ξ6

h2 + 6 ξ7

h3 − 101 ξ8

64h4 + 15 ξ9

64h5 − 29 ξ10

1920h6
(16)

β6 =
1
3ξ

2h3 − 17 ξ3h2

9 + 4 ξ4h − 109 ξ5

24 + 28 ξ6

9h − 4
3
ξ7

h2 + 45 ξ8

128h3 − 181 ξ9

3456h4 + 13 ξ10

3840h5
(17)

β7 =
−1
15 ξ

2h4 + 14 ξ3h3

45 − 37 ξ4h2

60 + 41 ξ5h
60 − 67 ξ6

144 + 1
5
ξ7

h − 17 ξ8

320h2 + 23 ξ9

2880h3 − ξ10

1920h4
(18)

β8 = −2h5ξ2

315 + 2h4ξ3

105 − 1
36h

3ξ4 + 11h2ξ5

450 − hξ6

72 + 13 ξ7

2520 − 7 ξ8

5760h + ξ9

6048h2 − ξ10

100800h3
(19)

β9 =
2h5ξ2

315 − 5h4ξ3

189 + 1
20h

3ξ4 − 49h2ξ5

900 + 1
27hξ

6 − 9 ξ7

560 + 5 ξ8

1152h − 121 ξ9

181440h2 + ξ10

22400h3
(20)

We then evaluate Equations (11) – (20) at ξ = 1 and ξ = 2, substitute into Equation (9) to give

the new formulated seventh derivative implicit block methods, acronym as “7D2PIB1 and 7D2PIB2”

respectively.

yn+1 = yn +
5639

23040
hfn +

121

45
hfn+1 − 44551

23040
hfn+2 +

1289

768
h2gn+2 − 7687

11520
h3un+2

+
287

1920
h4vn+2 − 583

34560
h5wn+2 +

1

5760
h6mn+2 − 257

604800
h7qn+1 +

121

907200
h7qn+2 (21)
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yn+2 = yn +
11

45
hfn +

128

45
hfn+1 − 49

45
hfn+2 +

4

3
h2gn+2 − 26

45
h3un+2 +

2

15
h4vn+2

− 2

135
h5wn+2 − 2

4725
h7qn+1 +

2

14175
h7qn+2 (22)

Similarly, we derived the second formula 7D2PIB2 and it is presented as:

yn+1 = yn +
1663

11520
hfn +

121

45
hfn+1 − 21119

11520
hfn+2 +

2837

1920
h2gn+2 − 2687

5760
h3un+2

− 257

5040
h4vn+1 +

1343

20160
h4vn+2 − 113

120960
h5wn+2 − 37

33600
h6mn+2 +

121

907200
h7qn+2 (23)

yn+2 = yn +
13

90
hfn +

128

45
hfn+1 − 89

90
hfn+2 +

17

15
h2gn+2 − 17

45
h3un+2 − 16

315
h4vn+1

+
16

315
h4vn+2 +

h5wn+2

945
− 2

1575
h6mn+2 +

2

14175
h7qn+2 (24)

3. The stability analysis of the methods

This section presents the numerical properties and theorems (without proof) in relation to the

proposed numerical methods.

Theorem 3.1. Convergence [5]: The necessary and sufficient conditions for the linear multistep

method (LMM) of Equations (21)–(24) to be convergent are that it must be consistent and zero

stable.

Theorem 3.2. The necessary and sufficient condition for the method given by Equations (21)–(24)

to be zero stable is that it satisfies the root condition (See [5]).

Definition 3.1. Zero stability [10]

The numerical methods in Equations (21)– (24) are said to be zero stable if no root of te first

characteristic polynomial has a modulus greater than one and that every root with modulus one is

simple.

Definition 3.2. A-stability : A numerical method is said to be A-stable if the whole of the left-half

plane z : ℜ(z) ≤ 0 is contained in the region z : ℜ(z) ≤ 1. Where ℜ(z) is the stability polynomial of

the proposed method. (See [5]).

Definition 3.3. A(α)-stability : A numerical algorithm is said to be A(α) stable for some α ∈ [0, π2 ]

if the wedge Sα = {z : |Arg(−z)|< α, z ̸= 0} is contained in its region of absolute stability. (See, [7]).

3.1. The Order of the 7D2PIB1 and 7D2PIB2

To establish the order of the derived methods, Equations (21) – (24) are rewritten in block form to

give the linear operator:

L(y(x);h) = A(1)Ym − A(0)Ym−1 − B(0)Fm−1 − B(1)Fm − h2C1Gm − h3C2Um

−h4C3Vm − h5C4Wm − h6C5Mm − h7C6Qm (25)
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Where,

A(1) =

1 0

0 1

 , A(0) =

0 1

0 1

 , B(0) =

0 5639
23040

0 11
45

 , B(1) =

 121
45

128
45

−44551
23040 −49

45

 ,

C(1) =

0 1289
768

0 4
3

 , C(2) =

0 − 7687
11520

0 −26
45

 , C(3) =

0 287
1920

0 2
15

 , C(4) =

0 − 583
34560

0 − 2
135

 ,

C(5) =

0 − 1
5760

0 − 2
135

 C(6) =

− 257
604800

121
907200

− 2
4725

2
14175

 , Ym =

yn+1

yn+2

 , Ym−1 =

yn−(k−1)

yn

 ,

F (Ym) =

fn+1

fn+k

 , F (Ym−1) =

fn−(k−1)

fn

 , Gm =

f ′
n+1

f ′
n+k

 , Um =

f
(2)
n+1

f
(2)
n+k

 , Vm =

f
(3)
n+1

f
(3)
n+k

 ,

Wm =

f
(4)
n+1

f
(4)
n+k

 , Mm =

f
(5)
n+1

f
(5)
n+k

 , Qm =

f
(6)
n+1

f
(6)
n+2

 .

Note that fn+l, l = 0(1)k are the first-order derivative functions in x, y.

Equation (25) is expanded using Taylor series expansion, comparing their coefficients of powers of h

to give:

L(y(x);h) = q0y(x) + q1hy
′(x) + q2h

2y′′(x) + . . . + qph
pyp(x) + . . .

+qp+1h
p+1yp+1(x) + . . .

(26)

Therefore, the linear operator L(y(x);h) in Equation (25) and the associated continuous linear

multistep methods in Equations (21)–(24) are said to be of order p if q0 = q1 = q2 = . . . = qp = 0 and

qp+1 ̸= 0. qp+1 is the error constant and the local truncation error is given by:

tn+k = qp+1h
(p+1)y(p+1)(xn) + 0(hp+2) (27)

Therefore, using MAPLE 18, the order and error constants for “7D2PIB1 and 7D2PIB2” are

investigated as:
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Table 1: Order and error constants

Method Order Error constant (qp+1)

7D2PIB1 10 − 5881
7185024000

D(11) (y) (x)h11 + O (h12)

10 − 23
28066500

D(11) (y) (x)h11 + O (h12)

7D2PIB2 10 − 3931
12573792000

D(11) (y) (x)h11 + O (h12)

10 − 31
98232750

D(11) (y) (x)h11 + O (h12)

3.2. Zero Stability

The zero stability polynomial of the formulated block methods in Equations (21)–(24) can be expressed

by evaluating:

R(t) =
∣∣(A(0)t − A(1))

∣∣ (28)

Therefore, Equation (28) is then equated to zero and solved for t to give the characteristic roots each

for 7D2PIB1 and 7D2PIB2 as:

t = 0, 1. Therefore, by Definition 3.1, it follows that the methods in Equations (21)–(24) are zero

stable.

3.3. Consistency

The necessary and sufficient condition that a numerical method be consistent is that its order, p ≥ 1

. (See [4]).

Thus, the new methods whose order is 10 each, are certainly consistent.

3.4. Convergency

Inline with Theorem 3.1, the new derived block methods are convergent since they are both zero

stable and consistent. Let yi and y(xi) be the approximate and exact solution of (1) respectively,

then the absolute error is evaluated by using the formula:

AbsErr = |(yi)t − (y(xi))t|, 1 ≤ t ≤ NS,

Where, NS is the total number of steps.

3.5. Linear stability

The absolute stability polynomials are presented below in the light of [13], using the test equations:

y′ = λh, y(i) = λihi, i = 2(1)k + 5,
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So that substituting the above into Equations (21)–(24) yields:

M(w, z) = −A1w + A0 + zB0 + zB1w + z2B2w + z3B3w + z4B4w + z5B5w

+z6B6w + z7B7w (29)

Where z = λh and w is the difference equation shift operator. From which we have the following

expression as the stability polynomial:

πi(w, z) = |M(w, z)|, i = 1, 2. (30)

The absolute stability regions are obtained by evaluating Equation (30) to give the following stability

functions for 7D2PIB1 and 7D2PIB2 respectively:

π1(w, z) = − w2

285768000
z14 +

w2

13608000
z13 − 23w2

27216000
z12 +

w2

151200
z11 − 67w2

1814400
z10

+
29w2

201600
z9 +

(
− 1291w2

3628800
− w

3628800

)
z8 +

(
− 127w2

604800
− w

604800

)
z7 +

11w2

1350
z6

−7w2

135
z5 +

19w2

90
z4 − 11w2

18
z3 +

(
223w2

180
− 7w

180

)
z2 +

(
−8

5
w2 − 2

5
w

)
z + w2 − w

π2(w, z) = − w2

2381400
z11 +

w2

113400
z10 − 23w2

226800
z9 +

w2

1260
z8 − 367w2

75600
z7 +

1817w2

75600
z6

+

(
−2923w2

30240
− w

30240

)
z5 +

(
523w2

1680
− w

5040

)
z4 − 7w2

9
z3 +

(
64w2

45
− w

45

)
z2

+

(
−17w2

10
− 3

10
w

)
z + w2 − w

From which π1 and π2 are then coded in a MATLAB software environment and the region of absolute

stability for each derived method is as shown in Figures 1 and 2 below. Figures 1 and 2 indicate

Re(z)

-1 0 1 2 3 4 5

Im
(z

)

-4

-3

-2

-1

0

1

2

3

4

7D2PIB1

Figure 1: Absolute Stability Region of 7D2PIB1
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Re(z)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Im
(z

)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

7D2PIB2

Figure 2: Absolute Stability Region of 7D2PIB2

Re(z)

-1 0 1 2 3 4 5

Im
(z

)

-4

-3

-2

-1

0

1

2

3

4

7D2PIB1

7D2PIB2

Figure 3: Compared absolute stability region of methods

the region of absolute stability of the methods. The first method, 7D2PIB1, whose unstable region

is the closed region, is larger than the second method, 7D2PIB2, as precisely shown in Figure 3;

implying that 7D2PIB2 has an open region of larger stability region than 7D2PIB1. However, both

methods have regions of absolute stability that are left symmetric. Hence, both developed formulae

are A-stable inline with Definition 3.2.
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4. Implementation of the methods

The simultaneous approximation of yn+l in the new methods was done using Newton Raphson’s

techniques on MATLAB software environment. Therefore,

y
(i+1)
n+l = y

(i)
n+l −

f(y
(i)
n+l)

f ′(y
(i)
n+l)

, l = 1(1)k. (31)

So that, Equation (31) can be rewritten as:

y
(i+1)
n+l − y

(i)
n+l = [f(y

(i)
n+l)][f

′(y
(i)
n+l)]

−1 (32)

From which we get:

ej+1
n+1 = [f(y

(i)
n+l)][f

′(y
(i)
n+l)]

−1 (33)

where,

f(y
(i)
n+l) =



yn+1 − yn − 1663
11520hfn − 121

45 hfn+1 + 21119
11520hfn+2 − 2837

1920h
2gn+2

+2687
5760h

3un+2 + 257
5040h

4vn+1 − 1343
20160h

4vn+2 + 113
120960h

5wn+2

+ 37
33600h

6mn+2 − 121
907200h

7qn+2

yn+2 − yn − 29
180hfn + 832

45 hfn+1 − 3659
180 hfn+2 + 64

15h
2gn+1

+159
10 h

2gn+2 − 539
90 h

3un+2 + 7
5h

4vn+2 − 59
270h

5wn+2 + 1
45h

6mn+2

− 17
14175h

7qn+2


and ej+1

n+1 = y
(i+1)
n+l − y

(i)
n+l; while f(y

(i)
n+l) is a system of equations and f ′(y

(i)
n+l) is a (2 × 2) Jacobian

matrix, g, u, v, w,m and q are second, third, fourth, fifth, sixth and seventh derivatives respectively.

Since the new block is self-starting, it does not require starting formula to incorporate all the initial

values for the stiff IVPs. Therefore, approximate solutions yn+l are simultaneously generated.
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Algorithm 1 Proposed Methods Algorithm

Input: Define initial guess: f(x), df(x), N, h, [a, b], where f(x) is the problem to be solved
and df(x) is the derivative function, e is the tolerance, N total number of iterations and h
is the step-size and [a, b] is the iterations interval.

Output: ynew = y
(i+1)
n+l

1: Define yold = y
(i)
n+l, [a, b], h = (b−a)

N

2: for j = 1 : N − 1, do
3: x(j) = x0 + jh
4: while |(yold − ynew)|> tol, do

5: ynew = yold − f ′(x,y)
f(x,y)

6: Print ynew = yold
7: for j = j + 1, do
8: Goto 3
9: end for
10: if j ≥ N , then
11: Goto 4
12: end if
13: end while
14: Goto 6
15: end for
16: Stop

5. Numerical Experiment

The following first order stiff initial value problems are used to test the performance of the new

method and comparison, where possible, are made with some selected existing methods of close or

higher orders. The test problems considered here are either mild or highly stiff first order IVPs.

Problem 1. Consider the first order system of stiff initial value problem:

y′1 = −8y1 + 7y2, y1(0) = 1, h = 0.1,

y′2 = 42y1 − 43y2, y2(0) = 8,

Exact Solution:

y1(t) = 2e−x − e−50x

y2(t) = 2e−x + 6e−50x

Source: Skwame et al. [9]

Table 2 shows the results from solving Problem 1 with their efficiency curves shown in Figures 4 and

5. The figures show that at many grid and approximate points of iterations, proposed methods show

small scale error with better accuracy in 7D2PIB2 than 7D2PIB1 and method in [9]. It is evident that

with h = 0.1, the proposed formulae show sufficient efficiency and improved accuracy. This efficiency

of the derived methods indicate that with smaller step-sizes, the methods could have smaller scale

errors and therefore approximate solutions could tend to their true solutions.

12



Table 2: Comparison of Absolute Error for Problem 1 with h = 0.1

x Error in [9], p = 10 7D2PIB1, p = 10 7D2PIB2, p = 10

y1 y2 y1 y2 y1 y2

0.1 1.32e-06 8.10e-02 4.36e-03 2.62e-02 6.31e-04 3.79e-02

0.2 1.90e-08 5.50e-04 7.78e-05 4.67e-04 8.11e-06 4.870e-05

0.3 4.00e-09 3.70e-06 1.06e-06 6.37e-06 7.82e-08 4.69e-07

0.4 4.00e-09 2.10e-08 1.31e-08 7.88e-08 6.71e-10 4.02e-09

0.5 2.00e-09 3.00e-09 1.55e-10 9.28e-10 5.39e-12 3.24e-11

0.6 3.00e-09 2.00e-09 1.73e-12 1.07e-11 3.78e-14 2.55e-13

0.7 4.50e-09 2.90e-09 2.37e-14 1.68e-13 4.33e-15 6.77e-15

0.8 4.10e-09 3.70e-09 3.88e-14 4.44e-14 4.00e-15 4.11e-15

0.9 4.60e-09 4.00e-09 3.49e-14 3.81e-14 3.55e-15 3.78e-15

1.0 4.80e-09 4.60e-09 3.24e-14 3.59e-14 2.55e-15 2.44e-15

Problem 2. Consider the first order system of stiff initial value problem:

y′1 = −9y1 + 95y2, y1(0) = 1, h = 0.1,

y′2 = −y1 − 97y2, y2(0) = 1,

Exact Solution:

y1(t) =
95
47e

−2x − 48
47e

−96x

y2(t) =
48
47e

−96x − 1
47e

−2x

Problem 2 was solved in [9] by using an implicit block method of a uniform order 10. The same

is solved using the proposed formulae. The results are presented in Table 3 with their efficiency

curves shown in Figures 6 and 7. It is clear that the proposed methods show better accuracy with

7D2PIB2 outperforms 7D2PIB1 and such method in [9]. The figures show that at many grid points,

the proposed methods have smaller scale absolute errors, which indicate consistency in terms of

numerical properties, as errors decrease as iterations proceed.
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Table 3: Comparison of Absolute Error for Problem 2 with h = 0.1

x Error in [9], p = 10 7D2PIB1, p = 10 7D2PIB2, p = 10

y1 y2 y1 y2 y1 y2

0.1 1.74×10−4 1.74 ×10−4 3.70×10−4 3.70×10−4 9.22×10−4 9.22×10−4

0.2 5.40×10−8 5.30×10−8 1.84×10−7 1.84×10−7 7.07×10−7 7.07×10−7

0.3 1.00×10−9 4.00×10−11 8.01×10−11 8.07×10−11 5.94×10−10 5.94×10−10

0.4 2.30×10−9 3.50×10−11 4.27×10−13 2.99×10−14 4.46×10−13 4.95×10−13

0.5 2.20×10−9 3.10×10−11 3.69×10−13 3.88×10−15 3.71×10−14 7.95×10−16

0.6 1.80×10−9 2.70×10−11 2.92×10−13 3.08×10−15 2.81×10−14 2.93×10−16

0.7 1.60×10−9 2.20×10−11 2.34×10−13 2.47×10−15 1.93×10−14 2.04×10−16

0.8 1.40×10−9 2.00×10−11 1.85×10−13 1.95×10−15 1.44×10−14 1.49×10−16

0.9 1.20×10−9 1.60×10−11 1.45×10−13 1.53×10−15 9.44×10−15 9.98×10−17

1.0 9.10×10−10 1.40×10−11 1.16×10−13 1.22×10−15 6.50×10−15 6.68×10−17

Problem 3. Consider the first order stiff initial value problem:

y′ = x − y, 0 ≤ x ≤ 1, h = 0.1,

Exact Solution:

y(x) = x + e−x − 1

The above Problem has been considered in [32] with a uniform block order of 13. Their method was

directly employed without starting values. The results of the derived formulae are presented in Table 4

with the efficiency curves shown in Figure 8. A clear comparison of our derived methods indicates that

7D2PIB2 outperformed 7D2PIB1 of the same order 10, though with minimal comparable performance

in accuracy while outperformed such a method of order 13 in [32]. Figure 7 shows the competitive

performance of 7D2PIB1, 7D2PIB2 and with such existing methods in [32]. It is clear that 7D2PIB1

and 7D2PIB2 show convergence at the last two grid points of the iterations.
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Table 4: Comparison of Absolute Error for Problem 3 with h = 0.1

x Error in [32], p = 13 7D2PIB1, p = 10 7D2PIB2, p = 10

0.1 1.9595 ×10−11 3.8165×10−17 3.29598×10−17

0.2 3.54623×10−11 4.85723×10−17 3.81639×10−17

0.3 4.81315×10−11 4.85723×10−17 6.93889×10−17

0.4 5.80680×10−11 1.66534×10−16 1.38778×10−16

0.5 6.56779×10−11 2.77556×10−17 2.77556×10−17

0.6 7.13132×10−11 1.66534×10−16 1.66534×10−16

0.7 7.52814×10−11 1.11022×10−16 1.11022×10−16

0.8 7.78485×10−11 5.55112×10−17 5.55112×10−17

0.9 7.92403×10−11 0.00000×10−00 0.00000×10−00

1.0 7.96712×10−11 0.00000×10−00 0.00000×10−00

Problem 4. Consider the first order stiff initial value problem:

y′ = −y, 0 ≤ x ≤ 1, h = 0.1,

Exact Solution:

y(x) = e−x

Problem 4 has been solved in [18] with one-step and two-step hybrid block methods of uniform order

10 and 18 respectively. The proposed methods are applied using a step-size, h = 0.1. Results from

application, as shown in Table 5, indicate the competitive performance of our first formula, 7D2PIB1

with those in [18] particularly, 2 SHBM of order 18. Figure 9 depicts the convergence at some grid

points of the iterations in 7D2PIB1 while outperforms, particularly 2 SHBM of a uniform order 18.
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Table 5: Comparison of Absolute Error for Problem 4 with h = 0.1

x 1 SHBM [18], p = 10 2 SHBM [18], p = 18 7D2PIB1, p = 10

0.1 0.00e+00 4.10e-20 0.00e+00

0.2 1.10e-20 6.10e-20 0.00e+00

0.3 2.10e-20 8.10e-20 1.11e-16

0.4 1.10e-20 1.11e-20 0.00e+00

0.5 1.10e-20 1.21e-19 2.22e-16

0.6 2.10e-20 1.31e-19 2.22e-16

0.7 1.10e-20 1.41e-19 1.67e-16

0.8 2.10e-20 1.41e-19 0.00e+00

0.9 2.10e-20 1.51e-19 5.55e-17

1.0 3.10e-20 1.41e-20 0.00e+00

Problem 5. Consider the first order non-linear stiff initial value problem of the form:

y′ = xy, 0 ≤ x ≤ 1, h = 0.1,

Exact Solution:

y(x) = e
x2

2

Problem 5 has been solved in [32] with a uniform block method of order 13. Proposed methods

are directly employed without starting values to solve the same problem. The results of the derived

formulae are presented in Table 7 with the efficiency curves shown in Figure 11. Results show

that proposed methods of uniform order 10 give improved accuracy with 7D2PIB2 giving potential

advantage over 7D2PIB1 of the same order. A method of a uniform order 13 has been compared and

our derived methods evidently show adequate accuracy over it. Observe from Figure 10 that, for this

nonlinear Problem 5, as the log(x) increases from left to right, the log of absolute error also increases.

This numerical results are usually common with all non-linear stiff IVPs.
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Table 6: Comparison of Absolute Error for Problem 5 with h = 0.1

x Error in [32], p = 13 7D2PIB1, p = 10 7D2PIB2, p = 10

0.1 2.6067 ×10−11 1.2213×10−14 4.8850×10−15

0.2 8.4790×10−11 3.5083×10−14 1.3545×10−14

0.3 1.8684×10−10 7.2831×10−14 2.8422×10−14

0.4 3.5701×10−10 1.3123×10−13 5.1070×10−14

0.5 6.1054×10−09 2.2116×10−13 8.5931×10−14

0.6 1.0157×10−09 3.5727×10−13 1.3922×10−13

0.7 1.6445 ×10−09 5.6355×10−13 2.1960×10−13

0.8 2.6158×10−09 8.7708×10−13 3.4195×10−13

0.9 4.1110×10−09 1.3551×10−12 5.2913×10−13

1.0 6.4070×10−09 2.0863×10−12 8.1535×10−13

6. Application problems

Problem 6.

As discussed in [15], the SIR model is an epidemiological model that computes the theoretical number

of people infected with a contagious illness in a closed population over time. The name of this class of

models is derived from the fact that they involve coupled equations relating the number of susceptible

people S(t), number of people infected I(t) and the number of people who have recovered R(t). This

is a good and simple model for many infectious diseases Including measles, mumps and rubella. It is

given by the following three coupled equations:

dS
dt = µ(1 − S) − γIS

dI
dt=−µI − γI + βIS

dR
dt = −µR + γI


(34)

Where µ, γ and β are positive parameters to be determined. Therefore, let y be given by:

y = S + I + R (35)

By taking the derivative of Equation (35) and summing Equations (34) and (35) to give the SIR
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model of the form:

y′ = µ(1 − y), 0 ≤ x ≤ 1, h = 0.01, (36)

Whose exact solution is:

y(x) = 1 − 0.5e−0.5x.

Problem 6 in Equation 36 is solved using the proposed methods. The results as presented in Table 8

depict the absolute errors and time taken (seconds) at each point of iterations. The efficiency curves

are also plotted using the logarithm of absolute errors against the log of time and are shown in Figure

11. Because of the stiff nature present in the modeled problem, it is clear from Figure 11 that, the

scale absolute errors, particularly in 7D2PIB2 inter-nodes. Table 8 also clearly indicates the near

convergence of 7D2PBI2 unlike 7D2PBI1. However, effective time cost is observed in 7D2PBI1 in

comparison with 7D2PBI2. Reasonably, for this particular Problem 6 in Equation (36), 7D2PBI1

presents efficient time cost over 7D2PBI2 but improved accuracy is seen in 7D2PBI2. While time of

iterations is important, accuracy of numerical methods is most significant as it shows the consistency

and zero stability of methods. Finally, the proposed formulae present improved efficiency and accuracy

over the compared method in [15], as shown in Table 8.

Table 7: Comparison of Absolute Error for Problem 6 in Equation (36) (SIR Model) with h = 0.01

x Error in [15], p = 8 Time 7D2PIB1, p = 10 Time 7D2PIB2, p = 10 Time

0.010 1.2165824e-12 0.043527 4.4408921e-16 0.008644 0.0000000e-00 0.009575

0.020 7.0361494e-12 0.048093 1.1102230e-15 0.011411 1.1102230e-16 0.012471

0.030 1.6891821e-11 0.053913 1.5543122e-15 0.013618 1.1102230e-16 0.015296

0.040 3.0793479e-11 0.059570 1.9984014e-15 0.016258 2.2204461e-16 0.018339

0.050 5.0472182e-11 0.063933 2.5535130e-15 0.018438 1.1102230e-16 0.021397

0.060 7.1624151e-11 0.080116 2.9976022e-15 0.020523 1.1102230e-16 0.025175

0.070 1.0171974e-10 0.085281 3.5527137e-15 0.022605 2.2204461e-16 0.027427

0.080 1.2969015e-10 0.093241 4.1078252e-15 0.024689 3.3306691e-16 0.030011

0.090 1.6615576e-10 0.097912 4.5519144e-15 0.027011 3.3306691e-16 0.036050

0.100 2.0496926e-10 0.104638 5.2180482e-15 0.029718 5.5511151e-16 0.038381

Problem 7. Consider the growth model as solved in [15]:

A bacteria culture is known to grow at a rate proportional to the amount present. After one hour,

1000 strands of the bacteria are observed in the culture; and after four hours, bacteria are observed
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in the culture to be 3000 strands. Find the number of strands of the bacteria present in the culture

at time t, where, 0 ≤ t ≤ 1.

Let N(t) denote the number of bacteria strands in the culture at time t, the initial value problem

modeling this problem is given by:

dN

dt
= 0.366N, N(0) = 694, (37)

The exact solution is given by:

N(t) = 694e0.366t.

Problem 7 in Equation (37), which is a population growth model, has been solved with h = 0.01 in

[15]. The new methods are also applied for the approximations and the absolute errors are as shown

in Table 9 with the efficiency curves in Figure 12. Results indicate improved accuracy with reduced

computational time in 7D2PBI1 than with 7D2PBI2. Method, 7D2PIB1 performed excellently over

7D2PIB2 in terms of efficiency and accuracy as shown in Table 9. Comparison with a method in [15]

showed clear performance in terms of accuracy and time of iterations in the proposed formulae.

Table 8: Comparison of Absolute Error for Problem 7 in Equation (37) (Growth Model) with h = 0.01

x Error in [15], p = 8 Time 7D2PIB1, p = 10 Time 7D2PIB2, p = 10 Time

0.010 6.7871042e-11 0.022520 0.0000000e-00 0.008482 0.0000000e-00 0.008264

0.020 2.9922376e-10 0.050186 0.0000000e-00 0.010774 2.2737368e-13 0.010404

0.030 6.8837380e-10 0.070106 0.0000000e-00 0.013659 2.2737368e-13 0.029010

0.040 1.2363444e-09 0.090180 1.1368684e-13 0.015907 4.5474735e-13 0.031195

0.050 1.9656454e-09 0.110484 1.1368684e-13 0.018652 4.5474735e-13 0.033432

0.060 2.8278464e-09 0.133450 1.1368684e-13 0.021897 4.5474735e-13 0.035572

0.070 3.9101451e-09 0.152786 2.2737368e-13 0.024202 3.4106051e-13 0.037686

0.080 5.0885092e-09 0.175301 3.4106051e-13 0.026631 2.2737368e-13 0.039777

0.090 6.4850383e-09 0.210087 4.5474735e-13 0.029239 1.1368684e-13 0.041873

0.100 8.0320888e-09 0.232457 4.5474735e-13 0.031873 3.4106051e-13 0.043992

Problem 8. Consider the Prothero-Robinson oscillatory problem:

y′ = L(y − sinx) + cosx, y(0) = 0, L = −1, h = 0.1 (38)
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The exact solution is given by:

y(x) = sinx

Problem 8 in Equation (38), which is a Prothero-Robinson oscillatory problem has been solved in

[15] and the proposed formulae is applied also. Results are presented in Table 9 and efficiency curves

clearly shown in Figure 13. It is evident that the proposed methods show reduced computational

time and improved accuracy in terms of absolute errors. However, for this Problem 8, 7D2PIB2

show improved efficiency but certainly not accuracy. Accuracy has clearly been lost to 7D2PIB1 at

all points in the iterations. Therefore, each method show uniqueness in itself and 7D2PIB1 showed

overall improved accuracy in terms of absolute errors, even with comparison with a method in [15].

Table 9: Comparison of Absolute Error for Problem 8 in Equation (38) (oscillatory problem) with h = 0.1

x Error in [15], p = 8 Time 7D2PIB1, p = 10 Time 7D2PIB2, p = 10 Time

0.10 1.2439794e-09 0.181433 2.2689489e-12 0.004828 3.8868035e-10 0.004438

0.20 4.8347478e-09 0.380374 2.1383478e-11 0.013938 9.4229044e-10 0.010371

0.30 1.0511839e-08 0.564763 6.8256345e-11 0.017435 1.6392342e-09 0.012579

0.40 1.8015317e-08 0.751144 1.3565132e-10 0.019693 2.4580119e-09 0.014814

0.50 2.7086332e-08 0.952488 2.2087732e-10 0.022883 3.3772897e-09 0.017027

0.60 3.7467873e-08 1.129044 3.2125658e-10 0.025142 4.3759819e-09 0.026412

0.70 4.8905666e-08 1.332819 4.3413462e-10 0.028643 5.43334100e-09 0.028844

0.80 6.1149209e-08 1.620844 5.5688854e-10 0.031100 6.5290587e-09 0.031626

0.90 7.3952914e-08 1.904968 6.8693884e-10 0.036798 7.6433704e-09 0.033859

1.00 8.7077323e-08 2.125000 8.2176266e-10 0.039081 8.7571647e-09 0.036455
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7. Conclusion and future research

A new family of computational methods, with seventh derivative type of implicit two-point block

for the direct approximation of first order stiff initial value problems of uniform order 10 each have

been developed. Formulae were derived through interpolation and collocation techniques. The new

methods considered uneven points of collocation. They require seventh derivative type, though of

a first-order function. It has been established that uneven points of collocation affect numerical

schemes efficiency in terms of computational time and accuracy in terms of absolute errors. The

new methods are found to be A-stable and convergent. The convergence were shown through test

problems on first order stiff IVPs, including real-life problems as SIR model, growth model and

oscillatory problem with comparison with some other existing methods. Results indicate that the

new methods showed different numerical behaviors on different problems considered, either in terms

of accuracy or efficiency while outperformed such existing methods in literature. Summarily, 7D2PIB2

displayed better accuracy and effective time cost than 7D2PIB1. This is not far-fetched as 7D2PIB2

has a larger open region of absolute stability than 7D2PIB1. In general, we have formulated numerical

methods with uneven collocation points that are computationally stable with effective time cost for

direct solution of (1). These methods outperformed such existing formulae in literature, as compared

in this research. Our next future research will focus on developing and implementing efficient and

robust numerical methods with uneven collocation points to real-life problems in chemical reaction

in chemical engineering, models on drug magnetic nano-particle transport, population growth model,

tumor immune interaction model, e.t.c and application to higher-order stiff IVPs may be considered

also.
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