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Since the completion of the human genome sequencing project in 2001, signi�cant progress has

been made in areas such as gene regulation editing and protein structure prediction. However, given

the vast amount of genomic data, the segments that can be fully annotated and understood remain

relatively limited. If we consider the genome as a book, constructing its equivalents of words,

sentences, and paragraphs has been a long-standing and popular research direction. Recently,

studies on transfer learning in large language models have provided a novel approach to this

challenge. Multilingual transfer ability, which assesses how well models �ne-tuned on a source

language can be applied to other languages, has been extensively studied in multilingual pre-trained

models. Similarly, the transfer of natural language capabilities to “DNA language” has also been

validated. Building upon these �ndings, we �rst trained a foundational model capable of

transferring linguistic capabilities from English to DNA sequences. Using this model, we constructed

a vocabulary of DNA words and mapped DNA words to their English equivalents. Subsequently, we

�ne-tuned this model using English datasets for paragraphing and sentence segmentation to

develop models capable of segmenting DNA sequences into sentences and paragraphs. Leveraging

these models, we processed the GRCh38.p14 human genome by segmenting, tokenizing, and

organizing it into a “book” comprised of genomic “words,” “sentences,” and “paragraphs.”

Additionally, based on the DNA-to-English vocabulary mapping, we created an “English version” of

the genomic book. This study o�ers a novel perspective for understanding the genome and provides

exciting possibilities for developing innovative tools for DNA search, generation, and analysis.
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1. Introduction

Since the completion of the �rst human genome map by the Human Genome Project in 2001,

signi�cant advancements have been made in �elds such as gene regulation editing and protein

structure prediction. However, given the vast amount of genomic data, the segments that can be fully

annotated and deeply understood remain relatively limited. To achieve a more comprehensive

understanding of genomic information, many research e�orts have begun exploring the possibility of

treating the genome as a book, aiming to construct its “words,” “sentences,” and “paragraphs,”

similar to the parsing of human language[1][2][3].

Most of these studies focus on analyzing the statistical similarities between DNA sequences and

natural language, including functional comparisons between potential basic units of DNA (e.g., words)

and those in natural language[4][5][6][7][8]. However, due to the substantial di�erences between

natural language and biological sequences, most of these studies remain experimental and analytical

in nature, making it challenging to develop e�ective methods or theories. For example, transferring

the logical reasoning and summarization capabilities of natural language models to DNA sequences

has proven di�cult. Consequently, these studies still fall short of constructing a genomic “book” with

the clarity of structure and explicit meaning found in natural language books.

In recent years, however, advances in large language models have provided entirely new tools for

comprehensively interpreting genomic data.

The rise of large language models has revolutionized arti�cial intelligence, signi�cantly impacting

�elds like bioinformatics. For nucleic acid analysis, models such as DNABert2, HyenaDNA, and EVO

have been developed to address challenges in DNA sequence classi�cation and structural prediction[9]

[10][11][12][13]. By harnessing the capabilities of these advanced models, researchers are gaining fresh

perspectives on genetic information.

In parallel, advancements in protein studies have introduced tools like ProTrans, ProteinBERT, and

ESM2. These models are tailored for tasks such as protein structure prediction and functional

annotation[14][15][16][17][18][19][20][21][22][23][24]. Together, these breakthroughs demonstrate the

adaptability of large language models in tackling intricate biological problems, fostering a deeper

connection between computational linguistics and molecular biology.
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An intriguing direction within these studies is the exploration of multilingual transfer capabilities in

large language models. Research on multilingual transfer has demonstrated how large pre-trained

models can e�ectively apply knowledge learned in one source language to other languages. These

studies have validated the e�ectiveness of cross-linguistic knowledge transfer, including between

di�erent natural languages, as well as between programming languages and natural language[25][26]

[27][28][29]. Moreover, some recent experimental research has shown that the transfer phenomenon

from natural language capabilities to DNA sequences also exists, making it possible to directly apply

natural language processing techniques to DNA sequence analysis[30].

In this paper, we leverage the transfer of natural language capabilities to DNA language to construct a

structured human genomic “book.” Speci�cally, we pre-trained a GPT-2 model, gpt2-gene-eng, on

English, DNA, and protein sequences using a uni�ed BPE tokenizer. We then �ne-tuned this model

using the English semantic similarity dataset from PAWSX, resulting in a model, gpt2-gene-eng-ft,

capable of transferring natural language abilities to DNA sequences. Based on this �ne-tuned model,

we further trained three new models using English datasets for sentence splitting, paragraph

segmentation, and summarization tasks, respectively. These three models were subsequently applied

to process human genome data, producing a genomic “book” that includes DNA words, sentences,

and paragraphs.

Additionally, by utilizing the pre-trained gpt2-gene-eng model, we established a mapping between

the DNA vocabulary and the English vocabulary, enabling the creation of an English-translated

version of the human genomic book.

2. Materials and methods

2.1. Overview of the Genome Book Construction Process

Leveraging the language transfer capabilities of large language models, the construction of a genome

book is divided into the following steps:

1. Construction of the Pre-trained Model gpt2-gene-eng

A pre-trained model was built using English data, DNA sequences, and protein sequences, with a

uni�ed BPE tokenizer. The base model architecture used in this study is GPT-2.
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2. Enabling Language Transfer to Create gpt2-gene-eng-ft

The model was �ne-tuned on English similarity judgment datasets to enable the transfer of English

language capabilities to DNA. Sequence similarity judgment tasks are one of the few tasks that can

validate the transfer of natural language abilities to DNA sequences. This step produced the gpt2-

gene-eng-ft model.

3. Further Fine-tuning for Sentence Splitting, Paragraph Segmentation, and

Summarization

Based on gpt2-gene-eng-ft, the model was further �ne-tuned using English datasets for sentence

splitting, paragraph segmentation, and summarization, resulting in three new models with

specialized capabilities. Since punctuation such as the period (“.”) was already included in the pre-

training data, sentence splitting can be accomplished by using gpt2-gene-eng-ft to predict the “.”

token. The paragraph segmentation model, named gene_eng_gpt2_para_seg, and the summarization

model, named gene_eng_gpt2_summary, were also developed during this step.

4. Processing Genome Data to Generate the Genome Book

Using the aforementioned models, genome data was processed to create a genome book containing

“words,” “sentences,” and “paragraphs,” as illustrated in the following diagram:
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Figure 1. Construction Process of the Human Genome Book. First, a model, GPT2-gene-eng-ft, capable of

transferring natural language abilities to DNA language was developed. This step involves veri�able

language transfer. Subsequently, this model was further �ne-tuned to acquire DNA-speci�c abilities for

segmentation, sentence splitting, and summarization. It is important to note that these abilities were

trained using relevant English datasets, and their transfer to DNA sequences cannot be directly veri�ed.

We hypothesize that the abilities for segmentation, sentence splitting, and summarization can be

transferred to DNA sequences. Based on this assumption, the human genome data was processed to

construct a genome book containing “words,” “sentences,” and “paragraphs.” If novel and e�ective DNA

research tools or new biological phenomena can be discovered using this genome book, it would provide

indirect validation of the existence of these transferred abilities.

2.2. Pretrained model

The training data for is roughly outlined in the table below:
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Table 1. Training data

The training data for the paper is structured as follows:

DNA Sequence Data

We followed the pre-training data approach used by DNABERT, extracting fragments ranging from

300 to 1000 base pairs (bp) from multiple model organisms. The total volume of DNA sequence data is

approximately 10 GB, with 2 GB of this data randomly selected for training the tokenizer.

Protein Sequence Data

From the UniProt database, we extracted 10 GB of protein sequence data, including all entries from

Swiss-Prot and randomly selected entries from TrEMBL.

Natural Language Data

We primarily used the OpenWebText dataset, combined with Wikipedia data, as the natural language

training dataset, focusing on English text. From these datasets, we extracted 10 GB of data for pre-

training purposes.
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One important condition for achieving multilingual transfer ability is the use of a uni�ed tokenizer,

typically based on the Byte Pair Encoding (BPE) method. In this study, we trained a BPE tokenizer

from scratch using DNA, protein, and English data, resulting in a vocabulary of approximately 100,000

tokens.

For the model, we employed the GPT2-small architecture and trained a GPT2 model from scratch

using DNA, protein, and English data, referred to as gpt2-gene-eng. The speci�c network structure is

detailed as follows:
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Figure 2. Structure of gpt2-gene-eng. The model architecture is identical to that of GPT-2 small. Pre-

training and instruction tuning use the same causal language header, the layer mapped 768 hidden units

to 100000 units (the number of tokens in the vocabulary). Classi�cation uses sequence classi�cation

header, The layer maps from 768 hidden units to only 2 units, where the 2 units represent the two classes

id.

According to the typical design of GPT-2, it accepts sequences with a maximum length of 1024 as

input. We used the same architecture as the GPT-2 Small model, which consists of 12 Transformer

layers, each with 768 hidden units and 12 attention heads. This small model has approximately 117

million parameters.We trained the GPT-2 model using mixed-precision �oating-point arithmetic on

a machine equipped with a single Nvidia 4090 GPU. We employed a dynamic learning rate schedule,

and the model was trained for a total of 3 to 5 epochs.
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2.3. Finetune model with multilingual transfer ability

Following the approach described in reference[30], we �ne-tuned the pre-trained model using the

English semantic similarity task from the PAWSX dataset to enable language transfer capabilities. The

�ne-tuning process utilized a classi�cation head, and the �ne-tuned model is denoted as gpt2-gene-

eng-ft.

Additionally, we employed the DNA similarity sequence judgment dataset from the same study to

validate the language transfer capability. The results of testing the transfer of English language

capabilities to DNA in the gpt2-gene-eng-ft model are as follows:

Table 2. Accuracy of di�erent datasets

We began by performing classi�cation �ne-tuning on the English sequence similarity dataset from

PAWS-X, followed by testing on DNA datasets.

DNA150s, DNA150, and DNA50 are DNA sequence similarity judgment datasets constructed with

varying lengths and strategies. The model �ne-tuned on the English semantic similarity dataset was

tested on these DNA datasets, achieving an accuracy of over 79% across all cases. This indicates that

English language capabilities can indeed be transferred to DNA language.

To visualize this more clearly, we employed PCA for dimensionality reduction and plotted the DNA

word vectors and English word vectors in a two-dimensional graph. The speci�c visualization steps

are as follows:
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Figure 3. On the left, Figure A shows the word vectors generated by the pre-trained model. Blue points

represent DNA word vectors, and red points represent English word vectors. On the right, Figure B shows

the word vectors generated by the �ne-tuned model. Again, blue points represent DNA word vectors, and

red points represent English word vectors.In Figure A, it is evident that the DNA word vectors and English

word vectors are generally far apart, with a clear boundary between them. In contrast, in Figure B, the DNA

word vectors and English word vectors are noticeably closer, with some overlapping regions. This further

illustrates the reason for language capability transfer in the �ne-tuned model.

2.4. Text Segmentation Model

For the task of text segmentation, two primary strategies are generally adopted:

1. Direct Prediction of Paragraph Markers

Train the model to predict whether the next token is a paragraph marker after each token.

2. Binary Classi�cation Problem

Transform the task into a binary classi�cation problem, where the model determines if a given

position marks a paragraph boundary. This involves adding an extra classi�cation layer after each

token, outputting 0 or 1 to indicate the absence or presence of a paragraph boundary.

We opted for the relatively simpler Strategy 1.
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Training Data

To develop a model suitable for segmentation tasks, we primarily utilized Wikipedia as our data

source. Wikipedia data stands out for its rich content, clear paragraph structure, and broad thematic

coverage, making it ideal for studying paragraph prediction. Initially, we preprocessed the raw

Wikipedia text by replacing newline characters between paragraphs with a speci�c marker <p_end>

to clearly denote the end of a paragraph. After this preprocessing, the boundaries of paragraphs in

each article within the dataset were uniformly presented, aiding the model in learning the patterns of

paragraph endings. Additionally, to prevent data bias, we imposed a limit on text length, ensuring that

each sample contained multiple segments while preserving contextual information.

Model Training

We used the GPT2LMHeadModel with a causal language modeling head as the base model for

paragraph prediction. The training process was based on a language modeling task, employing

continuous pre-training to enable the model to learn the patterns of paragraph boundaries. Post-

preprocessing, texts marked with <p_end> were used as training inputs, with the model’s objective

being to predict the next token, including both regular vocabulary and the paragraph end marker

<p_end>. Through this approach, the task of predicting paragraph boundaries was integrated into the

language modeling task without the need to design additional task heads.

During training, we employed cross-entropy as the loss function and introduced a dynamic learning

rate adjustment strategy to optimize convergence speed. We chose the AdamW optimizer with an

initial learning rate set at 5×10−55×10−5. The model learned the patterns of paragraph boundaries on

the training set while evaluating the accuracy and �uency of generated text on the validation set. After

several rounds of training, the model was able to capture contextual information and accurately

generate paragraph end markers.

2.5. Sentence Boundary Detection Model

In the sentence segmentation task, we adopted a strategy identical to that used for paragraph

segmentation. Since the pre-trained model’s data already includes punctuation marks such as periods

(.), no additional annotation or introduction of new special tokens was necessary to handle sentence

segmentation. During the model training phase, the model learned the distribution and usage patterns

of periods in natural language through the language modeling task. Therefore, for sentence
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segmentation, it is su�cient to use the model to predict the probability that the next token in a given

text is a period, thereby completing the sentence segmentation.

Experimental results demonstrated that this method can e�ciently and accurately identify sentence

boundaries, with generated sentence boundaries conforming to semantic logic. The approach also

exhibited strong adaptability across various language scenarios. This uni�ed strategy not only

simpli�ed model design but also signi�cantly improved the e�ciency of sentence segmentation tasks.

2.6. Summary model

Data

We chose the Amazon English Review Dataset as the source for training and testing data. This dataset

includes user reviews and their corresponding review titles, where the review content is typically long

text, and the titles provide a concise summary of the content. To construct a summarization task

dataset, we used the review content as input text and the titles as target summaries. After

preprocessing, we �ltered out samples that were too short or contained excessive noise, ensuring

high-quality training data and consistency in the task.

Model Training

For model selection, we again adopted the GPT2LMHeadModel, which is based on GPT-2 and

speci�cally designed for causal language modeling tasks. Since GPT-2 does not directly support

Seq2Seq problems, we indirectly achieved this by formatting the training samples. Speci�cally, each

training sample was organized into the format “[Original Text] TL;DR: [Summary]”, where “TL;DR:”

serves as a prompt to guide the model in understanding the relationship between the input text and

the target summary. During training, the model learned to generate concise summaries from long

texts by maximizing the log-likelihood estimation of the training data, while preserving the core

information of the input text.

Model Usage

In the deployment phase, to enhance the accuracy of the generated results, we introduced a dynamic

masking mechanism. User inputs, such as DNA sequences, were formatted as “[Original Text]

TL;DR:”. However, during summary generation, we constrained the model’s output. Speci�cally, by

creating masks, we set the scores of tokens unrelated to DNA or relevant �elds to -inf, ensuring that
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the model only outputs vocabulary pertinent to the DNA theme. This method �lters out irrelevant

candidate tokens, making the generated summaries more aligned with expected expressions.

2.7. Genome Segmentation - Chapter Division - Sentence Splitting

We utilized the human genome data GRCh38.p14, focusing primarily on processing Chromosome 1.

Our approach involved dividing and structuring the chromosome into multiple hierarchical levels, as

detailed below:

Chromosome Part

We �rst divided Chromosome 1 into 25 segments, each containing approximately 10 MB of DNA

sequence. This initial division is referred to as the “Chromosome Volume” level.

DNA Paragraphs

For each segment, we applied a segmentation model to further divide the sequences into basic

paragraphs. For example, the �rst segment resulted in a total of 15,238 paragraphs. This level of

structure is termed “DNA Paragraphs.”

DNA Sections

Using a pre-trained model, we generated vector representations for each paragraph from Step 2. We

then performed dynamic clustering on these vectors to form a second-level directory. The �rst

segment resulted in a total of 503 sections at this level. This intermediate structure is referred to as

“DNA Sections.”

DNA Chapters

Utilizing the centroid vectors from the second-level paragraphs, we executed another round of

dynamic clustering to form third-level paragraphs. The �rst segment ultimately produced 38 chapters

at this level. This higher-level structure is termed “DNA Chapters.”

This process can be extended to create even higher levels of paragraph structures. However, since the

38 third-level paragraphs align well with the typical structure of a book, we limited our hierarchy to

three levels.

As described above, the hierarchical structure of the genome catalog we constructed is as follows:
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Figure 4. Structure of the Genome Catalog. Each genome is organized by

chromosome, forming the highest-level directory. We divided the chromosome

sequences into equal-sized segments, referred to as “Parts.” For each part, we

further subdivided into “Chapters” and “Sections,” where each section represents

speci�c DNA sequence paragraphs.

After completing the segmentation and chapter division, we used a sentence segmentation model to

process each paragraph into sentences.

For generating titles for chapters and sections, we focused on creating titles for “DNA Sections” and

“DNA Volumes”:
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Title Generation for “DNA Sections”

Extract summaries from all DNA paragraphs within the section. Concatenate these summaries in order

to form a long sequence.

Perform summary extraction on this concatenated sequence to obtain the title for the “DNA Section.”

Title Generation for “DNA Volumes”

Similar to the above method, concatenate the titles of all “DNA Sections” within the volume to form a

long sequence.

Perform summary extraction on this concatenated sequence to obtain the title for the “DNA Volume.”

Most summarization algorithms require processing only a portion of the core text. In this case, our

pre-trained model has a maximum input size of 256 tokens, meaning that the �rst 256 tokens of the

sequence are used for summary extraction.

2.8. Translation of DNA to English

We used the pre-trained model gpt2-gene-eng-ft to generate vectors for all English words and DNA-

related terms, utilizing the last hidden layer of the GPT-2 network. For each DNA term, we queried the

English word with the highest vector similarity to serve as its corresponding English translation.

Although �ne-tuning brought the distances between DNA terms and English words closer, there

remains a noticeable overall distance. Consequently, approximately 19,000 English words

corresponded to about 600 unique English vocabulary items. It is important to note that this word

translation relationship is based solely on structural similarity in the embedding space and does not

imply semantic similarity.

After constructing the translation dictionary from DNA to English, we tokenized and translated each

DNA paragraph sequence. This process allowed us to obtain an English version of the complete human

genome book.

Generating partial content of the book, as shown in the screenshot below:
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Figure 5. Screenshot of the Genomic Book Content, where Figure A on the left shows the DNA sequence

content, and Figure B on the right shows the translated English content.

3. Discussion

This paper employs a large language model to construct segmentation, sentence splitting, and

summarization models for DNA sequences. We then applied these models to process the human

genome, resulting in a fully structured genomic book that is divided into chapters, segments,

sentences, and tokens. Based on this research, several novel DNA analysis applications may emerge:

3.1. Fast DNA Search

By segmenting DNA sequences into chapters, paragraphs, and sentences, a multi-level indexing

structure can be constructed, similar to a hierarchical �le system:

Chapter-Level Search: Quickly locate target regions, reducing the search scope.

Paragraph-Level Search: Achieve precise matching of speci�c sequence paragraphs.

Sentence-Level Search: Identify minor variations within smaller segments.

This layered structure signi�cantly enhances search e�ciency, particularly when handling large-

scale genomic databases.

3.2. Genomic Unique Identi�er

Utilizing the Summarization Capabilities of Large Language Models to Generate Unique Feature

Identi�ers for Genomes
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Fault-Tolerant Identi�ers

The model-generated identi�ers are robust to small variations, such as point mutations, ensuring

that they can still recognize similar or identical genomes despite minor changes.

Comparative Analysis

The identi�ers enable rapid comparison of similarities and di�erences between di�erent genomes,

supporting evolutionary analysis and disease research.

By leveraging the summarization capabilities of large language models, we can generate unique

feature identi�ers for genomes that o�er both fault tolerance and e�cient comparative analysis. This

approach enhances the accuracy and utility of genomic studies.

3.3. Genome Data Compression and Storage Optimization

Based on Summarized or Translated Genomic Representations:

E�cient Storage

Reduce redundant data storage by compressing genomic information using chapter summaries.

Interpretable Data Format

Generate a more human-readable format for genomic data, facilitating quicker comprehension by

scientists.

By utilizing summarized or translated genomic representations, we can achieve both e�cient storage

solutions and enhance the interpretability of genomic data, making it easier for researchers to

understand and work with.

4. Conclusion

This paper leverages the multilingual transfer ability of large language models to construct a

comprehensive representation of the human genome, organized into DNA “words,” “sentences,” and

“paragraphs.” This endeavor achieves a signi�cant goal in genomics research and provides new

perspectives for developing advanced DNA search technologies, storage methods, and other

applications. If the analytical, summarization, and reasoning capabilities of current large language
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models can be e�ectively transferred to DNA analysis, it could unlock substantial technological

advancements.

Since research on the interpretability of large language models is still in development, our constructed

genomic book currently does not provide de�nitive biological interpretations. This study is primarily

illustrative, showcasing the potential of applying natural language ability to DNA analysis. We aim to

stimulate further thought and innovation in applying large language models to biological research,

serving as a stepping stone for future advancements.
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