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Abstract

We indicate a direct proof, without using the general Gauss theorem, of the fact that at any
point outside a spherical massive body with spherically symmetric density function, both grav-
itational field and potential produced by the body are exactly the same as if all the mass were
located at the center.
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1 Introduction

In deriving his formula for the gravitational field produced by a quasi punctual massive body,
Newton was in a sense quite fortunate. Of course, a real mathematical point does not have
any mass, and the objects to which his formulas were applied, either for the field or for the
potential energy, were very large. In first approximation, the distances between planets and
stars are so large that these objects can be considered punctual, but in fact the situation is
even better and in this sense Newton was lucky. Calculations concerning planets and stars
are indeed much more precise than what would follow by a mere point-like approximation.
Since it was found later that when the object is spherically symmetric with respect to mass
distribution, it behaves exactly as if all the mass was located at the centre. And this allows
very precise astronomical calculations since planets and stars are close to spherical.
The principle which makes astronomical predictions much better with spherical objects can
be formulated as follows.

Theorem 1.1. Let us consider a spherical massive body with spherically symmetric density
function. In this case, at any point outside the sphere, both gravitational field and potential
produced by the body are exactly the same as if all the mass was located at the center.

This result is classically proven for the gravitational field by using the Gauss theorem giving
the total flux through a closed surface enclosing the body, applied to the concentric sphere
containing the point, and exploiting the symmetry. The Gauss theorem is very powerful
tool which applies to some other cases of symmetry in both gravitational and electro-static
frameworks. In this short note we show that the calculation can be carried out without relying
on the general Gauss theorem. This direct calculation may be useful since when the density
is not exactly symmetric, we might rely on it to compute the deviation from the perfectly
symmetric case.

2 Precise statements

In this section, we define precisely the framework in which Theorem 1.1 is valid. Let R be a
positive number and define

BR := {x ∈ R3, ||x|| ≤ R}
We consider a nonnegative density function µ ∈ L1(0, R) and we set

M :=

∫
BR

µ(||x||)dx =

∫ R

0
4πr2µ(r)dr.

Theorem 2.1. Let u ∈ R3 satisfy ||u|| > R. Then we have∫
BR

µ(||x||)
||u− x||

dx =
M

||u||
(2.1)

and ∫
BR

µ(||x||)(u− x)

||u− x||3
dx =

Mu

||u||3
(2.2)

Remark 2.2. Actually, the two formulas (2.1) and (2.2) are equivalent. One passes from
(2.1) to (2.2) by taking the gradients of both sides. In the other direction, we observe that the
field dermines the potential assuming the limit at infinity to be 0.

1



3 Proof for the potential.

Proof. We set U := ||u|| > R and we consider the integral∫
BR

µ(||x||)
||u− x||

dx =

∫ R

0
µ(r)

∫ 2π

0

∫ π

0

r2 sin θ

||u− x||
dθdφdr

where we used the spherical coodinates

x = (r cos θ, r sin θ cosφ, r sin θ sinφ).

Since the integral is invariant by rotations of center 0, it is sufficient to consider the case where

u = (U, 0, 0),

in which case the integral becomes, by integrating with respect to φ first:∫ R

0
µ(r)

∫ 2π

0

∫ π

0

r2 sin θ

||u− x||
dθdφdr =

∫ R

0
2πr2µ(r)J(r)dr

with

J(r) :=

∫ π

0

sin θ

||u− x||
dθ =

∫ π

0

sin θ√
U2 + r2 − 2Ur cos θ

dθ

coming from the fact that

||u− x||2 = (U − r cos θ)2 + r2 sin2 θ cos2 φ+ r2 sin2 θ sin2 φ = U2 + r2 − 2Ur cos θ.

We claim that

∀r ∈ (0, R), J(r) =
2

U

Indeed, the change of variable cos θ := v gives

J(r) =

∫ π

0

sin θ√
U2 + r2 − 2Ur cos θ

dθ =

∫ 1

−1

dv√
U2 + r2 − 2Urv

Now, we have
d

dv

√
U2 + r2 − 2Urv = − Ur√

U2 + r2 − 2Urv

from which it follows that∫ 1

−1

dv√
U2 + r2 − 2Urv

= − 1

Ur
[
√
U2 + r2 − 2Ur −

√
U2 + r2 + 2Ur]

whence the “miraculous” result:

J(r) =
1

Ur
[(U + r)− (U − r)] =

2

U

Then we end up with∫
BR

µ(||x||)
||u− x||

dx =

∫ R

0
2πr2µ(r)J(r)dr =

1

U

∫ R

0
4πr2µ(r)dr =

M

U
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4 Proof for the field.

Proof. We use the same system of spherical coordinates to compute the vector∫
BR

µ(||x||)(u− x)

||u− x||3
dx =

∫ R

0
µ(r)

∫ 2π

0

∫ π

0

r2 sin θ

||u− x||3
(u− x)dθdφdr

so that for fixed r we need to compute∫ 2π

0

∫ π

0

r2 sin θ

||u− x||3
(u− x)dθdφ

First we observe that this integral is covariant with respect to rotations around the origin, so
that we can choose u = (U, 0, 0) as previously. Because

u− x = (U − r cos θ,−r sin θ cosφ,−r sin θ sinφ)

By integrating in φ first and using the property

cosφ(s+ π) + cosφ(s) = sinφ(s+ π) + sinφ(s) = 0

we obtain that the second and third components are 0, so that the integral is colinear to u as
expected. For the first component we are led to compute the integral∫ 2π

0

∫ π

0

(U − r cos θ) sin θ

||u− x||3
dθdφ = 2π

∫ π

0

(U − r cos θ) sin θ

(U2 + r2 − 2Ur cos θ)3/2
dθ

Introducing as before v = cos θ we find∫ π

0

(U − r cos θ) sin θ

(U2 + r2 − 2Ur cos θ)3/2
dθ =

∫ 1

−1

(U − rv)dv

(U2 + r2 − 2Urv)3/2
:= K(r)

In order to compute K(r), we observe that

d

dv
(U2 + r2 − 2Urv)−(1/2) =

Ur

(U2 + r2 − 2Urv)3/2

from which it follows that

K(r) =
1

Ur

∫ 1

−1
(U − rv)

d

dv

[
(U2 + r2 − 2Urv)−(1/2)

]
dv

Since the product (U − rv)[(U2 + r2 − 2Urv)−(1/2) is equal to 1 at both endpoints 1 and −1,
the contribution of the integrated part is 0 and we find

K(r) = − 1

Ur

∫ 1

−1

d

dv
(U − rv)

[
(U2 + r2 − 2Urv)−(1/2)

]
dv

=
1

U

∫ 1

−1

[
(U2 + r2 − 2Urv)−(1/2)

]
dv =

2

U2
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according to the calculation made in the previous section. Finally we obtain∫ R

0
µ(r)

∫ 2π

0

∫ π

0

r2 sin θ

||u− x||3
(u− x)dθdφdr = (

2

U2

∫ R

0
2πr2µ(r)dr, 0, 0)

The first component is
1

U2

∫ R

0
4πr2µ(r)dr =

M

U2

and this concludes the proof.

Remark 4.1. Both results on the field and the potential are still valid in the limiting case
||u|| = R under the hypothesis µ ∈ L1(0, R), since in both cases the singularity coming from
the boundary point is integrable.

Remark 4.2. In our calculation, we did not require the density µ to be strictly positive for
all values of r, we just need it to be positive on a set of positive measure in order for the total
mass to be positive. So the result applies in particular to the case of thin spherical shells. A
slightly more complicated proof for this case is given in Wikipedia.

5 Conclusion.

We start this last section by a remark:

Remark 5.1. We actually proved that whenever ||u|| > r > 0, it holds∫
Sr

dσ

||u− x||
=

|Sr|
||u||

=
4πr2

||u||

with
Sr := {x ∈ R3, ||x|| = r}

and dσ the area element along the sphere Sr.

We conclude with the observation that Newton’s gravitational law is very efficient because
it has a strong geometric background. Historically, the comparison with propagation of light
played a basic role to formulate it with the help of Robert Hooke. Newton was also very
interested in optics, so that in a sense all of this is not the result of chance. The confirmation
that the 1/r potential implies the 3 Kepler’s laws was the icing on the cake.
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