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The vast diversity of styles, domains, and quality levels present in language model pre-training

corpora is essential in developing general model capabilities, but e�ciently learning and deploying

the correct behaviors exempli�ed in each of these heterogeneous data sources is challenging. To

address this, we propose a new method, termed Metadata Conditioning then Cooldown (MeCo), to

incorporate additional learning cues during pre-training. MeCo �rst provides metadata (e.g., URLs

like en.wikipedia.org) alongside the text during training and later uses a cooldown phase with only

the standard text, thereby enabling the model to function normally even without metadata. MeCo

signi�cantly accelerates pre-training across di�erent model scales (600M to 8B parameters) and

training sources (C4, Re�nedWeb, and DCLM). For instance, a 1.6B language model trained with

MeCo matches the downstream task performance of standard pre-training while using 33% less

data. Additionally, MeCo enables us to steer language models by conditioning the inference prompt

on either real or fabricated metadata that encodes the desired properties of the output: for example,

prepending wikipedia.org to reduce harmful generations or factquizmaster.com (fabricated) to

improve common knowledge task performance. We also demonstrate that MeCo is compatible with

di�erent types of metadata, such as model-generated topics. MeCo is remarkably simple, adds no

computational overhead, and demonstrates promise in producing more capable and steerable

language models.1

Corresponding author: Tianyu Gao, tianyug@princeton.edu

1. Introduction

Language models (LMs) achieve remarkable general-purpose capabilities by training on vast web-

sourced corpora. This diversity in training data underscores a fundamental challenge: while humans
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naturally calibrate their understanding based on the source of the data, LMs process all content as

equivalent samples. For instance, Internet documents about Apple CEO Tim Cook range from memes

(“Tim doesn’t cook anymore”) to biographies (“Tim Cook is the CEO of Apple”). Treating data from these

heterogeneous sources identically causes two issues: (1) it overlooks crucial contextual signals that aid

comprehension, and (2) it can impede models from reliably surfacing appropriate behaviors (e.g.,

humor or factuality) for specialized downstream tasks.

To provide additional information about each document’s source, we propose conditioning

documents with their corresponding metadata during pre-training by prepending the widely available

source URLs to each document. For instance, as shown in Figure  1, adding the source URLs to Tim

Cook documents helps the model distinguish among a meme, a biography, an interview article, and a

�nancial report. To ensure the model operates e�ectively with or without metadata during inference,

we implement a “cooldown” phase for the �nal 10% of training, during which we train on standard

data without metadata. We call this pre-training method Metadata Conditioning then Cooldown

(MeCo).

Figure 1. A comparison between data used by standard pre-training and MeCo. The �gure on the right

demonstrates 5-shot downstream task performance averaged across 10 tasks (1.6B models; details about

the experiments can be found in §3).

Although metadata conditioning has been used in prior works to steer model generations[1]  and

improve the robustness of models to malicious prompts[2], our work establishes the general-purpose

utility of this method in two crucial ways. First, we demonstrate that this paradigm can directly

accelerate language model pre-training and improve downstream performance. Second, the cooldown

phase in MeCo ensures the model can perform inference without metadata, unlike previous methods.

We outline our speci�c contributions below.

qeios.com doi.org/10.32388/D226QH 2

https://www.qeios.com/
https://doi.org/10.32388/D226QH


1. MeCo substantially accelerates pre-training (§3). We demonstrate that MeCo enables a 1.6B

model to achieve the same average downstream performance as a standard pre-trained model

using    less training data. MeCo exhibits consistent gains across model scales (600M, 1.6B,

3B, and 8B) and data sources (C4, Re�nedWeb, and DCLM).

2. MeCo unlocks a new way to steer language models (§4). Prepending appropriate real or

synthetic URLs to the prompt during inference can induce desired model behaviors. For example,

using factquizmaster.com (not a real URL) can enhance performance on common knowledge

tasks (e.g., a 6% absolute improvement on zero-shot commonsense question answering), and

using wikipedia.org reduces the likelihood of toxic generations several-fold compared to the

standard unconditional inference.

3. We ablate the design choices for MeCo (§5.1) and demonstrate that MeCo is compatible with

di�erent types of metadata (§5.2). Ablations using hashed URLs and model-generated topics

demonstrate that the main role of the metadata is to group documents together by source. As

such, MeCo can e�ectively incorporate di�erent types of metadata, including more �ne-grained

options, even when URLs are not available.

Our �ndings demonstrate that MeCo can signi�cantly improve the data e�ciency of language models

while adding negligible computational overhead and complexity to the pre-training procedure.

Moreover, the enhanced steerability a�orded by MeCo holds promise in creating more controllable

language models, and its general compatibility with more �ne-grained and creative metadata

warrants further exploration. Altogether, MeCo is a simple, �exible, and e�ective training paradigm

that can simultaneously improve the utility and steerability of language models.

2. MeCo: Metadata Conditioning then Cooldown

In this section, we describe our pre-training approach in details. We assume each document in the

pre-training dataset is associated with some metadata  . In our main experiments, we use the

document URL’s absolute domain name as  . For example, if the document’s URL is

https://en.wikipedia.org/wiki/Bill_Gates, then   is en.wikipedia.org (please refer to §5.2 for ablations

on other URL variants). This URL information is readily available in many pre-training corpora, since

most of them are derived from CommonCrawl2, an open repository of web-crawled data.

Our method consists of two training stages, as illustrated in Figure 1.

33%
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1. Pre-training with metadata conditioning (�rst 90%): The model is trained on a concatenation

of the metadata and the document, following this template: URL:

en.wikipedia.org\n\n[document]. When using other types of metadata, URL should be

replaced with the corresponding metadata name. We only calculate the cross entropy loss over

the document tokens, disregarding those from the template or the metadata, as we found in our

preliminary experiments that training on those tokens slightly hurts downstream performance.

2. Cooldown with standard data (last 10%): Models trained solely on metadata-augmented data

degrade in performance when used without metadata (please refer to results in Table 4). To

ensure general usage, we train the model on standard pre-training documents without any

metadata during a cooldown stage, which covers the �nal 10% of steps in the pre-training

process. The cooldown stage inherits the learning rate schedule and optimizer states from the

metadata conditioning stage—i.e., it initializes the learning rate, model parameters, and

optimizer states from the last checkpoint of the previous stage and continues adjusting the

learning rate according to the schedule. Please refer to §A.3 for more details.

We also employ the following techniques in all our experiments, as they enhance the baseline pre-

trained models’ performance based on our preliminary experiments: (1) we disable cross-document

attention[3][4], which both speeds up the training (25% faster for a 1.6B model) and improves the

downstream performance (§B.1); (2) when packing multiple documents into one sequence, we ensure

each sequence starts with a new document rather than in the middle of one—this may result in some

data being discarded when packing documents to a �xed length, but it proves bene�cial for improving

downstream performance.

3. MeCo Improves Pre-training Data E�ciency

In this section, we demonstrate that MeCo can signi�cantly accelerate language model pre-

training (§3.2). We also show that MeCo leads to consistent gains across di�erent model scales (§3.3)

and training data (§3.4).

3.1. Experiment setup

We utilize the Llama[5][6][3] version of the Transformer architecture[7] and the Llama-3 tokenizer for

all our experiments. We conduct experiments with four di�erent model sizes: 600M, 1.6B, 3B, and 8B.

The architecture details are in §A.2. We employ standard optimization settings for language models,
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i.e., AdamW optimizer and cosine learning rate schedule. We follow[8]  for hyperparameters and the

details can be found in §A.1. Due to the high cost associated with pre-training and our limited

resources, we perform only one run for each experiment; however, we demonstrate in §B.2 that the

variance of our experiments should be low. §A.5 outlines the resources required for our experiments.

Pre-training data. We use the best-performing open-source pre-training corpus, DCLM-Baseline[8],

for our main experiments. Additionally, we conduct experiments with two other data sources: a

reproduction of Re�nedWeb[9]  from[8]  and the C4 dataset[10]. In the paper, we refer to these data

sources as DCLM, Re�nedWeb, and C4, respectively. Notably, DCLM is a subset of Re�nedWeb,

acquired by using a fastText classi�er[11]  for selecting high-quality data[8]. Please refer to §A.4 for

more details.

Evaluation. We adopt the OLMES suite[12]  for evaluation, which includes the following tasks:

MMLU[13], ARC-Easy (ARC-e;[14]), ARC-Challenge (ARC-c;[14]), CommonsenseQA (CSQA;[15]),

HellaSwag (HSwag;[16]), OpenBookQA (OBQA;[17]), PIQA[18], Social IQA (SIQA;[19]), and WinoGrande

(WG;[20]). We also add the popular TruthfulQA dataset (TruQA;[21]). Throughout the paper, we report

the average performance across all 10 tasks as “Avg.”. Unless speci�ed, we always report 5-shot in-

context learning results. OLMES enhances evaluation reliability by o�ering three key features: (1) it

provides manually-curated in-context examples for each task; (2) it evaluates with both a multiple-

choice format and a cloze format, and takes the best of two; (3) it applies ablated calibration

method[22][23]  to each individual task. During evaluation, we sample 1,000 examples for each task,

which improves e�ciency while providing the same reliable results as full evaluation.
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3.2. MeCo achieves comparable performance to standard pre-training with 33% less data

Model PPL MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG   TruQA Avg.  

Standard 13.2 36.1 75.1     42.7     64.8 66.7 46.0 74.3 54.2 62.0 35.2 55.7

+ Data sel. 13.3 37.2 74.6 44.3 62.9 65.5 46.8 74.3 52.4 64.3 37.8 56.0

+ 80B tokens 12.9 37.1 75.2 43.2 64.1 67.7 49.8 74.7 54.9 62.8 37.8 56.7

MeCo 13.3 36.3 75.7 44.1 63.8 67.3 51.2 73.4 52.6 64.2 38.5 56.7

    0.2 0.6 1.4 1.0 0.6 5.2 0.9 1.6 2.2 3.3 1.0

Table 1. Our main experimental results of pre-training a 1.6B language model on 160B tokens from DCLM.

MeCo signi�cantly outperforms standard pre-training and achieves equivalent average performance to

the 240B-token baseline while using 33% less data. Interestingly, validation perplexity (PPL) does not

correlate with downstream performance.

Table  1 shows our main results of pre-training a 1.6B language model on 160B tokens from DCLM.

Besides standard pre-training (Standard), we also feature two other experiments, both of which use

more resources and only serve as references instead of fair comparisons:

Data selection (+ Data sel.): We employ the fastText data selection classi�er from[8] to choose the

top 70% documents from a 250B-token pool of DCLM data—this is similar to the high-quality data

used in Section 5 of[8]. According to the Table 4 from[8], this fastText classi�er achieves state-of-

the-art data selection performance. This method incurs additional computational cost since the

classi�er must be applied over the whole corpus.

Training with more data (+ 80B tokens): We train a standard model with 240B tokens, with the

same optimization hyperparameters.

We �rst observe that MeCo achieves signi�cantly better performance than standard pre-training

across most tasks. Additionally, MeCo surpasses the data selection baseline3; unlike data selection, our

approach does not incur any computational overhead, as it leverages readily available URL

information from the pre-training data. More importantly, MeCo achieves performance comparable

↑ ↑ ↑ ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↑
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to standard pre-training while using 33% less data and compute, representing a substantial gain in

data e�ciency.

We also illustrate the changes in downstream task performance throughout the pre-training process

in Figure 2. For MeCo, each checkpoint in the �gure includes a cooldown phase on 16B tokens (10% of

the total training tokens). For instance, the 80B checkpoint consists of 64B tokens of conditional

training followed by 16B tokens of cooldown. We observe that MeCo consistently surpasses the

baseline model, particularly in the later stage of training.

Figure 2. MeCo downstream task performance throughout training (1.6B model on DCLM). Each

checkpoint of MeCo includes a 16B-token cooldown in the end. The total number of tokens used by the

baseline and the corresponding MeCo checkpoints are the same for fair comparison. The reported average

numbers are over all 10 tasks. Full results in Table 16.

Discussion of perplexity. Table  1 reveals that validation perplexity does not correlate with

downstream performance in our experiments. Notably, when comparing the 240B baseline to the 160B

MeCo model, the baseline exhibits much lower perplexity due to the larger data size, yet the two

models achieve similar average downstream performance. This observation aligns with previous

studies[24][25][26]  indicating that perplexity is not always a reliable indicator of downstream

performance; the �nal task performance can be impacted by other critical factors, such as inductive

bias.

3.3. MeCo improves performance across model scales

Figure 3 demonstrates the results across di�erent model scales (600M, 1.6B, 3B, and 8B). We train all

the models with the same optimization hyperparameters and the same amount of data (160B on
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DCLM) except for the 8B model, which is trained on 80B tokens with a lower learning rate due to

resource constraints and training instability (details in §A.1).

Figure 3. MeCo results across di�erent model scales (160B tokens from DCLM except for the 8B* model,

which is trained on 80B tokens due to resource constraints). Full results in Table 17. We report the average

numbers across all 10 tasks. MeCo improves models across scales and leads to more gains for billion-

parameter models compared to smaller models.

We �rst observe that MeCo improves model performance across all scales. Although the trend is

somewhat noisy, MeCo appears to yield greater improvements for larger models, with billion-

parameter models showing more signi�cant gains compared to the 600M model. Note that this is a

qualitative observation, as downstream task performance is known to scale less smoothly compared to

pre-training loss.

3.4. MeCo improves performance across di�erent training corpora

We train 1.6B models on 160B tokens from three di�erent data sources: C4, Re�nedWeb, and DCLM.

We present the results in Figure 4. If we use the average downstream performance as an indicator for

data quality, we can rank the three data sources as DCLM   Re�nedWeb   C4. We observe that MeCo

provides consistent and signi�cant gains across di�erent data sources, both on the average accuracies

and individual tasks.

> >
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Figure 4. Results of applying MeCo over di�erent pre-training corpora (1.6B models, 160B tokens). Full

results in Table 18. We report the average numbers across all 10 tasks. MeCo provides consistent gains

across di�erent pre-training sources.

4. Conditional Inference Steers Language Model Generations

MeCo not only improves the general quality of pre-trained language models (evaluated by standard

few-shot downstream task performance), but also unlocks the possibility of steering the model’s

generations during inference by conditioning it on particular URLs. We term this paradigm

conditional inference, as illustrated in Figure 5.

Figure 5. Illustration of conditional inference: We can condition the model by prepending a URL to the

prompt. The URL does not need to be a real one.

Steering language model generations by conditioning the model on a “control sequence” has been

explored in the past, either for style control[1] or for avoiding harmful content[2]. In this section, we

study how combining conditional inference and MeCo (even with cooldown) can both improve the

downstream task performance and reduce the likelihood of harmful generations.
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4.1. Conditional inference improves MeCo’s downstream task performance

In this section, we demonstrate how prepending appropriate URLs to the inputs improves MeCo’s

downstream performance. We �rst design a URL for each downstream task used in our evaluation, for

example, www.factquizmaster.com for OpenBookQA and www.socialskillsassessment.com for Social

IQA. You can �nd all the customized URLs in Table 11. We note that (1) the URLs do not need to be real;

(2) we did not use trial-and-error when choosing the URLs to avoid over�tting to the test set.

We apply the same set of customized URLs to both the standard model and MeCo (1.6B, 160B DCLM

tokens) and the results are shown in Table 2. We see that applying conditional inference leads to little

di�erence on the standard model but a signi�cant improvement on MeCo. Overall, MeCo with

conditional inference achieves 1.5% absolute improvement compared to standard pre-training with

unconditional inference.

Inference

Pre-training

Standard MeCo

Unconditional 55.7 56.7

Conditional 55.8  0.1 57.2  0.5

Table 2. Conditional inference further improves MeCo performance (Table 19).

We also explore the impact of di�erent URLs on performance, as shown in Table 3. In this experiment,

we use two real URLs: boards.4chan.org, an anonymous imageboard known for its association with

o�ensive content, and www.factmonster.com, a trivia website. Unlike our main experiment, we

employ zero-shot prompting to highlight the e�ects of di�erent URLs. Our �ndings indicate that

selecting an appropriate URL can signi�cantly enhance zero-shot results compared to using a more

adversarial one: for example, using factmonster.com outperforms 4chan.org by 7.3% on

CommonsenseQA.

↑ ↑
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Inference URLs ARC-e ARC-c CSQA OBQA

Unconditional inference 69.6 43.2 54.7 48.4

boards.4chan.org 66.7  2.9 41.1  2.1 53.6  1.1 47.8  0.6

www.factmonster.com 70.7  1.1 45.7  2.5 60.9  6.2 52.4  4.0

Table 3. Zero-shot evaluation of MeCo (1.6B, 160B DCLM tokens) with di�erent URLs. We show the delta

between unconditional inference and using URLs.

4.2. MeCo with conditional inference reduces harmful generations

In addition to improving downstream task performance, MeCo with conditional inference also reduces

harmful generations. To evaluate the toxicity of model generations, we follow [27] to sample 4096 text

sequences from the models, with temperature   and top- =0.9. The generated sequences have

lengths between 10 and 128 tokens. For unconditional inference, the model is only conditioned on the

BOS token. For conditional inference, the model is conditioned on en.wikipedia.org.

To obtain toxicity scores, we follow the setup in [27] and use the toxic comment classi�er Detoxify [28].

We use the unbiased model from Detoxify, which is based on RoBERTa [29] and trained on a human-

labeled dataset of nearly 2 million comments, created for the task of evaluating unintended bias [30].

The classi�er provides both general toxicity scores and more granular scores (e.g., obscene, insult).

We show the averaged toxicity scores over all sampled generations in Figure 6. We observe that using

en.wikipedia.orgfor conditional inference reduces the toxicity scores of generations from both the

standard pre-training model and MeCo. Conditional inference is more e�ective on MeCo, leading to a

signi�cantly lower toxicity score compared to the baseline.

↓ ↓ ↓ ↓

↑ ↑ ↑ ↑

T = 0.7 p
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Figure 6. MeCo with conditional inference (using en.wikipedia.org)

signi�cantly reduces harmful generations.

5. Ablation Studies

5.1. Di�erent strategies for mixing metadata-conditioned and standard data

In this section, we study the best strategy to mix metadata-augmented data and standard data. We

experiment with four di�erent strategies: only standard data, only metadata-conditioned data,

directly mixing the two sources of data throughout training (90% URL + 10% standard) and two-stage

training (i.e., �rst 90% with metadata conditioning and then 10% standard data)—the last one is

MeCo.

qeios.com doi.org/10.32388/D226QH 12

https://www.qeios.com/
https://doi.org/10.32388/D226QH


Table 4 demonstrates the results of the di�erent mixing strategies. First, we see that only training on

metadata-conditioned data leads to performance degradation, emphasizing the importance of

cooldown. While both directly mixing the two types of data and two-stage training improve the

performance compared to the standard pre-training baseline, �rst training on metadata-conditioned

data and then cooldown with standard data leads to better and more consistent gains. We also perform

additional ablations on the length of cooldown in §B.3, which show that 10%-20% cooldown achieves

the best performance (and we use 10% in our experiments).

Model ARC-e ARC-c HSwag OBQA 10-Task Avg.

100% standard 75.1 42.7 66.7 46.0 55.7

100% URL 72.4  2.7 28.8  13.9 61.5  5.2 42.6  3.4 50.3  5.4

90% URL + 10% standard 72.5  2.6 43.1  0.4 66.9  0.2 50.0  4.0 56.4  0.7

MeCo 75.7 0.6 44.1 1.4 67.3 0.6 51.2 5.2 56.7 1.0

Table 4. Di�erent strategies of mixing metadata-augmented and standard data. Full results can be found

in Table 20.

5.2. Understanding the role of metadata

To better understand how MeCo works, we experiment with various types of metadata and present the

results in Table 5. Below, we describe these metadata types and their outcomes.

↓ ↓ ↓ ↓ ↓

↓ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ↑
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Metadata Examples Avg.

URLs (MeCo) en.wikipedia.org 56.7

Full URLs en.wikipedia.org/wiki/Bill_Gates 56.8   0.1

URL su�xes org 56.2   0.6

Top 0.2% URLs en.wikipedia.org or unknown 56.4   0.3

Top 2% URLs en.wikipedia.org or unknown 56.3   0.4

Hashed URLs 7dsjuj3a-olp0 56.7   0.0

Model-generated topics Technology leader biography 56.6   0.1

Table 5. Ablations on using di�erent metadata for MeCo. The average results are over all 10 tasks. Full

results can be found in Table 21.

URL variants. We test URL variants that provide more information (full URLs) and less information

(URL su�xes). While full URLs perform similarly to MeCo, using URL su�xes results in signi�cant

performance degradation, suggesting that absolute domain names (e.g., en.wikipedia.org) provide the

appropriate granularity as metadata.

Top URLs. We retain only the most frequently appearing URLs from the DCLM data and mark others as

“unknown”. We experiment with two tiers: top 0.2% URLs (each URL corresponds to roughly more

than 1,000 documents, covering 41.6% of the DCLM data) and top 2% URLs (each URL corresponds to

more than 100 documents, covering 65.1% of the DCLM data). The URL distribution in DCLM is highly

skewed, with a few top URLs covering a large portion of the data. Examples of top URLs are shown in

Table  15. This experiment aims to determine whether MeCo primarily bene�ts from modeling

infrequent or high-frequency URLs. We �nd that using only top URLs does not match MeCo’s

performance, indicating that MeCo also bene�ts from low-frequency URLs.

Hashed URLs. We map each unique URL into a random string to investigate whether MeCo needs to

learn the semantics of URLs or simply recognizes that certain documents belong to the same groups.

Surprisingly, using hashed URLs achieves performance on par with semantically-meaningful URLs,

↑

↓

↓

↓

↑

↓
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indicating that the semantic meaning of the metadata is not necessary for better pre-trained models

—instead, simply providing signals that group certain documents together is su�cient for improving

pre-training data e�ciency.

Model-generated topics. We explore ways of generating metadata in case readily available metadata is

absent or insu�cient. We prompt a Llama-3.1-8B-Instruct model to generate a two-word or three-

word topic for each document, such as “technology leader biography” or “gaming forum” (more

details in §A.6). This is more �ne-grained metadata compared to domains (e.g., “Wikipedia” or

“Books”). Note that prompting models to generate topics is extremely expensive, taking roughly

1,500 GPU hours, similar to what is required to pre-train the 1.6B model. Hence, it is not a practical

method but included for analysis purposes. We observe that using model-generated topics leads to

similar results to our main MeCo model, suggesting that metadata based on document contents

instead of sources is equally useful, prompting future explorations on more creative ways of

generating metadata.

Our ablations suggest that metadata conditioning improves pre-training data e�ciency by grouping

documents together by source or topic. We propose two preliminary hypotheses as to how metadata

conditioning a�ects model training: First, the model may automatically learn to prioritize documents

from useful sources or topics, thereby internally optimizing the mixture of training domains, which

has been shown to be useful during pre-training[31][32]. Indeed,[33]  also suggested that language

models may autonomously identify domains rich in knowledge. Second, the model may use the

additional metadata supervision to simply learn more structured representations of these large

corpora, with no knowledge of the quality of each of the groups. We believe that the precise

mechanism by which MeCo accelerates pre-training and improves model steerability warrants further

theoretical and empirical study.

6. Related Work

Metadata conditioning. CTRL[1]  �rst proposed “conditional language models” for controlled

generation: the method prepended the pre-training documents with “control codes” such as source

domains, which allowed for steering the generation during inference by prompting the model with

di�erent control codes.[34]  used timestamps as the metadata to train time-aware language models

and[35] adopted document languages as the metadata for a multilingual pre-trained model.[36] pre-

trained language models on hyper text, which provided extra metadata such as class and id, which
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allowed for conditional inference as well. Conditional training was also explored in alignment and

preference optimization:[2]  pre-trained models with reward model scores as the pre�x and[37]

[38]  conditioned the text on their quality measurements in post-training—both allowed prompting

the model with a high quality score during inference to output more human-preferred text. Besides,

[39] used a similar idea to inject “document IDs” into the pre-training corpus to enable training data

attribution, though the “IDs” were appended, instead of prepended to the documents. Recently,

[33] found in a synthetic experiment setting that prepending a special token to distinguish knowledge-

intensive documents (for example, documents from Wikipedia) from other ones improved the model’s

capacity to memorize knowledge.

While our �ndings on improved steerability after conditional training echo previous literature, our

paper is the �rst to explore the use of metadata conditioning in modern-scale language model pre-

training and its e�ect on downstream task performance. Compared to other types of metadata

explored by prior work, we use URLs as they can be acquired with no additional cost and they are more

informative than source domains or reward scores.

Selecting pre-training data. The quality of pre-training corpora is essential for the performance of

the resulting language models. Consequently, there has been a huge amount of e�ort invested into

improving pre-training data, starting from heuristic-based �ltering[10][40][41][9][42]  and

deduplication[43][44][5][45]. Recently, model-based data �ltering or data selection has emerged: many

works sought to use simple ngram models to select those that resemble high-quality domains such as

Wikipedia[22][46][8] or to use an existing language model for perplexity �ltering[47][48][49]. [50][26][51]

[3]  instead used a large language model to score instances based on abstract values such as whether

they are “educational”—but these methods introduce considerable overheads as running these

language models over the whole pre-training corpus is costly and whether they can lead to better

performance under the same computational budget is unclear[52][53].

Another line of works aimed to adjust the domain mixture for more data-e�cient training[31][54][32].

However, these models require an existing domain taxonomy (which is usually very coarse-grained)

and a target loss to optimize for—which has been shown to not always correlate with downstream

performance[24][25].
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7. Conclusion

We introduce metadata conditioning then cooldown (MeCo), an extremely simple method that

consistently outperforms standard pre-training with negligible computational overhead. MeCo

leverages commonly available metadata, such as source URLs, by prepending them to pre-training

documents. At the end of training, MeCo removes the URLs from the data to enable inference without

metadata. Through comprehensive experiments across various model scales and training corpora, we

demonstrate MeCo’s e�ectiveness, achieving up to a 33% speedup in pre-training. Additionally, we

show that prompting MeCo models with suitable metadata can further enhance their downstream

performance and mitigate harmful outputs. Our �ndings underscore the potential of metadata

conditioning to enhance data e�ciency in pre-training and to develop more controllable and steerable

language models.

Limitations

Due to limited resources and the costly nature of pre-training, we do not perform multi-run

experiments; however, we show in §B.2 that the variance of our experiments should be low and our

results are signi�cant. All our investigations are limited to English corpora. We do not study the

interplay between metadata conditioning and post-training procedures. We also do not have a

mechanistic understanding of how conditioning on metadata helps improve the downstream

performance. We hope our results can shed light on these interesting questions and motivate further

research on metadata conditioning.
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Appendix A. Experiment Details

A.1. Hyperparameters

Table  6 shows the hyperparameter settings used in our experiments. We follow[8]  for the high

learning rate and weight decay except for the 8B model, which requires a lower learning rate for

numerical stability.

Hyperparameters Values

Optimizer AdamW ( ,  )

Learning rate  (  for the 8B model)

Weight decay  (  for the 8B model)

Batch size 4M tokens

Warmup 5% linear warmup

Schedule Cosine decay to 10% of the peak learning rate

Table 6. Hyperparameter settings for our experiments.

A.2. Model con�gurations

We use the Llama variant[5]  of Transformers[7]  for our experiments. All models use the Llama-3

tokenizer[3]. The detailed con�gurations are speci�ed in Table 7.

= 0.9β1 = 0.95β2

3e-3 5e-4

0.033 0.1
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#Param #Layers Hidden Intermediate #Heads Head Dim

600M 24 1024 4096 16 64

1.6B 24 2048 5504 16 128

3B 28 3072 8192 24 128

8B 32 4096 14336 32 128

Table 7. Model con�gurations for our experiments.

A.3. Cooldown details

The metadata conditioning stage (90%) and the cooldown stage (10%) share the same learning rate

schedule—i.e., the metadata conditioning stage will end at the 90% of the learning rate schedule and

the cooldown stage will resume from that same point on the schedule and continue the learning rate

decay. It also inherits all the optimizer states. To ensure the cooldown stage does not see repeated data

as the conditional training stage, we use a di�erent subset of data for cooldown for all our DCLM

experiments.

For our 8B experiments (80B tokens), due to the checkpoint saving con�guration, we performed a

10B-token cooldown (12.5% instead of 10% of the total training).

A.4. Dataset details

Table 8 shows the dataset details for our pre-training experiments.

Dataset Description

C4 The SlimPajama[55] C4 subset

Re�nedWeb DCLM-reproduced[8] Re�nedWeb

DCLM DCLM-Baseline, which is a �ltered version of DCLM-reproduced Re�nedWeb

Table 8. Pre-training dataset details.
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A.5. Experimental resource

Table 9 shows the resources required to train the models in our experiments. Our main models (1.6B,

160B tokens) take roughly 2 days to train on 32 H100 GPUs.

#Params 600M 1.6B 1.6B 3B 8B

#Tokens 160B 160B 240B 160B 80B

#GPU hours 776 1536 2304 3085 3905

Table 9. Resources required to train the models in our experiments (H100 GPU hours).

A.6. Prompts for model-generated topics

Table 10 shows the prompt used for generating topics. We prompt a Llama-3.1-8B-Instruct model to

generate topics. We only use the �rst 1024 tokens from the document as the snippet. We use greedy

decoding.

Based on the given sampled snippet from a document (could be a webpage, a book, a codebase,

a paper, or anything else), write a domain keyphrase (within 4 words; for example, code,

international news, food blog, biography, science fiction, politics essay, gaming forum,

algebra quiz, physics textbook, restaurant advertisement, religous story, etc.) for the

document. The "domain keyphrase" should consider both the topics and the genre/source of

the document.

*** Start of the snippet ***

{{snippet}}

*** End of the snippet ***

Now output the domain (do not output other things):

Table 10. The prompt for generating topics.
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A.7. Customized URLs for conditional inference

Table 11 shows the customized URLs for conditional inference.

Tasks Customized URLs

MMLU www.testprepportal.com

ARC-Easy www.sciencestudyquiz.com

ARC-Challenge www.sciencestudyquiz.com

CommonsenseQA www.quizsmart.com

HellaSwag www.wikihowquiz.com

OpenBookQA www.factquizmaster.com

PIQA www.basicknowledgequiz.com

Social IQA www.socialskillsassessment.com

WinoGrande www.testpreppractice.com

TruthfulQA www.factcheckfun.com

Table 11. Customized URLs for conditional inference.

Appendix B. Additional Experiments

B.1. Cross-document attention ablation

Table  12 shows a comparison between enabling and disabling cross-document attention. Disabling

cross-document attention leads to signi�cant speedups for our training (for a 1.6B model, it is 25%

faster). We also see that it brings a considerable performance improvement on the vanilla model.

Interestingly, the average performance does not di�er much between two di�erent attention patterns

for MeCo, suggesting that prepending the URLs to the document helps the model learn the noisy

cross-document attention. Based on these results, all other experiments in this paper disable cross-

document attention.
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Model MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

Standard 36.1 75.1     42.7     64.8 66.7 46.0 74.3 54.2 62.0 35.2 55.7

+Cross-doc attn 36.3 73.4 41.6 63.2 65.5 46.0 73.6 52.4 61.3 36.7 55.0

MeCo 36.3 75.7 44.1 63.8 67.3 51.2 73.4 52.6 64.2 38.5 56.7

+Cross-doc attn 35.5 72.7 45.4 66.3 66.1 51.8 74.4 52.8 62.4 38.2 56.6

Table 12. Cross-document attention ablation (160B tokens, 1.6B parameters).

B.2. Experiment variance

Due to the nature of pre-training experiments and the high cost associated with it, we perform single

runs for all our experiments and do not report their standard deviations. However, we provide a

reference point here for estimating the variance of our experiments. We take the 90% checkpoint of

the 1.6B-parameter, 160B-token standard pre-training model, and continue the rest 10% of the

training with three disjoint sets of data. Table  13 shows their performance. We see that while some

individual tasks show performance di�erences, the standard deviation of the average performance is

very low ( ), demonstrating that the average performance across our selected tasks is an indicative

and stable metric.

Model MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

Standard run 1 36.1 75.1     42.7     64.8 66.7 46.0 74.3 54.2   62.0   35.2 55.7  

Standard run 2 36.2 73.9 43.4 63.1 67.5 46.2 74.2 53.2 62.0 35.5 55.5

Standard run 3 36.3 73.8 43.2 63.4 67.5 45.8 74.5 54.2 62.8 34.7 55.6

Avg. 36.2 74.3 43.1 63.8 67.2 46.0 74.3 53.9 62.3 35.1 55.6

Std. 0.1 0.7 0.4 0.9 0.5 0.2 0.2 0.6 0.5 0.4 0.1

Table 13. Multiple runs of the baseline model (1.6B parameters, 160B tokens from DCLM). The average

performance across runs shows low variance.

0.1%

± ± ± ± ± ± ± ± ± ± ±
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B.3. Cooldown length ablation

Table  14 shows the performance of di�erent cooldown lengths. We see that performing a 10% and

20% cooldown achieves similar results, while further increasing the length hurts the performance. For

simplicity, we use 10% cooldown for all our experiments. We note that the best cooldown length can

vary across di�erent numbers of parameters, total numbers of training tokens, and the pre-training

corpora; however, performing such a �ne-grained search across all di�erent settings is intractable.

Model MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

10% cooldown 36.3 75.7     44.1     63.8 67.3 51.2 73.4 52.6 64.2 38.5 56.7

20% cooldown 36.5 74.7 46.0 64.2 67.1 49.4 73.6 53.3 64.3 39.0 56.8

30% cooldown 36.7 74.8 45.0 60.9 67.5 49.0 74.2 51.6 62.8 39.2 56.2

Table 14. Ablations on di�erent cooldown lengths (1.6B parameters, 160B tokens).

Appendix C. DCLM URL Distributions

Table 15 shows the top 50 URLs from DCLM and the corresponding document ratios.
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URLs Document ratios

en.wikipedia.org 0.256%

stackover�ow.com 0.240%

www.theguardian.com 0.207%

www.urbandictionary.com 0.149%

www.fan�ction.net 0.148%

www.businessinsider.com 0.139%

gizmodo.com 0.123%

everything2.com 0.119%

www.physicsforums.com 0.100%

www.reference.com 0.090%

www.theatlantic.com 0.087%

www.mumsnet.com 0.086%

superuser.com 0.086%

chowhound.chow.com 0.085%

www.hu�ngtonpost.com 0.082%

serverfault.com 0.082%

www.engadget.com 0.079%

math.stackexchange.com 0.078%

www.nytimes.com 0.075%

news.bbc.co.uk 0.073%

gawker.com 0.071%

tvtropes.org 0.069%

www.instructables.com 0.069%

www.fool.com 0.068%

www.enotes.com 0.067%
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URLs Document ratios

townhall.com 0.067%

slashdot.org 0.066%

www.foxnews.com 0.066%

kotaku.com 0.066%

articles.chicagotribune.com 0.064%

www.reddit.com 0.063%

www.complex.com 0.063%

jezebel.com 0.062%

www.gamefaqs.com 0.061%

www.aljazeera.com 0.061%

askubuntu.com 0.061%

abcnews.go.com 0.060%

mathover�ow.net 0.058%

www.csmonitor.com 0.058%

articles.latimes.com 0.058%

www.bookrags.com 0.057%

lifehacker.com 0.057%

www.sfgate.com 0.057%

jalopnik.com 0.057%

www.ancestry.com 0.057%

www.nifty.org 0.057%

www.theregister.co.uk 0.057%

www.osnews.com 0.056%

www.cnet.com 0.055%

www.ign.com 0.055%

qeios.com doi.org/10.32388/D226QH 25

https://www.qeios.com/
https://doi.org/10.32388/D226QH


Table 15. Top 50 URLs from DCLM.

Appendix D. Full Results

Table 16, Table 18, Table 17, Table 20, Table 21, and Table 19 show the detailed results of experiments

reported in our main paper.
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#Tokens MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

Standard

16B 30.4 62.8 34.2 56.0 48.7 43.8 69.9 47.2 55.2 39.1 48.7

32B 32.1 66.8 37.3 60.0 55.9 45.2 70.3 46.7 56.5 38.6 50.9

48B 34.1 67.4 40.0 60.9 58.0 50.2 71.8 52.5 57.3 38.3 53.1

64B 34.0 69.2 39.8 61.6 59.8 46.8 72.7 50.2 59.2 36.3 53.0

80B 34.9 72.5 41.4 58.6 62.8 48.4 72.8 52.7 60.8 35.5 54.0

96B 34.9 71.2 40.2 62.1 63.5 45.8 72.4 53.5 60.4 36.4 54.0

112B 35.6 72.1 42.2 62.9 64.9 44.6 73.3 52.6 60.1 34.6 54.3

128B 35.9 73.5 42.5 62.8 64.5 44.2 73.1 53.9 61.0 35.3 54.7

144B 36.1 73.9 41.1 60.6 66.6 46.6 73.5 53.9 61.6 35.5 55.0

160B 36.1 75.1 42.7 64.8 66.7 46.0 74.3 54.2 62.0 35.2 55.7

MeCo

16B 30.4 62.8 34.2 56.0 48.7 43.8 69.9 47.2 55.2 39.1 48.7

32B 32.5 66.0 38.7 58.2 53.9 44.6 70.6 49.4 56.2 41.8 51.2

48B 34.0 68.9 43.0 59.2 57.8 48.2 71.6 50.4 57.9 41.2 53.2

64B 34.2 70.6 41.9 62.6 60.4 46.0 72.1 50.5 59.1 40.1 53.8

80B 34.3 72.4 44.0 61.7 61.9 46.6 72.6 49.4 60.7 39.1 54.3

96B 34.9 72.5 44.3 63.1 64.1 48.2 72.9 49.5 61.7 38.7 55.0

112B 35.4 73.6 44.4 63.6 64.4 47.6 72.4 51.4 63.2 37.8 55.4

128B 35.7 74.6 44.5 64.9 66.9 49.4 73.0 51.5 63.0 37.5 56.1

144B 36.1 75.6 44.8 63.6 67.3 50.0 73.8 52.1 63.7 38.0 56.5

160B 36.3 75.7 44.1 63.8 67.3 51.2 73.4 52.6 64.2 38.5 56.7

Table 16. Intermediate checkpoint results for the 1.6B-parameter, 160B-token runs. For all MeCo

checkpoints, we perform a 16B-token cooldown (i.e., the 64B checkpoint is 48B metadata conditioning
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training + 16B cooldown).

Model MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

600M model, 160B tokens from DCLM

Standard 32.7 67.5 38.2 58.8 56.4 45.0 71.2 47.9 57.6 39.2 51.5

MeCo 32.8 67.6 37.0 62.0 54.2 47.2 71.0 49.6 57.1 37.9 51.7

1.6B model, 160B tokens from DCLM

Standard 36.1 75.1 42.7 64.8 66.7 46.0 74.3 54.2 62.0 35.2 55.7

MeCo 36.3 75.7 44.1 63.8 67.3 51.2 73.4 52.6 64.2 38.5 56.7

3B model, 160B tokens from DCLM

Standard 39.8 76.8 48.3 66.0 74.1 49.0 76.9 56.0 66.5 38.1 59.2

MeCo 39.7 78.6 48.5 71.0 73.6 51.8 77.0 55.5 65.9 36.4 59.8

8B model, 80B tokens from DCLM†

Standard 39.2 73.3 46.0 66.0 72.8 48.8 76.1 54.8 66.2 35.2 57.8

MeCo 39.5 77.1 44.8 68.8 71.2 52.6 75.8 53.8 65.2 35.0 58.4

Table 17. Results with di�erent numbers of parameters. All experiments use the same hyperparameters

except for the 8B model†, which uses a smaller learning rate and fewer tokens due to training instability

and limited compute resources.
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Model MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

1.6B model, 160B tokens from C4

Standard 31.0 59.8 36.1 55.8 64.9 42.8 72.5 49.7 60.0 32.0 50.5

MeCo 31.9 62.0 37.8 54.3 63.6 43.6 74.0 50.0 58.9 39.5 51.6

1.6B model, 160B tokens from Re�nedWeb

Standard 32.4 68.6 37.1 61.2 63.9 46.8 73.9 51.2 59.7 36.7 53.2

MeCo 32.5 69.4 38.0 61.4 64.3 48.2 73.6 53.6 60.6 38.9 54.0

1.6B model, 160B tokens from DCLM

Standard 36.1 75.1 42.7 64.8 66.7 46.0 74.3 54.2 62.0 35.2 55.7

MeCo 36.3 75.7 44.1 63.8 67.3 51.2 73.4 52.6 64.2 38.5 56.7

Table 18. Detailed results on di�erent pre-training corpora.

Model MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

Standard 36.1 75.1     42.7     64.8 66.7 46.0 74.3 54.2 62.0 35.2 55.7

100% URL 33.9 72.4 28.8 37.2 61.5 42.6 72.9 52.1 60.5 41.0 50.3

90% URL + 10% Standard 36.4 72.5 43.1 63.7 66.9 50.0 75.7 53.1 62.8 39.9 56.4

MeCo 36.3 75.7 44.1 63.8 67.3 51.2 73.4 52.6 64.2 38.5 56.7

Table 20. Di�erent strategies of mixing metadata-augmented and standard data.
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Model MMLU ARC-e ARC-c CSQA HSwag OBQA PIQA SIQA WG TruQA Avg.

URLs (MeCo) 36.3 75.7     44.1     63.8 67.3 51.2 73.4 52.6 64.2 38.5 56.7

Full URLs 36.7 75.4 43.9 68.3 66.5 51.2 74.0 52.9 63.2 35.6 56.8

URL su�x 36.2 73.9 42.7 65.2 67.7 49.0 73.1 53.6 62.1 38.1 56.2

Top 0.2% URLs 36.2 76.6 44.1 66.9 66.3 47.6 74.5 53.7 63.1 35.3 56.4

Top 2% URLs 36.5 73.5 44.8 65.4 65.8 48.2 74.3 53.4 64.3 36.9 56.3

Hashed URLs 36.4 73.7 44.2 64.6 67.2 51.8 74.3 54.8 62.5 37.9 56.7

Topics 36.3 74.5 45.3 64.5 67.4 48.2 74.2 53.5 63.1 38.6 56.6

Table 21. Experiment results on using di�erent types of metadata.

Footnotes

1 Our models, data, and code are available at https://github.com/princeton-pli/MeCo.

2 https://commoncrawl.org/

3 It is important to note that the DCLM data is already a subset of the Re�nedWeb data selected by this

classi�er. We do not claim that MeCo consistently outperforms data selection; rather, we demonstrate

that MeCo can be integrated with data selection to achieve further improvements, while data selection

alone tends to yield diminishing returns.
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