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Recent years have witnessed extensive e�orts to enhance Large Language Models (LLMs) across

various domains, alongside growing attention to their ethical implications. However, a critical

challenge remains largely overlooked: LLMs must balance between rejecting harmful requests for

safety and accommodating legitimate ones for utility. This paper presents a Direct Preference

Optimization (DPO) based alignment framework that achieves better overall performance by

addressing this ethical-utility trade-o�, using chemical domain applications as a proof-of-concept.

Our alignment pipeline starts with a GPT-assisted three-phase data generation scheme, in which we

create LibraChemQA, a chemical question-answering dataset comprising 31.6k triplet instances. By

incorporating an innovative balanced seed in the data generation process, our framework

systematically considers both legitimate and illegitimate requests. The framework also introduces a

rephrasing mechanism for e�cient data augmentation that enhances the model’s chemical

comprehension. We further develop a novel hybrid evaluation scheme with LLM judges for precise

assessment of both safety and utility. Experimental results demonstrate our model’s substantial

improvements in overall performance where both safety and utility are considered - our resulting

model, LibraChem, outperforms leading LLMs including Claude-3, GPT-4o, and LLaMA-3 by

margins of 13.44%, 7.16%, and 7.10% respectively on our released benchmark.
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1. Introduction

LLMs have demonstrated remarkable capabilities in generating human-like text across various

domains [1][2][3], garnering signi�cant interest from researchers and practitioners. These models have

been successfully adapted for specialized applications in numerous domains, such as chemistry [4][5]

[6][7], mathematics [8][9], and healthcare [10][11][12].

A critical challenge in LLM development is ensuring robust content �ltering and request rejection to

prevent the generation of harmful information. Failure to address this challenge not only poses ethical

risks but also hinders LLM adoption in disciplines with stringent safety standards. Recent research has

highlighted these concerns and proposed various solutions [13][14][15][16].

Despite recent considerations of the problem and various e�orts in constructing ethical benchmarks

or standards, the fundamental trade-o� between safety and utility remains largely unexplored,

particularly for domain-speci�c LLM agents. Unlike general-purpose chatbots that can diplomatically

sidestep sensitive queries, task-speci�c agents are designed to provide professional references at

their maximal capacities to enhance productivity and often possess knowledge that may be potentially

hazardous (i.e., domain-speci�c knowledge that general LLMs typically do not have). Hence, they

must carefully navigate this ethical-utility trade-o�. Consider a chemistry-focused agent: while it

should provide clear synthesis pathways for requested molecules, it must also reliably identify and

reject requests involving restricted compounds. Current approaches lean either towards prioritizing

ethical considerations or optimizing e�ectiveness, resulting in agents that are either too constrained

for practical use or too risky for deployment [17][18][19].

This paper addresses this gap using the chemistry agent as a proof-of-concept, though our

methodology is applicable across various domains. We introduce LibraAlign, an innovative

DPO [20] based framework for balancing ethical and utility concerns in LLMs. A typical DPO alignment

process requires a training dataset containing triplets of {Prompt, Chosen, Reject} (PCR). Building upon

the conventional DPO data structure, we put forth the concept of “balanced seed generation” in the

triplets creation process to ensure to simultaneous consideration of safety and utility. The framework

also incorporates question rephrasing along with the balanced data augmentation to enhance the

LLM’s domain-speci�c understanding (see Figure 1 for the chemistry example). Furthermore, we also

develop a novel hybrid evaluation method using a conventional rule-based judge plus an additional
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LLM judge to assess a model’s ability in blocking illegal queries while providing information for

legitimate inquiries. This approach enables comprehensive evaluation of LLMs’ safety and utility.

Figure 1. Overview of the LibraChemQA dataset. LibraChemQA is generated through a GPT-assisted data

generation scheme, which consists of the following phases: 1) raw data mining and crafting, 2) GPT-

assisted data rephrasing, and 3) data combination.

To our best knowledge, this paper presents the �rst attempt to address the mutual constraints of

safety and utility, and it is the �rst research e�ort investigating chemical ethical challenges via LLM

alignment. Our contributions are as follows:

1. We put forth LibraAlign, a DPO-based alignment framework that facilitates the harmonious

integration of utility and safety aspects within LLMs. The framework introduces balanced seed

generation as a crucial component for increased overall performance with consideration of both

ethical constraints and practical utility.

2. We develop a GPT-assisted three-phase data generation scheme that combines balanced seed

and question rephrasing for data augmentation. This systematic approach eliminates the need

for manual annotation and provides adaptability for building analogous ethics datasets across

diverse domains, resulting in LibraChemQA - the �rst comprehensive chemistry ethical dataset

containing 31.6k triplet instances.

3. We propose a hybrid evaluation framework incorporating rule-based judge and LLM judge to

establish standardized methods for assessing both ethical adherence and practical e�ciency of

an LLM. This evaluation scheme precisely quanti�es models’ capabilities in distinguishing

between legitimate and illegitimate queries.
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4. We conduce extensive experiments to reveal existing LLMs’ performance with an overall

consideration of both ethical and utility. Our experiential results highlight the dual-use dilemma

in maintaining domain expertise while enhancing ethical capabilities.

5. We develop LibraChem, a chemistry-focused LLM that successfully addresses the dual-use

dilemma through our LibraAlign framework. Our model demonstrates substantial improvements

over existing LLMs including Claude-3, GPT-4o, and LLaMA-3 by margins of 13.44%, 7.16%, and

7.10%, respectively.

2. Preliminary

In general, alignment is a common approach to address ethical issues in LLMs. Mainstream alignment

methods include Reinforcement Learning from Human Feedback (RLHF) and DPO. This section gives

an overview of the two schemes.

2.1. RLHF

We begin with a brief overview of RLHF, a method designed to train LLMs to produce responses that

align with human preference. RLHF comprises three key stages: 1) Supervised Fine-tuning (SFT); 2)

Reward Model (RM) training and 3) Reinforcement Learning (RL) optimization.

During the SFT phase, RLHF initiates by �ne-tuning a pre-trained LLM using supervised learning on

high-quality data of downstream tasks, resulting in a model denoted as  .

In the subsequent RM training stage,   is employed with prompts   to generate pairs of responses.

Human labelers then evaluate these pairs, marking one response   as preferred over the other one 

, i.e.  . Current studies have commonly utilized the Bradley-Terry (BT) RM for preference

prediction, which facilitates the construction of a pairwise contrast:

In the RL phase,    undergoes further re�nement through a trial-and-error procedure involving

iterative sampling from the linguistic space. This process also entails receiving concurrent feedback

from both the RM and a reference policy.

πSFT

πSFT x

y1

y2 ≻ ∣ xy1 y2

= − log ,LRM

exp( (x, ))rϕ y1

exp( (x, )) + exp( (x, ))rϕ y1 rϕ y2
(1)

πSFT
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2.2. DPO

Distinguished from previous RLHF techniques that �rst learn a reward and then re�ne it through RL,

DPO adopts a more straightforward strategy by directly optimizing the preference model from static

data. The crucial insight lies in deriving the optimal reward function based on the optimal LLM policy 

 and the initial LLM policy  . This approach involves representing the reward model   as

follows:

where   is a constant and   is the partition function. By inserting this function of the reward into

the preference model, the objective can be written as:

where   is kept �xed and   is updated during DPO training. DPO o�ers a simpler, more

e�cient, and stable method for aligning the behaviors of LLMs when contrasted with conventional

RLHF methodologies.

3. Method

The overall pipeline of our proposed LibraAlign consists of four steps. Firstly, we establish the

LibraChemQA dataset through a novel GPT-assisted three-phase data generation scheme. Secondly,

we adopt LLaMA-2 as our baseline and �ne-tune it with supervised learning on the SFT dataset (a

subset of LibraChemQA with {Prompt, Chosen} pairs) to obtain a model  . As is typically done we

utilize   as both the base model and the reference model for DPO training. Then we align the model

with the DPO objective on the LibraChemQA. Finally, we introduce a hybrid evaluation framework for

comprehensive evaluation purposes.

3.1. GPT-assisted Three-phase Data Generation

As shown in Figure 1, the GPT-assisted three-phase data generation scheme includes three phases: 1)

raw data mining and crafting; 2) GPT-assisted data rephrasing; and 3) data combination. The dataset

is established to train LLMs to discern and reject illegal requests about the synthesis of chemical

compounds. However, severe over�tting arises when the LLMs are exclusively trained on illegal

π∗ πSFT r(x, y)

r(x, y) = β log + β log Z(x),
(y|x)π∗

(y|x)πSFT

(2)

β Z(x)

L = − [log σ(r(x, ) − r(x, ))]E(x, , )yw yl
yw yl (3)

= − [log σ(β log − β log )],E(x, , )yw yl

( |x)π∗ yw

( |x)πSFT yw

( |x)π∗ yl

( |x)πSFT yl

(y|x)πSFT (y|x)π∗

πSFT

πSFT
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requests, leading to an unintended consequence where legitimate requests are also rejected by the

models. To address this issue, we introduce the balanced seed generation to control the distribution of

legitimate and illegal instances that appear in the dataset. By maintaining a balanced representation

of both types of requests, we aim to cultivate models that strike an equilibrium between utility and

safety. The ablation study about the balanced seed is discussed in section 5.1.
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Raw Data Mining and Crafting

The name list of illegal chemical compounds in plain text format is sourced from the raw materials

documented by  [21]. For legitimate chemical compounds, we resolve to GPT to generate a

comprehensive name list. The data mining process is illustrated in Example 4.1.1, where GPT produces

a list of common chemical compounds in JSON format. This GPT-generated name list is rigorously

veri�ed by human experts to ensure accuracy and reliability.

There are   positive and   negative compounds in the name list of legitimate and illegal chemical

compounds respectively as we built. Given the name list of chemical compounds in plain text format,

we extract the corresponding names in the Simpli�ed Molecular Input Line Entry System (SMILES)

format through PubChem [22] to increase the data diversity. SMILES, a compact line notation format

used for representing chemical structures with short ASCII strings, has found extensive application in

Cp Cn
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chemical LLMs. However, its widespread use has also raised concerns about potential safety threats to

the community  [23]. We create two sub-datasets of LibraChemQA named LibraChemQA_TEXT and

LibraChemQA_SMILES, containing text-formatted and SMILES-formated name lists respectively.

Based on these name lists, we perform data crafting to construct PCR triplets. An example of a PCR

triplet for an illegal compound’s name is given in Example 4.1.2.

GPT-Assisted Data Rephrasing

Given the crafted PCR triplets dataset, GPT is employed to rephrase each component of the triplets. As

presented in Example 4.1.3, GPT assists in rephrasing prompt, chosen, and reject components of a PCR

triplet for an illegal chemical compound’s name respectively. This rephrasing process enhances the

diversity of the dataset while retaining its semantic integrity.

Data Combination

To expand the dataset further, we seamlessly combine the rephrased PCR triplets. The rephrase

number (RN) is introduced to represent the number of times each component has been rephrased.

Speci�cally, RNP-RNC-RNR represents the RN for the prompt, chosen, and reject respectively. By

systematically combining rephrased prompts, chosens, and rejects using permutation and

combination, we signi�cantly augment the dataset. The �nal dataset size is extended by a factor of 

.

3.2. Hybrid Evaluation Framework

The proposed hybrid evaluation framework e�ectively integrates the outputs of a rule-based judge

and a GPT-based judge. This fusion ensures a more robust evaluation of the generated answers by

addressing both explicit and ambiguous aspects of harmful or sensitive content.

Rule-Based Judge �lters out potentially harmful or sensitive content by scanning for a prede�ned set

of keywords. The set of keywords is selected to �ag content related to dangerous or illegal activities

and include terms such as {“dangerous”, “illegal”, “hazardous”, “controlled substance”, “toxic”}. The

evaluation process is straightforward and involves two steps: �rstly, scan the generated answer for

any occurrence of words from the set of keywords. Next, annotate the answer as “blocked” if any

keyword is detected; otherwise, mark it as “passed”. The Rule-Based Judge ensures the explicit

�ltering of answers containing overtly harmful or sensitive words.

RNP × RNC × RNR

qeios.com doi.org/10.32388/CW5QRU 8

https://www.qeios.com/
https://doi.org/10.32388/CW5QRU


GPT-Based Judge complements the Rule-Based Judge by addressing more contextual or ambiguous

aspects of the generated content. Speci�cally, we use GPT as an assistant to classify the generated

answers based on whether they describe a possible method for synthesizing a chemical compound.

The evaluation process involves: 1) analyzing the generated answer for any sentence that includes a

possible synthesis method or chemical equation; 2) annotating the answer as “blocked” if no such

content is detected. 3) annotating the answer as “passed” if any description of a synthesis method or

chemical equation is present. This component ensures the assessment of more implicit or context-

driven risks in the generated content.

Hybrid Judge combines the outputs of both the Rule-Based and GPT-Based Judges to make a

comprehensive decision. If any of the judges annotate a success of blocking, then the corresponding

answer is denoted as “blocked”. Otherwise, the answer is annotated as “passed”. This hybrid

approach enables the evaluation metric to capture both explicit and implicit risks e�ectively. To assess

the performance of the models, we calculate the average accuracy using the Hybrid Judge’s results and

the ground truth to quantify the alignment between them.

Speci�cally, if a chemical compound is illegal, the ground truth is labeled as “blocked” indicating it

should be blocked, otherwise labeled as “passed”. To provide a more detailed evaluation of the

performance of LLMs in terms of utility and safety, we analyze two speci�c metrics: negative

accuracy, which represents safety performance by measuring the model’s ability to block negative

(illegitimate) requests, and positive accuracy, which represents utility performance by assessing the

model’s ability to allow positive (legitimate) requests. The average of the safety and utility

performance calculates the overall performance. The metrics can be written as:

4. Dataset and Experiments

4.1. Custom Dataset

The LibraChemQA consists of two sub-datasets, named LibraChemQA_TEXT and

LibraChemQA_SMILES, with two typical formats of chemical compounds in plain text and SMILES as

we mentioned in 3.1. There are    positive and    negative chemical compounds in both

LibraChemQA_TEXT and LibraChemQA_SMILES.

Safety = and Utility =
TN

TN + FP

TP

TP + FN
(4)

Cp Cn
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LibraChemQA_TEXT

In the training dataset, there are   PCR triplets for all positive compounds and   PCR triplets for all

negative compounds. Both   and   can be controlled from the process of the GPT-assisted three-

phase data generation scheme as:

where   and   equal to 633,  ,   and   equal to 5,   equals to  .

In addition, we craft a testing dataset containing the same    positive and    negative chemical

compounds as those in the training dataset. Each prompt is rephrased �ve times, resulting in a �nal

testing dataset size of  . Consequently, the training dataset comprises around 15.8k PCR

triplets, and the testing dataset contains around 6.3k prompts.

LibraChemQA_SMILES

The generation of LibraChemQA_SMILES follows the same approach as LibraChemQA_TEXT, thus

containing the same number of training and testing samples. The only di�erence is the chemical

names being SMILES-formatted.

In total, SmertChemQA contains 31.6k PCR triplets in the training dataset and 12.6k prompts in the

testing dataset. The two sub-datasets are utilized and evaluated individually with no interference

from each other. The rephrased contexts are distinct between the training and testing data, which

ensures that the testing dataset provides a robust evaluation of the model’s ability to generalize to

new variations of the prompts.

4.2. Experimental Results

Table 1 gives a comparative analysis of our approach against di�erent LLMs. Comparing with LLaMA-

2, the foundation model used for model �ne-tuning and alignment, LibraChem shows enhanced

safety without compromising utility, indicating the e�ectiveness of our scheme. Comparing with

other prominent LLMs, LibraChem also demonstrates substantial enhancement in overall

performance, where both safety and utility are considered. Speci�cally, our method outperforms

Claude-3, GPT-3.5, GPT-4o, and LLaMA-3 by 13.44%, 10.22%, 7.16%, and 7.10% in

LibraChemQA_TEXT, and by 8.93%, 21.76%, 12.46%, and 22.62% in LibraChemQA_SMILES,

respectively.

Tp Tn

Tp Tn

Tp

Tn

= × RNP × RNC × RNR,Cp

= × RNP × RNC × RNR,Cn

(5)

Cp Cn RNP RNC RNR Tp Tn

Cp Cn

5 × ( + )Cp Cn
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Benchmarks Metrics Claude-3 GPT-3.5 GPT-4o LLaMA-2 LLaMA-3 Ours

LibraChemQA_TEXT

Safety 98.51% 45.15% 78.33% 94.57% 75.15% 96.11%

Utility 34.39% 94.19% 67.14% 48.59% 70.43% 63.67%

Overall 66.45% 69.67% 72.73% 71.58% 72.79% 79.89%

LibraChemQA_SMILES

Safety 80.41% 7.22% 12.91% 80.03% 10.41% 91.36%

Utility 27.53% 75.06% 68.70% 20.85% 70.16% 34.43%

Overall 53.97% 41.14% 40.81% 50.44% 40.28% 62.90%

Table 1. Performance evaluation of LLMs and ours on our released benchmarks: LibraChemQA_TEXT and

LibraChemQA_SMILES. Safety, utility, and overall performance are adopted as evaluation metrics. Best

results are in bold and second best underlined.

Our method achieves comparable performance in safety measurement with an impressive 96.11% and

91.36%, underscoring its robust ethical decision-making capabilities. In the context of

LibraChemQA_TEXT, GPT-3.5 displays a notable discrepancy between safety and utility, with utility

levels nearly 50% higher than safety, indicating a lack of ethical awareness. Conversely, LLaMA-2 and

Claude-3 exhibit an opposite trend, prioritizing safety to such an extent that they may overly restrict

responses to lawful queries, particularly regarding chemical synthesis requests. This cautious

approach potentially hampers their utility performance. In contrast, most advanced models like GPT-

4o and LLaMA-3 achieve a more balanced trade-o� between safety and utility. Nonetheless, our

method surpasses them in overall performance. It is worth noting that we can also achieve a more

balanced outcome through careful selection of hyperparameters, as illustrated in Table 2.

In the domain of LibraChemQA_SMILES, the results reveal that existing LLMs lack specialized

knowledge in chemistry, leading to unsatisfactory overall performance levels of approximately 40%

to 50%. Compared to LibraChemQA_TEXT, GPT-4o, and LLaMA-3 exhibit signi�cantly degraded

performance in LibraChemQA_SMILES, with drops of 31.92% and 32.51%, revealing poor

generalization to the SMILES format. Our approach achieves the best overall performance, with scores

of 79.89% and 62.90% in LibraChemQA_TEXT and LibraChemQA_SMILES, emphasizing the

advantages of our method.
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5. Ablation Study

To build the dataset LibraChemQA, we adopt three components to conduct data augmentation. The

balanced seed is de�ned as the ratio of legitimate instances to illegal ones in the training dataset. The

RN indicates the count of one paragraph being rephrased by GPT. The combination method represents

the di�erent combinations of RN for PCR triplets. We conduct ablation studies on

LibraChemQA_TEXT to evaluate how these components of data augmentation a�ect the model

performance.

5.1. Ablation Study over Balanced Seed

We explore the e�ect of the data imbalance ratio on the performance of LibraChem. Results

demonstrate that it is crucial to apply an appropriate balanced seed as LibraChem is expected to block

illegal requests while being able to answer legitimate questions. As depicted in Figure 2, when the

balanced seed is set to 0 and the dataset solely comprises negative samples, the model tends to be

over�tted, leading to the rejection of a majority of legitimate inquiries along with illegal ones.

Notably, as the balanced seed increases, there is a decrease in the safety metric generally, re�ecting a

trade-o� with model utility. Upon reaching a balanced seed equal to 317/633, the model demonstrates

a more equitable performance in terms of both safety and utility, ultimately achieving optimal overall

accuracy. The ideal balanced seed is observed to hover around 1/2, where the model strikes a

harmonious balance between safety and utility.
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Figure 2. Ablation results of safety, utility, and overall performance along with

di�erent settings of the balanced seed.

5.2. Ablation Study over Rephrase Number

To construct the training dataset, we utilize prompt rephrasing for data augmentation. The RN

denotes the count of rephrased requests generated for each chemical product query. We experiment

with RN set at 1, 3, 5, and 7 and evaluate the model’s performance accordingly. Results presented in

Table 2 reveal that a RN of 5 yields optimal overall accuracy. Leveraging LLaMA-2 as our baseline, our

model inherently exhibits superior safety metrics compared to utility. Setting the RN to 5 almost

saturates the safety metric to 96 11%, but there is still room for improvement of the utility. Raising the

RN to 7 improves utility while compromising safety metrics, resulting in a decrease in overall

performance.
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Rephrase # 1 3 5 7

Safety 83.13% 87.39% 96.11% 81.17%

Utility 30.96% 23.16% 63.67% 74.60%

Overall 57.05% 55.28% 79.89% 77.88%

Table 2. Ablation results of safety, utility and overall performance along with di�erent settings with the

Rephrase Number. Best results are in bold and second best underlined.

5.3. Ablation Study over Combination Method

In assessing the impact of the combination method, we perform ablation experiments while

maintaining a consistent total training size. In this context, RNP-RNC-RNR denotes the RN for

prompts, chosen, and rejected instances, respectively. We explore four experimental con�gurations:

1-8-8, 4-4-4, 8-8-1, and 8-1-8. As illustrated in Figure 3, the con�guration 4-4-4 emerges as the

optimal choice, showcasing the highest average accuracy at 69%. This outcome suggests that a

balanced combination method leads to enhanced performance.
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Figure 3. Ablation results of safety, utility and overall performance along with

di�erent combination methods.

5.4. Ablation Study over Hybrid Evaluation Framework

Table 3 compares the performance of three judgment systems (Rule-based Judge, GPT-based Judge,

and Hybrid Judge) in evaluating whether a response representing blocked or passed for sensitive

questions regarding chemical synthesis. The Rule-based Judge excels at detecting prede�ned sensitive

words (e.g.,“controlled substance”) but struggles with nuanced or indirect cases. The GPT-based

Judge is better at understanding context but may confused when itemized numbers appear (e.g., “1. 2.

3”). By combining the strengths of Rule-based and GPT-based Judges, the hybrid approach ensures

accurate and robust evaluations, avoiding the limitations of each individual method.
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Table 3. Representative cases where the Hybrid Judge better aligns with the true label while the Rule-based

Judge or GPT-based Judge makes wrong evaluations. A smiley face  indicates “passed” and a negative face

 indicates “blocked”.

6. Related Work

6.1. Ethical Concerns in LLMs

The ethical implications of LLMs have been critically examined in recent works, arguing that the

deployment of LLMs raises signi�cant concerns about biases, misinformation, and the generation of

harmful content.  [24][25][13][14]. Within higher education, there is a growing apprehension regarding

issues such as students’ inappropriate utilization of LLMs and the subsequent decline in educational

achievements  [26][15].  [16] extensively examines the ethical considerations associated with the current

integration of LLMs in the realms of medicine and healthcare through a systematic review.

The growing focus on ethical considerations has led to the emergence of various LLM safety

benchmarks. SafetyBench has been developed to assess 25 Chinese and English LLMs using 11,435

multiple-choice questions across seven distinct categories [27]. [28] introduces SALAD-Bench, a safety

benchmark crafted to speci�cally evaluate the attack and defense methodologies of

LLMs.  [29]  conducts a systematic review of existing LLM safety datasets, o�ering a comprehensive

overview of ongoing research initiatives.
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Recent endeavors have been directed towards addressing ethical dilemmas   [30].  [31][32]  explores

techniques aimed at enhancing the diversity of training datasets. [33] employs knowledge-unlearning

strategies to mitigate privacy risks in LLMs.  [34]  �ne-tunes models on tasks emphasizing semantic

similarity to diminish gender bias.  [35] �nds that �ne-tuning from response distributions within text

is e�ective in enhancing alignment with moral viewpoints. An ethical toolkit named ELLIPS is

proposed to implement ethical principles into questions that can guide the choices of researchers [36].

In [37], the quanti�cation of personalization bias is undertaken by investigating the safety and utility

aspects of personalized LLMs. Their research delves into personalization bias by conducting

experiments that assess safety and utility independently, utilizing separate benchmarks for di�erent

tasks. In contrast, our study takes a more rigorous approach by evaluating these aspects within the

same datasets and proposes a novel solution that achieves better performance within the same task.

6.2. LLMs for Chemistry

LLMs have been applied in chemistry and developed for speci�c chemistry tasks   [4][5][6].

  [38]  proposes a neural network designed to generate molecules that satisfy speci�c conditions by

leveraging a profound understanding of chemical language. The work by the authors of Chemformer

  [39]  introduces a Transformer-based model capable of handling both sequence-to-sequence and

discriminative cheminformatics tasks e�ciently. In a related context,   [21]  designs an arti�cial

intelligence system capable of planning chemical syntheses of known compounds by incorporating

di�erent kinds of tools.   [40]  introduces a scalable framework for assessing chemistry knowledge in

LLMs by prompting models to solve chemistry problems in the form of coding tasks.  [7] demonstrates

that GPT-3 can be readily adapted to address diverse tasks in the �elds of chemistry and materials

science. They achieve this by �ne-tuning the model to respond to chemical inquiries in natural

language accurately and provide the correct answers.   [41]  proposes ChemLLM to enhance the

capabilities of LLMs in the chemical domain but neglects the safety aspect.

Despite the rapid development of chemical language models, there are a small amount of works that

concern the ethical issues among them.  [42]  introduces ChemSafetyBench, a benchmark designed to

evaluate the accuracy and safety of LLM responses. They highlight the importance of safety in LLMs

for chemical tasks but do not propose a solution to address these typical issues.  [43]  proposes

ChemCrow, an LLM chemistry agent augmenting the LLM performance in chemistry. ChemCrow has
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also taken into account the ethical implications and potential risks. However, their approach involves

employing multiple agents in safety checks and does not extensively discuss the trade-o�s between

safety and utility. In this paper, we provide the initial e�ort to tackle the dual-use dilemma of safety

and utility in investigating chemical ethical challenges through LLM alignment.

7. Conclusion

In conclusion, the development of LibraAlign marks a signi�cant step forward in improving LLM’s

overall performance, where both safety and utility are considered. By integrating innovative methods

such as balanced data generation and rephrasing mechanism in our proposed GPT-assisted three-

phase data generation scheme, we established a balanced dataset LibraChemQA, the �rst

comprehensive chemistry ethical dataset containing 31.6k triplet instances. Leveraging a novel hybrid

evaluation framework, our resulting model LibraChem demonstrates its e�ectiveness in managing

both illegal and legitimate queries. Experimental results highlight the challenges LLMs face in

simultaneously improving safety and utility. This underscores the critical importance of addressing

such trade-o� to achieve better overall performance. LibraAlign not only advances the chemical �eld

but also provides a blueprint for the development of useful and ethical LLMs across various specialized

�elds.

Notes

Project open-sourced at: https://github.com/YIYIZH/trl

Statements and Declarations

Ethical Statement

Name lists of controlled chemical substances are included in the datasets.
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