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1 Background24

Model organisms are crucial in advancing biomedical research by offering advantages such as easy ge-25

netic manipulation and access to datasets from a variety of experimental contexts [1]. As a popular choice,26

mouse models have significantly contributed to the study of human diseases [2], including diabetes [3],27

glioblastoma [4], and non-alcoholic fatty liver disease [5]. However, translating experimental findings to28

humans is challenging owing to biological differences between species. Efforts to bridge this evolutionary29

gap include engineered mouse models that replicate human biology more closely [6]. The emergence of30

single-cell RNA sequencing (scRNA-seq) has also opened up opportunities for deep learning approaches31

to compare experimental findings across species.32

Transfer learning techniques have established themselves as powerful tools for sharing information be-33

tween scRNA-seq datasets. These approaches often use encoder-decoder architectures to compress34

datasets into a low-dimensional manifold. Examples include Cell BLAST [7] and ItClust [8], which anno-35

tate and cluster cells based on knowledge transfer from reference datasets.36

Architecture surgery techniques adjust network architectures according to the characteristics of different37

datasets. After pretraining, additional neurons are inserted into the encoder and decoder input layers.38

These neurons correct for unseen batch effects in the new data, while all other weights remain fixed39

during subsequent training. This approach, pioneered by scArches [9], now spans a diverse set of mod-40

els [10–12]. Despite the method’s success, two primary challenges remain unaddressed for datasets of41

different species (Figure 4).42

First, some genes lack orthologs in other genomes, which requires different interpretations of certain in-43

put nodes in their neural network architectures. For example, 20% of human protein-coding genes and44

a significant percentage of small and long noncoding RNAs lack one-to-one mouse orthologs [13]. To45

enable training, architecture surgery-based approaches restrict datasets to orthologous genes or zero-fill46

missing values. Outside of architecture surgery, some models like SATURN [14] and TACTiCS [15] match47

genes via protein sequences with transformer-based language models.48

The second challenge is that biological similarities between cells do not always translate into similar gene49

expression patterns, which can vary significantly between species [13]. Therefore, neural networks may50

struggle to recognize similar cells.51

To account for differences between gene sets and expression levels, we introduce scSpecies. Our ap-52

proach pretrains a conditional variational autoencoder-based model [16] and fully reinitializes the encoder53

input layers and the decoder network during fine-tuning. Architecture alignment is guided by a nearest54
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neighbor search performed on homologous genes, which estimates the similarity between cells in both55

datasets. This incentivizes our model to map biologically related cells into similar regions of the latent56

space. The neighbor search requires only a small subset of observed genes to be homologs, while all57

remaining genes can have no relationship at all. Moreover, scSpecies enables nuanced comparisons58

of gene expression profiles by generating gene expression values for both species from a single latent59

variable.60

We tested our method on data from various species and organs, including liver cells [17], white adipose61

tissue cells [18], and glioblastoma immune response cells [19]. Our results demonstrate that scSpecies62

effectively aligns network architectures and latent representations. We improve upon cell label transfer63

from the initial nearest neighbor search and existing architecture surgery approaches when measured in64

terms of accuracy and multiple clustering metrics.65

2 Results66
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Figure 1: Graphical representation of the scSpecies workflow. Step 1: The encoder and decoder neural
networks are trained on the dataset of the context species. The weights of the last encoder layers are in-
corporated into the encoder model for the target species. Step 2: A nearest neighbor search is performed
on the shared genes of the context and target dataset. This identifies a set of k context neighbors for
every target cell. Step 3: The cells of the target dataset are encoded into the latent space. For cells with
high agreement among the cell labels of their neighbors, we retrieve the latent variables of their neigh-
bors. Step 4: The latent values of their k neighbors are passed to the decoder together with the human
batch label. Step 5: The optimal candidate among the k neighbors is chosen as the cell with the highest
log-likelihood. Step 6: The distance between the optimal candidate and the intermediate representation
of its target cell is minimized. Step 7: After training, normalized gene expression profiles can be compared
by decoding latent variables with both decoder networks. Additionally, labels can be transferred via the
aligned latent representation.

We present scSpecies, a tool for researchers who wish to use one scRNA-seq dataset as a context for67
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another from a different species. In the following, the dataset of the model organism is referred to as the68

’context dataset’, and the dataset of the target organism is referred to as the ’target dataset’. scSpecies69

aligns context scRNA-seq datasets with human target data, enabling the analysis of similarities and dif-70

ferences between the datasets.71

In addition to the context and target datasets, the model requires a sequence containing indices of ho-72

mologous genes, indicator variables for batch effects, and cell type labels for the context dataset.73

The proposed workflow (Figure 1) aligns the network architectures of two single-cell variational infer-74

ence (scVI) [20] models in a pretraining strategy. In scVI, encoder neural networks map gene expression75

vectors into a compressed latent space separating cells by biological features. Conversely, a decoder76

maps from this low-dimensional representation onto parameters of a negative binomial distribution to (re-77

)generate gene expression data.78

First, our proposed approach pretrains a scVI model on the context dataset. Afterwards, the last encoder79

layers are transferred into a second scVI model for the target species. The aim of this architecture transfer80

is to share learned information within the network weights between datasets and species. During subse-81

quent fine-tuning, the shared weights remain frozen while all other weights are optimized.82

Unlike existing architecture surgery approaches, we align the architectures in a reduced intermediate fea-83

ture space instead of at the data level. This approach is inspired by the notion of midlevel features from84

computer vision [21, 22]. These represent abstractions of the input image learned by neural networks85

in their intermediate layers. Midlevel features combine individual elements into more general structures,86

such as contours, specific shapes, or parts of objects. Transfer learning approaches then retrain the87

last layers to transition these intermediate representations into task-specific network outputs for different88

datasets [23].89

Unlike images, scRNA-seq datasets lack ordered patterns as gene expression vectors can be permuted90

without changing their information content. Nevertheless, the first encoder layers translate dataset-91

specific features, such as influences of experimental batches or interactions between observed genes,92

into a higher abstraction level (Figure 5). The resulting representation may correspond to more funda-93

mental cell properties that are less perceptible to noise and systematic differences between species.94

To connect the new encoder layers with the pretrained structure, we identify sets of similar cells through a95

nearest neighbor search performed on homologous genes. Afterward, scSpecies minimizes the distance96

between a target cell’s midlevel representation and a suitable candidate from its set of neighbors. The97

model determines the most suitable context cell as the candidate whose decoded latent representation98

yields the highest log-density value at the location of the target cell within the decoder’s distribution. To99

counter misclassifications, we align midlevel features for only those target cells whose context neighbors100

have high agreement in their cell labels.101

During model fitting, we thus encode similarity information both at the original data level and at the level102
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of learned features. The aligned latent space then captures cross-species similarity relationships based103

on the fitted model, which facilitates information transfer across species.104

2.1 scSpecies aligns architectures across species105
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Figure 2: Visualization of the aligned representations for three dataset pairs obtained by training sc-
Species with a set of 25 neighbors. We color cells by fine cell type labels for the liver and glioblastoma
datasets, and by coarse cell labels for the adipose tissue dataset. On the left, the bar plots indicate the
accuracy of cell label transfer through a nearest neighbor search in the aligned latent space. The left
y-axis labels indicate cell type codes corresponding to human cell labels. These codes are referenced
in the legend. The bars contain the frequency of assigned mouse cell labels. The results are averaged
over five random seeds. The left y-axis labels indicate improvement in accuracy for shared cell types
over the data-level nearest neighbor search. In addition to the bar plots, the UMAP coordinates of the
aligned latent representations are visualized. The lymphoid cell types are colored in green and brown;
the myeloid cell types are colored blue and purple; and the CD45− cell types are colored red, pink and
yellow. The cells from the other dataset are indicated in a light gray.

We applied the scSpecies workflow to three mouse-human dataset pairs containing liver cells, white106

adipose tissue cells, and immune response cells to glioblastoma.107

We visually examined alignment through UMAP coordinates [24] of the combined latent variables of108
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dataset pairs (Figure 2). The 2D representation showed biologically meaningful alignment of the cells.109

Cell types without context counterparts aligned with related cell types or formed distinct clusters.110

To facilitate label and information transfer for target cells, we conducted a second nearest neighbor search111

on the shared latent representation of both datasets. Afterwards, we inferred target cell labels from their112

set of latent context neighbors via majority voting. For labels at the subcell type resolution, the accuracy113

was 73% for liver, 49% for adipose tissue, and 69% for glioblastoma datasets. Misclassifications mostly114

occurred within biologically related cells belonging to the same overarching cell type. For broader cell type115

labels, accuracy increased to 92% for the liver, 82% for the adipose tissue, and 80% for the glioblastoma116

dataset. These values represent significant improvements upon the data-level nearest neighbor search117

and existing architecture surgery approaches (Table 7). We also calculated the adjusted Rand index and118

adjusted mutual information and observed improvements in these metrics.119

We observed a greater increase in label transfer accuracy for cell types with noisy data-level nearest120

neighbor search but clear separation in their pretrained latent space. For example, the initial neighbor121

search matched less than half of all human liver basophils (cluster M.2.1) with mouse counterparts. This122

value improved to over 90% through our method. However, in the adipose tissue datasets, neither the con-123

text scVI model nor the nearest neighbor search separated dendritic cells, monocytes, and macrophages.124

Thus, scSpecies could not separate these cell types either.125

The results were consistent over architecture variations and averaged over five random seeds; however,126

for cell types with noisy neighbor search results, like hepatocytes or portal vein endothelial cells, misclas-127

sifications of the whole cell type occurred in one random seed.128

We also tested scSpecies in a scenario where the target dataset was small but equally diverse in terms of129

cell types and batch effects. Specifically, we randomly sampled 5000 cells from the human liver dataset130

and trained the model to align with the full mouse context dataset. We repeated sampling and training ten131

times and obtained accuracy scores of 88% and 68% for coarse and fine cell labels, respectively, which132

still indicates reasonable performance.133

2.2 The nearest neighbor search is an important component of scSpecies.134

We explored the importance of incorporating the nearest neighbor search into scSpecies. (Table 7) With-135

out this component, we observed misaligned latent representations and significantly reduced label trans-136

fer accuracy. Initializing the inner encoder layers with random, frozen weights yielded similar results to137

using the pretrained structure. This implies that without an explicit neighbor alignment component, trans-138

ferred layers were treated like random nuisances.139

Training with one neighbor forced the model to align some cells with mismatched counterparts as the140

approach could not choose from a set of suitable options. We observed meaningful alignment but with141

reduced performance.142
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Training with 25 neighbors improved the results noticeably on all datasets. To investigate the preferred143

candidate choice, we tracked the cell prototypes during alignment. We created context and target pro-144

totype cells consisting of empirical median gene expression values within a cell type. For each target145

prototype, we included all context prototypes within its set of candidates and tracked their log-likelihoods146

during alignment (Figure 10). At onset, the likelihoods for all prototypes were nearly equal. This resulted147

in alignment driven by chance favoring cell candidates of the most occurring cell label. For cell types148

with a noisy neighbor set, corrections during later training stages eventually aligned them with appropri-149

ate prototypes. We observed this with hepatocytes, migratory cDCs, and basophils, which had nearest150

neighbor search accuracies of 56%, 61%, and 45%, respectively. The cell types where the neighbor151

search yielded predominantly incorrect results did not align correctly, such as killer T cells and cytotoxic152

CD8+ cells, which had initial accuracies of only 11% and 1%, respectively.153

Finally, alignment with a large neighbor set caused neglect of rare cell types, resulting in lower corre-154

sponding accuracy scores. Metrics such as the adjusted Rand index and adjusted mutual information155

were comparable or improved, as they do not reflect different cell type label sizes.156

2.3 scSpecies can help to better separate latent cell clusters.157

To investigate the intermediate representations, we compared the clustering quality of intermediate repre-158

sentations in unaligned and aligned scVI architectures. We found that clustering based on experimental159

batches became increasingly mixed as the data progressed toward the latent space. In the unaligned160

architectures, the Davies-Bouldin index (DBI) increased from 10 to 21.9 in the mouse context, and from161

15.8 to 33.5 in the human liver dataset. Conversely, cell type clusters showed increasingly better separa-162

tion, resulting in a DBI reduction from 4.6 to 1.6 and from 4.9 to 2.4 for the mouse and human datasets,163

respectively (Figures 5,6,7).164

This phenomenon is caused by the design of scVI, which removes batch influences to enforce a normal165

distribution in the latent space. Batch patterns are added by the decoder through their provided labels.166

However, scVI must separate cell types to reconstruct cell characteristics from the latent representation.167

Yet, certain cell types in the human liver dataset, such as hepatocytes, stellate cells, and fibroblasts, are168

predominantly associated with a single batch label. Consequently, the model inferred cell type information169

from batch labels, removing biological characteristics from their latent variables. However, these cell types170

were still separated in the intermediate spaces which are not regularized to follow a normal distribution.171

Alignment adjusted the target encoder architecture to the well-separated latent mouse context represen-172

tation. This improved latent cell cluster separation, as measured by a decrease in DBI from 2.4 to 1.8.173

For white adipose tissue and glioblastoma dataset pairs, clustering improvement was marginal, with a174

decrease in DBI from 1.7 to 1.6 and from 2.2 to 2, respectively.175

We also studied the effectiveness of directly aligning latent representations. Direct latent alignment does176
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not require access to the context model weights. However, we observed a decline in performance met-177

rics across all datasets. This underlines the potential of better alignment within the more information-rich178

midlevel feature spaces.179

2.4 scSpecies can align datasets of multiple species.180

Figure 3: We utilized scSpecies to obtain an aligned liver cell landscape that spans multiple species.
The mouse dataset serves as a context for each species.

We employed scSpecies to simultaneously align liver cells from mice with fatty liver disease, humans,181

pigs, monkeys, chickens, and hamsters, using a context dataset of healthy mice (Figure 3).182

We successfully obtained aligned latent representations across species, despite fewer than half of the183

genes having mouse orthologs in some datasets.184

An intriguing application of scSpecies is the potential to align datasets with very limited gene coverage, or185

even when there is no overlap in the observed gene set. This can be achieved by aligning each dataset186

to a comprehensive context dataset that shares a common gene set with both.187

However, a limitation of this approach is its inability to align cell types not present in the context dataset.188

For example, plasma cells, which were absent from the mouse dataset, were not aligned across the189

human, pig, and hamster datasets.190

8



2.5 scSpecies offers insights into the genetic manifestations of cells across191

species.192

To better understand the similarities and differences between context and target datasets, e.g., to clarify in193

what aspects an animal might be a good model of human biological processes, we extended our analysis194

from the latent space to the data level. Here, we compared the reconstructed gene expression profiles195

and assigned relevance scores to the input genes.196

We decoded latent representations using both decoder models to obtain normalized gene expression197

vectors for each species. These vectors allow us to compare and analyze the gene expression profiles198

of cells that have similar underlying biological properties. This analysis benefits from the correspondence199

between latent representations of both species, which is difficult to establish at the data level.200

For our investigation, we focused on cell types present in both the mouse and human liver datasets. We201

assessed Log2Fold changes (LFCs) in normalized gene expression vectors, which indicate differences202

in gene expression levels between species. We also calculated the probability of observing genes as203

differentially expressed when sampling from the latent distribution of a cell type (Figure 8). Averaging204

across cell types revealed that 56% of the genes exhibited an LFC value above one. Among these, 15% of205

mouse genes were upregulated and 21% were downregulated compared with their human counterparts206

in over 90% of decoded cells. With an LFC threshold of two, 24% of genes had an LFC outside this207

boundary. With an LFC value of 0.4, a substantial 82% of genes showed an LFC outside this boundary.208

These results agree in magnitude with [25], who found an LFC value of greater than 0.4 in 78% of genes209

comparing humans with non-alcoholic liver disease and mice on a high-fat diet.210

For white adipose tissue datasets, 50%, and for glioblastoma datasets, 47% of genes exhibited an LFC211

value greater than one.212

We compared this with training on context-target dataset pairs of healthy mice and mice with liver disease.213

Here, only 22% of genes had an LFC value above one. Of those differentially expressed genes, 4% and214

5% were upregulated and downregulated in more than 90% of samples. Only 6% of genes had an LFC215

over two, while 55% of genes showed LFC values above 0.4.216

We extended our study by calculating relevance scores via Layer-wise relevance propagation (LRP) [26]217

(Figure 9). These scores measure each gene’s contribution to a cell’s latent value, offering insights into218

the learned significance of specific genes across different cell types and species. LRP was recently used219

to explain neural network predictions on scRNA-seq data [27].220

First, we found no significant difference in relevance scores between non-homologous and shared genes,221

suggesting that training networks on a reduced gene set omits informative parts of the data.222

Second, we found that the relevance scores were correlated with the gene expression levels. For the223

mice and human liver datasets, we found a Spearman’s ρ between the expression level of genes and224

their relevance scores of 0.67 and 0.69 and a Pearson correlation coefficient of 0.63 and 0.71. This225
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suggests that differences in gene expression translate into relevant features for the neural networks. A226

gene with high relevance scores across most cell types was MALAT1, which is highly conserved across227

mammals [28].228

3 Discussion229

We introduced scSpecies, a novel deep learning approach designed to align neural network architectures230

across different species. Aligning such architectures has been a challenging task due to differences in231

genomes between species and variations in gene expression levels, even among homologous genes. Key232

features of scSpecies include the retraining of the first encoder layers and integrating a nearest neighbor233

search within the model. By focusing on the alignment of intermediate neural network layers rather234

than the input layers, scSpecies captures more abstract biological properties that are less affected by235

noise and species-specific variations. Additionally, the integration of a nearest neighbor search based on236

homologous genes leverages model-based similarity information to guide the alignment process, ensuring237

that biologically similar cells are mapped closely in the latent space.238

Our results demonstrate that scSpecies effectively aligns scRNA-seq data from diverse species, including239

mouse, human, pig, monkey, chicken, and hamster, across various tissues such as liver, white adipose240

tissue, and glioblastoma cells. The method shows robust performance even when the datasets have a241

limited number of shared genes or when the target dataset is small but diverse.242

However, one limitation of the presented method is that cell types unique to the target dataset tend to be243

aligned with biologically close cell types in the context dataset instead of being identified as new clusters244

by the model. This could lead to misinterpretation of species-specific cell populations. Additionally, when245

creating a collection of multiple species, cell types not present in the context dataset will not align across246

species that exhibit them. To avoid misalignment, the context dataset should therefore encompass all247

suspected cell types of the reference datasets.248

There remain multiple potential directions for further development of our approach. While we initially249

tested scSpecies with a scVI base model, the method could be easily adapted to other CVAE-based250

models in the future. Furthermore, scSpecies could be extended to handle multimodal datasets, such251

as those integrating scRNA-seq with protein expression data (CITE-seq). Our method would also benefit252

from a direct metric that identifies cell types unique to the target datasets and detects cells that may be253

misclassified due to noisy nearest neighbor search results.254
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4 Conclusions255

We have introduced scSpecies, a novel deep learning approach that extends architecture surgery tech-256

niques to align scRNA-seq datasets across species. By retraining the first encoder layers, our method257

overcomes challenges posed by non-orthologous genes and divergent gene expression patterns, en-258

abling more accurate cross-species comparisons. By aligning datasets from multiple species — even259

with minimal gene overlap — scSpecies provides a framework to better understand and compare the260

cellular and molecular similarities and differences of scRNA-seq datasets across species. Therefore, we261

envision that our method could lead to more effective translation of experimental findings from model262

organisms to humans, ultimately advancing our understanding of human biology.263

5 Methods264

In the following, we represent multidimensional vectors using bold italics and scalar values in regular ital-265

ics. Dataset elements are indicated with superscript indices, and vector positions with subscript indices.266

The context dataset is indicated by the subscript C and the target dataset by the subscript T . Super-267

scripts and subscripts are omitted when they are exchangeable. Random variables are expressed in a268

sans-serif mathematical font, as in X,Z, L. We represent distributions of random variables with uppercase269

letters, such as PZ, and their probability density functions with lowercase letters, like pZ(z). Conditional270

distributions are denoted as PX|s := PX|S=s. In the following, we briefly describe the scVI model, which271

we subsequently use as a core of our proposed approach.272

5.1 Single cell variational inference273

Consider a dataset D =
{(

x(i), s(i)
)}M

i=1
obtained through a single-cell RNA sequencing experiment. The274

mathematical model behind scVI [20] assumes that gene expression count vectors x, and batch indicator275

variables s, correspond to observations of random variables X and S. The gene expression data dis-276

tribution PX|s is conditioned on its batch effect S = s. This accounts for technical artifacts during data277

collection. Within an experimental batch, gene expression vectors are independent and identically dis-278

tributed samples from PX|s.279

scVI models the data distribution within a parametric family. Building on conditional variational autoen-280

coders [16], a latent variable model is introduced. The random variable Z, corresponding to the repre-281

sentation of a cell in the latent space Rd, is employed to capture biological variability among cells in the282

dataset. The one-dimensional random variable L with latent space R>0 accounts for technical variability283

due to different library sizes. Within the model, data is generated by drawing samples for Z and L from a284

prior distribution PZ,L|s. Then, gene expression data is generated by drawing from the sampling distribu-285
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tion PX|z,l,s.286

The data p.d.f. pX|s can be expressed by integrating the joint probability across the latent spaces and then287

applying the general product rule of probability,288

pX|s(x) =

∫
z

∫
l

pX|z,l,s(x)pZ,L|s(z, l) dzdl. (1)

To approximate this integral, scVI performs variational inference on the intractable posterior distribution289

PZ,L|x,s. Therefore, the posterior probability is approximated by a variational distribution, denoted as290

QZ,L|x,s ≈ PZ,L|x,s. Further, scVI applies a mean field approximation, where p.d.fs of both variational and291

prior distribution are factorized,292

qZ,L|x,s(z, l) = qZ|x,s(z)qL|x,s(l), pZ,L|s(z, l) = pZ(z)pL|s(l). (2)

The prior PZ is assumed to be independent of S and fixed as standard normal distribution PZ = N (0, Id).293

The prior PL|s is set as a log-normal distribution PL|s = LogNormal(l⊤µ s, l
⊤
σ2s). The prior parameters294

are derived from empirical batch means and variances of the observed log-library sizes. The variational295

distribution QZ|x,s is chosen as a normal distribution N (µZ,σ
2
ZId), and QL|x,s is set as a log-normal296

distribution LogNormal(µL, σ
2
L).297

The parameters for these distributions are determined by two encoder neural networks,298

fenc Z(x, s) = (µZ,σZ) and fenc L(x, s) = (µL, σL). (3)

scVI obtains latent variables by sampling from the variational distributions through the reparametrization299

trick [29].300

The sampling distribution PX|z,l,s for generating gene-expression data from a given latent variable is as-301

sumed to follow a Gamma-Poisson mixture, resulting in a negative binomial distribution. The correspond-302

ing decoder network outputs a denoised gene expression vector that sums to one.303

fdec(z, s) = ρ,

N∑
g=1

ρg = 1. (4)

The value ρg provides an estimate of the percentage of transcripts in a cell that originate from gene g.304

Gene expression values xg can be drawn from a negative binomial distribution NB(lρg, θg,s) parameter-305

ized by mean lρg and dispersion θg,s. The dispersion parameter is constant for every gene across cells306

of batch s. To address the potential issue of dropout, a zero-inflated negative binomial distribution can307

be used to model count data. The dropout probability parameter π is also obtained from the decoder308

network. The weights of the three neural networks and the parameters θg,s are optimized simultaneously309
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by empirically estimating and maximizing the ELBO function310

ELBO
(
x, s, β

)
= EqZ,L|x,s

[
log pX|z,l,s(x)

]
− β

(
DKL

[
QZ|x,s

∥∥ PZ

]
+DKL

[
QL|x,s

∥∥ PL|s
])

(5)

on mini batches M ⊂ D.311

5.2 The scSpecies approach312

We consider a scenario involving two scRNA-seq datasets,313

DC =
{(

x
(i)
C , s

(i)
C , c

(i)
C

)}MC

i=1
and DT =

{(
x
(j)
T , s

(j)
T

)}MT

j=1
. (6)

Their data points consist of gene expression measurements x and batch indicator variables s from a314

context species C and a target species T . Furthermore, context count vectors are clustered into distinct315

groups based on cell type labels cC , whereas target labels cT are unknown.316

The count vectors from both datasets share a gene subset h comprising count values from homologous317

genes,318

x = (x1, . . . , xH︸ ︷︷ ︸
h homologous

, xH+1, . . . , xN︸ ︷︷ ︸
non-homologous

)⊤. (7)

The number of non-homologous genes can differ in both datasets, either because a gene has no ortholog319

in the genome of the other species or because it is not observed within the dataset. Therefore, gene320

expression vectors can be of different dimension, NC ̸= NT .321

To map both datasets into a unified latent space, we define separate scVI models for each dataset,322

scVIC =
(
fC
encZ, f

C
encL, f

C
dec

)
, scVIT =

(
fT
encZ, f

T
encL, f

T
dec

)
. (8)

We divide the training procedure for scSpecies into three steps: Training of the context scVI model,323

followed by an initial data-level nearest neighbor search, and alignment of context and target latent rep-324

resentations.325

5.2.1 Pretraining on the context dataset326

First, the model scVIC is trained on the context dataset by minimizing its negative ELBO function. Follow-327

ing training, the architecture of the encoder network for the latent variable Z is split up into two parts:328

fC
enc Z = fC

outer ◦ fC
inner. (9)
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The outer part fC
outer consists of the first L layer functions and maps data from the input space XC to329

an intermediate feature space T . The inner part, fC
inner, consists of the last M layers. It encodes an330

intermediate representation onto the variational parameters with subsequent reparametrization into the331

latent space Z. We incorporate this inner encoder part into the encoder architecture of scVIT ,332

fT
enc Z = fC

outer ◦ fT
inner. (10)

5.2.2 Nearest neighbor search333

When the first layers are initialized randomly, the target model scVIT cannot leverage the learned structure334

in its subsequent encoder layers. To leverage the learned weights, we incentivize alignment of interme-335

diate target representations with intermediate features of similar context cells. This leads to an aligned336

latent space as layer weights mapping from the intermediate space to the latent space are not updated.337

To quantify similarity and establish a direct correspondence between cells of context and target dataset,338

we perform a nearest neighbor search on the shared homologous gene subset h. The nearest neighbors339

serve as a set of candidates for every target cell from which the model can choose a best fit to align their340

intermediate representations during the last training phase.341

The nearest neighbor search identifies an index set Ik
(
x
(j)
T

)
⊂ IC of k nearest neighbors for every target342

gene count vector x
(j)
T . That is, for every context cell with index i ∈ Ik

(
x
(j)
T

)
, the chosen measure of343

association1 between the homologous gene counts h
(i)
C and h

(j)
T is lower than for cells outside the set:344

d
(
h
(i)
C ,h

(j)
T

)
≤ d

(
h
(l)
C ,h

(j)
T

)
for all l ∈ IC\Ik

(
x
(j)
T

)
. (11)

Common metrics or distance functions can be used as a measure of association d to compare count val-345

ues of single-cell data. Some popular choices have been investigated in [30]. We utilize cosine similarity,346

measuring the cosine of the angle between log1p-transformed count vectors, as it is fast to calculate even347

on datasets containing numerous samples:348

d
(
h
(i)
C ,h

(j)
T

)
= 1−

〈
log

(
h
(i)
C + 1

)
, log

(
h
(j)
T + 1

)〉∥∥∥log (h(i)
C + 1

)∥∥∥
2

∥∥∥log (h(j)
T + 1

)∥∥∥
2

. (12)

The data-level nearest neighbor search can also be used to assign preliminary labels. We count the349

multiplicity of cell labels for all context neighbors and assign, as a preliminary label prediction, the most350

occurring label,351

ĉ
(j)
T = mode

[
c
(i)
C : i ∈ Ik

(
x
(j)
T

)]
. (13)

1Lower values indicate higher association.
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As the data-level nearest neighbor search is noisy, we additionally assign agreement scores based on the352

occurrence of a cell label prediction ĉ
(j)
T .353

P
(
ĉ
(j)
T

)
=

∣∣{i : c(i)C = ĉ
(j)
T and i ∈ Ik

(
x
(j)
T

)}∣∣
k

(14)

A higher agreement score indicates lower noise, as there is high agreement among cell labels of the354

context neighbors. During the following alignment, only target cells exhibiting high agreement scores are355

considered for alignment in the intermediate space. For this, we collect all agreement scores for target356

cells predicted to have label ĉ(j)T and compute the quantile at level p over this set
{
P
(
ĉ
)
: ĉ = ĉ

(j)
T

}
. Finally,357

we collect the indices of all target cells whose agreement scores of their predicted cell label are higher358

than the quantile Q at level p,359

J(p) =
{
j : P

(
ĉ
(j)
T

)
> Q

(
p,
{
P
(
ĉ
)
: ĉ = ĉ

(j)
T

})}
. (15)

5.2.3 Aligning the intermediate and latent representations360

During alignment, the weights of the pretrained encoder part fC
inner are not updated. To guide the model to-361

wards leveraging the learned structure, scSpecies aligns intermediate representations with high accuracy362

scores363

t
(j)
T = fT

outer

(
x
(j)
T , s

(j)
T

)
, j ∈ J(p) (16)

with a representation of a suitable context neighbor representation364

t
(i∗)
C = fC

outer

(
x
(i∗)
C , s

(i∗)
C

)
, i∗ ∈ Ik

(
x
(j)
T

)
. (17)

This is facilitated by minimizing the squared Euclidean distance.365

minimize
∥∥∥t(j)T − t

(i∗)
C

∥∥∥2
2
, if j ∈ J(p). (18)

The optimal choice i∗ ∈ Ik for minimization among the k candidates is dynamically determined during the366

alignment phase: First, we obtain a set of latent context neighbor variables for the target cells considered367

during alignment,368

Lk

(
x
(j)
T

)
=

{
z
(i)
C : i ∈ Ik

(
x
(j)
T

)}
. (19)

These latent variables z
(i)
C are then decoded with the batch indicator variable s

(j)
T of their target cell. The369

decoder output and target library size l
(j)
T parameterize a sampling distribution P

X|z(i)
C ,l

(j)
T ,s

(j)
T

, which is370
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used to calculate log density values for every candidate. The cell i∗ whose latent representation results371

in the highest log density value at x(j)
T is chosen as optimal neighbor candidate:372

z
(i∗)
C = argmax

z
(i)
C ∈Lk

(
x

(j)
T

) log (pX|z(i)
C ,l

(j)
T ,s

(j)
T

(
x
(j)
T

))
. (20)

Using this procedure, it is possible to assign a context neighbor with a fitting cell type if at least one373

candidate with this cell type is found in this set. The training criterion for the model scVIT on the target374

dataset for a data point is375

−ELBO
(
x
(j)
T , s

(j)
T , β

)
+ γ

∥∥∥t(j)T − t
(i∗)
C

∥∥∥2
2

[
j ∈ J(p)

]
, (21)

where [j ∈ J(p)] is the Iverson Bracket that takes value 1 when an index of a target cell j is in J(p), and376

0 otherwise. This holds true for cells that exhibited a high degree of agreement during the data-level377

nearest neighbor search. As minimization in the intermediate space is only incentivized for cells with378

these indices, the remaining cells within a mini-batch are grouped around them in a way that minimizes379

the nELBO of the scVI model.380

The scalars γ, β ≥ 0 weighing different parts of the loss function, the quantile niveau p ∈ [0, 1] and number381

of nearest neighbors k ∈ N are hyperparameters.382

5.2.4 Transferring cell states and cell types383

The aligned latent representations LC =
{
z
(i)
C

}MC

j=1
and LT =

{
z
(j)
T

}MT

i=1
can be analyzed for similarities384

and differences. For example, their dimensionality can be further reduced into two dimensions using a385

dimension reduction algorithm like UMAP [24]. To remove the random influence of the latent sampling386

process, we calculate UMAP coordinates using the variational mean parameters µ.387

We can transfer cell labels or cell states from the context to target species by performing a second388

neighbor search on aligned latent representations. A suitable measure of association is the learned log-389

density, as it considers the learned manifold of the latent space:390

d
(
z
(i)
C , z

(j)
T

)
= − log

(
p
X|z(i)

C ,l
(j)
T ,s

(j)
T

(
x
(j)
T

))
(22)

We transfer the most common cell type among the top k candidates to the target cell.391

5.2.5 Comparison of gene profiles392

To perform a comparison of gene expression profiles between cells of context and target dataset, we tailor393

the methods outlined in [31] and [32] to scSpecies. For a latent variable z, we obtain normalized gene394
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expression profiles by decoding it with both decoder networks and averaging over all possible batches S:395

ρC =
1

|SC |
∑

sC∈SC

fC
dec(z, sC), ρT =

1

|ST |
∑

sT∈ST

fT
dec(z, sT ) (23)

Differences in gene expression profiles can be analyzed for homologous genes, for example, by calculat-396

ing the log2-fold change (LFC)397

rgC,T = log2

(
ρC,g + ε

ρT,g + ε

)
(24)

For genes g with low expression levels in both species but still high differences, the offset ε ensures398

the associated LFC maintains a low order of magnitude. We modify the decoder output layers to avoid399

artifacts from the softmax function. These artifacts can arise due to highly expressed non-homologous400

genes or due to different data dimensions. We apply the softmax function to homologous and non-401

homologous genes separately to obtain402

ρhom = softmax(ρ1, . . . , ρH), ρnhom = softmax(ρH+1, . . . , ρN ), (25)

where N is the dimensionality of the gene expression vector and H the number of homologous genes.403

Afterwards, both vectors are scaled so that they sum to one,404

ρ =

(
H

N
ρ⊤
hom,

N −H

N
ρ⊤
nhom

)⊤

. (26)

Following [32], for a cell type C = cC we calculate a mixture distribution of latent states.405

pC (zC) =
1

|CC(cC)|
∑

x
(i)
C ∈CC(cC)

q
Z|x(i)

C ,s
(i)
C

(zC) (27)

The set CC(cC) is the set of cells with label cC with removed outliers. These outliers are identified406

by estimating the covariance matrix from variational mean samples µC . Cells whose variational mean407

falls outside the 90%-confidence ellipse described by the covariance estimate are removed. An LFC408

distribution of homologous genes for cell types present in both datasets can be estimated by sampling409

latent variables from PC and computing the corresponding LFC values rgC,T . We calculate the median410

of the empirical LFC distribution as well as the probability P (|rgC,T | > δ) of observing an LFC in gene g411

higher than level δ > 0.412
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5.3 Layer-wise relevance propagation413

In the following, we briefly describe Layer-wise Relevance Propagation (LRP) [26]. LRP explains the414

output f(x) of a neural network f by decomposing it into local contributions of input nodes xi, called415

relevance scores Ri(xi) [26]. These relevance scores serve as a measure of each input’s influence416

on the network’s output: positive scores (Ri > 0) signify a positive influence, whereas negative scores417

(Ri < 0) indicate a negative effect. LRP structurally decomposes the function learned by neural networks418

into a set of smaller, simpler sub-functions of adjacent layers, while ensuring the conservation of relevance419

scores across the network. This applies locally, where the sum of the relevance score Ri is conserved420

across two successive layers of the neural network, and globally between the resulting relevance score421

for each input node xi and the output f(x) of the model [26].422

Considering a neural network with ReLU activation function, the output ak of a neuron is given by the423

input âj of the previous layer and their connected weights wjk of the neurons by424

ak = max
(
0,
∑
j

âjwjk

)
, (28)

including the bias with â0 = 1. The relevance scores Rk describe the contribution of each neuron activa-425

tion âj to ak. They can be computed by the LRP-γ rule through426

Rj =
∑
k

âj(wjk + γw+
jk)∑

l âl (wlk + γw+
lk)

Rk. (29)

Here, w+
jk are the positive weights, while γ controls how much these positive contributions are empha-427

sized [33]. LRP methodology aligns with the principles of Deep Taylor Decomposition, which breaks down428

and redistributes the network’s output function f(x) layer by layer through Taylor series expansions. This429

decomposition allows for the derivation of various LRP rules tailored to the network architecture and the430

specific function being analyzed [34]. To compute relevance scores for context and target gene expression431

vectors xC ,xT we propagated the relevance of their latent variational mean parameters µC ,µT through432

the corresponding encoder network. We aggregate relevance scores through averaging over latent di-433

mensions and data points of a cell type. A direct comparison of scores between species is complicated434

by the influence of non-homologous genes and batch-effects on the relevance scores of homologous435

genes through the conservation property. Rather, ranked lists of genes by scores can be compared436

across species.437

5.4 Metrics438

We evaluated label transfer and clustering performance using four key metrics:439

BAS: The balanced accuracy score calculates the proportion of cells correctly labeled in both context and440
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target datasets, averaging over all shared cell types and adjusting for the occurrence of smaller cell441

labels by weighing them equally.442

ARI: The adjusted Rand index [35] measures the similarity between predicted and true cell labels, cor-443

recting for chance. It considers both correct pairings and misclassifications.444

AMI: The adjusted mutual information [35] quantifies how much information the predicted labels share445

with the true labels, adjusting for random label assignments.446

DBI: The Davies-Bouldin index [36] evaluates clustering quality by comparing the compactness of clus-447

ters to the separation between them. Lower values indicate better clustering.448

These metrics collectively assess the accuracy of cell type label transfer and the quality of cell clustering449

in the aligned latent space. Details regarding their calculation are found in the documentation of the450

package skikit learn [37] which we used to calculate these metrics.451

5.5 Hyperparameters452

Model Layer In Architecture Out

fouter 1 N+ S
Linear, LN, ReLU, Dropout−−−−−−−−−−−−−−−→ 300

finner
1 300

Linear, LN, ReLU, Dropout−−−−−−−−−−−−−−−→ 200

2 200 Linear−−−→ 2 · 10
Rep. trick−−−−−→ 10

fenc L
1 N+ S

Linear, LN, ReLU, Dropout−−−−−−−−−−−−−−−→ 200

2 200 Linear−−−→ 2 · 1
Rep. trick−−−−−→ 1

fdec

1 10+ S
Linear, LN, ReLU, Dropout−−−−−−−−−−−−−−−→ 200

2 200
Linear, LN, ReLU, Dropout−−−−−−−−−−−−−−−→ 300

3 300
Linear, (Softmax, Sigmoid)−−−−−−−−−−−−−−−→ 2N

θg,s S
Matrix multiplication−−−−−−−−−−−−−−−→ N

Table 1: The network architecture used for all models. N denotes the gene expression data dimension,
and S the number of batch effects. Layer functions contain an affine linear transformation, followed by
layer normalization (LN), ReLU activation functions which are clipped to the interval [0, 6], and dropout
layers with a dropout rate of p = 0.1. Latent representations are obtained from the variational mean and
scale encoder model output via the reparametrization trick.

All models were trained with the same network architecture. Gene expression was modeled using453

a zero-inflated negative binomial distribution with constant dispersion for genes within an experimental454

batch. We chose a 10-dimensional latent space and a 300-dimensional intermediate space and mapped455

to and from these spaces with network architectures listed in Table 1. We trained models for 30 epochs456

on datasets with more than 10,000 cells and 60 epochs on datasets with less observed samples. Network457

parameters were updated with the ADAM optimizer [38] using standard hyperparameters and a batch size458

of M = 128.459
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We chose to weigh the KL-Divergence terms with β = 0.1 at epoch 1, incrementally increasing their influ-460

ence to β = 1 over 10 epochs. Similarly, the alignment term started with a weight of η = 10, which was461

raised to η = 25. The number of nearest neighbors was set to k = 25 and the quantile cut-off for align-462

ment was set to p = 0.8 across datasets exceeding 10,000 samples. For smaller datasets, we lowered463

the threshold to p = 0.6 to avoid discrimination against scarce cell types. In the latent nearest neighbor464

search, we pre-computed for each target cell a set of 200 nearest neighbors using the Euclidean distance465

between the variational mean vectors. Among the 25 cells that resulted in the highest likelihood values,466

we transferred the most occurring cell label. For differential gene expression analysis, we sampled 10,000467

times from the plugin estimator and set the offset variable to ε = 10−6.468

To compute layer-wise relevance scores we retrained the networks with unbounded ReLU activation func-469

tions and without layer normalization, as it is difficult for LRP to handle normalization layers. To counteract470

exploding intermediate values caused by high gene expression values, we trained the model on log1p-471

transformed values. Omitting layer normalization lead to a slight performance drop of around 2.5% across472

all performance metrics. We calculated relevance scores using the LRP-γ rule with γ = 0.15.473

We trained both scArches and scPoli on a scVI base model using the scArches package implementa-474

tion. These models were trained with the same network architecture as scSpecies. We trained both475

models on homologous genes, as the scArches publication states that zero-filling only produces reliable476

results when less than 25% of genes are affected [9][See feature overlap between reference and query].477

scPoli received training with 10-dimensional batch representations. All other hyperparameters were left478

at default values.479

5.6 Pre-processing of the datasets480

Our model underwent testing on publicly available datasets. (Table 2)481

The ’Liver Cell Atlas’ [17, 39] contains a diverse collection of liver cells from multiple species, including482

mice (both with and without non-alcoholic fatty liver disease), humans, pigs, monkeys, chickens, and483

hamsters. We utilized all cells acquired through the scRNA-seq and CITE-seq pipelines.484

The ’Single-Cell Atlas of Human and Mouse White Adipose Tissue’ [18, 40] contains gene expression485

data from human and murine white fat cells. We selected cell samples obtained via single-nucleus se-486

quencing.487

The ’Brain Immune Atlas’ profiles immune response to a grade IV glioma. For humans we selected cells488

obtained via scRNA-seq of newly diagnosed and recurrent glioblastoma. For mice we selected cells from489

the immune response to transplanted glioblastoma [19, 41].490

We applied a uniform pre-processing pipeline across all datasets. Initially, the dimension of gene expres-491

sion vectors was reduced to 4000 most highly variable genes [42]. Then we excluded cells with less than492

2% nonzero genes or belonging to extremely scarce batch and cell labels with less than 20 samples. To493
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Dataset Organism Shared genes Cells Batches Number of cell types
H M S Coarse Fine

Liver

C Mouse 4 000 165 680 34 15 (15) 36 (36)
T Mouse NAFLD 2 860 91 787 22 14 (14) 28 (22)
T Human 1 808 146 839 30 15 (14) 32 (20)
T Human small 1 808 5 000 30 15 (14) 32 (20)
T Pig 1 694 21 907 2 9 (8) unknown
T Monkey 1 293 8 483 2 7 (7) unknown
T Chicken 1 197 7 456 2 9 (7) unknown
T Hamster 1 662 5 955 2 11 (9) unknown

White fat C Mouse 4 000 192 470 26 17 (17) 47 (47)
T Human 1 937 137 306 24 16 (15) 44 (37)

Glioblastoma C Mouse 4 000 46 321 6 14 (14) 23 (23)
T Human 1 823 58 560 12 14 (14) 24 (22)

Table 2: The datasets employed for evaluating scSpecies use mice as context species C. The number
H of homologous genes of context and target dataset are listed in the third column. Furthermore, all
datasets are annotated with cell type labels, both at coarse and fine levels. The amount of distinct labels
are detailed in the ’Number of cell labels’ columns. Additionally, the amount of shared cell labels with the
context dataset, are indicated in parentheses.

obtain a consistent nomenclature between the datasets some cell labels were renamed. In the liver and494

glioblastoma datasets, some cells have inconsistent cell type labels. For example, some human liver cells495

are labeled as neutrophils in the fine and monocytes in the coarse cell label category. We excluded all496

cells with such a labeling conflict.497
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Bödecker627

BrainLinks-BrainTools CRIION - Collaborative Research Institute Intelligent Oncology: Joschka Bödecker628
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Model scArches scPoli kNN classifier

Neighbors - - k = 1 k = 25 k = 250

Cell labels coarse fine coarse fine coarse fine coarse fine coarse fine

Balanced label transfer accuracy score in % (BAS)

Liver - human 64.05 48.05 80.74 55.72 80.72 59.46 79.70 62.04 75.16 57.25
Liver - mouse 97.62 78.50 98.67 81.44 97.69 79.40 98.03 80.03 97.45 76.08
White fat 65.79 37.50 65.45 37.41 74.37 40.20 73.80 41.17 67.64 37.86
Glioblastoma 51.96 46.60 80.92 59.94 75.59 54.47 76.37 56.65 71.70 54.51

Adjusted Rand index (ARI)

Liver - human 0.725 0.248 0.841 0.263 0.740 0.194 0.824 0.253 0.859 0.290
Liver - mouse 0.983 0.837 0.984 0.825 0.983 0.822 0.985 0.839 0.982 0.844
White fat 0.773 0.414 0.846 0.443 0.868 0.371 0.884 0.438 0.877 0.469
Glioblastoma 0.458 0.401 0.583 0.581 0.481 0.384 0.537 0.455 0.525 0.470

Adjusted mutual information (AMI)

Liver - human 0.685 0.516 0.794 0.538 0.711 0.487 0.781 0.554 0.809 0.575
Liver - mouse 0.976 0.871 0.983 0.869 0.977 0.860 0.981 0.875 0.977 0.870
White fat 0.768 0.607 0.831 0.657 0.839 0.599 0.861 0.654 0.848 0.659
Glioblastoma 0.576 0.500 0.656 0.598 0.610 0.507 0.679 0.568 0.672 0.568

scSpecies lat. alignment intermediate alignment

Neighbors k = 25 k = 0 k = 1 k = 25 k = 250

Cell labels coarse fine coarse fine coarse fine coarse fine coarse fine

Balanced label transfer accuracy score in % (BAS)

Liver - human 90.35 71.12 5.01 2.81 86.35 66.74 92.08 73.29 91.54 71.62
Liver - small 86.57 65.67 7.91 4.52 79.45 59.59 87.76 67.78 81.19 62.66
Liver - mouse 97.56 80.40 5.36 1.83 97.99 81.06 98.11 81.24 97.82 79.51
White fat 79.31 48.81 5.79 2.27 78.14 47.02 82.02 49.15 83.17 48.42
Glioblastoma 88.41 67.54 9.61 6.26 84.69 63.87 88.88 68.87 84.07 64.90

Adjusted Rand index (ARI)

Liver - human 0.865 0.456 0.204 0.163 0.872 0.406 0.888 0.509 0.887 0.593
Liver - small 0.841 0.451 0.237 0.181 0.747 0.275 0.863 0.481 0.849 0.545
Liver - mouse 0.975 0.832 0.182 0.192 0.985 0.834 0.987 0.837 0.984 0.834
White fat 0.944 0.519 0.142 0.137 0.880 0.487 0.959 0.528 0.963 0.540
Glioblastoma 0.717 0.648 0.144 0.216 0.633 0.551 0.753 0.684 0.734 0.666

Adjusted mutual information (AMI)

Liver - human 0.824 0.703 0.351 0.408 0.827 0.673 0.855 0.731 0.864 0.760
Liver - small 0.805 0.676 0.334 0.354 0.697 0.540 0.825 0.696 0.830 0.727
Liver - mouse 0.971 0.870 0.380 0.455 0.980 0.875 0.981 0.878 0.978 0.876
White fat 0.912 0.711 0.268 0.352 0.867 0.690 0.929 0.725 0.934 0.734
Glioblastoma 0.782 0.698 0.246 0.401 0.745 0.628 0.799 0.683 0.783 0.675

Table 3: Comparison of model performance on four different datasets. The results are averaged over
five random seeds and the best results highlighted by bold font. The results for each dataset are listed
for the coarse - fine cell label categories. The upper table contains the results obtained by scArches
and scPoli. The kNN columns refer to the results of a data-level k nearest neighbor classifier trained on
shared homologous genes. The results from scSpecies are listed in the bottom table. The first column
corresponds to the results of a scSpecies model where latent representations instead of the intermediate
representations are aligned. The column with zero neighbors corresponds to completely omitting the
nearest neighbor integration within the model. The column with one neighbor corresponds to omitting
learning a suitable neighbor candidate, as the choice is fixed.
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Figure 4: Alignment performance of the architecture surgery-based approaches scArches and scPoli.
The four left-hand plots were generated by aligning two mouse liver cell datasets. One dataset contains
cell samples from healthy organisms, while the other contains cells from mice with non-alcoholic fatty liver
disease. Despite the difference in disease conditions the latent representations are well aligned. The four
plots on the right side were obtained by aligning human liver cells with those of healthy mice. Here, both
approaches encounter difficulties with cross-species alignment.
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Figure 5: Intermediate spaces of a scVI model applied to the mouse liver context dataset. It details
the layer transformations from data space to latent space. Subplot 1 represents the UMAP coordinates
of the original dataset, while subplot 8 shows the variational mean vectors in the latent space. Subplots
2–7 depict the UMAP coordinates of the intermediate dataset representation obtained by applying the
corresponding layer transformation. Each subplot presents two scatter plots: the upper one showing
clusters based on cell labels and the lower one depicting experimental batches. Additionally, the Davies-
Bouldin index is used to assess the clustering quality for each subplot.
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Figure 6: Intermediate spaces of a scVI model applied to the unaligned human liver target dataset. For
an explanation of the subplots, see Figure 5.
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Figure 7: Intermediate spaces of a scSpecies model applied to the mouse-human liver dataset pair. Each
subplot presents two scatter plots: the upper one showing context cell label clusters and the lower one
depicting the human target cell clusters. Additionally, the Davies-Bouldin index is used to asses clustering
quality for each subplot. Alignment of the two datasets is encouraged in subplot 4.
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Figure 8: A comparative analysis of gene expression profiles between humans and mice using sc-
Species. We computed the median of the empirical log2 fold change distribution, displayed along the
x-axis. The y-axis illustrates the likelihood of a gene being differentially expressed in mice versus humans
with an LFC exceeding one. The compared cells are decoded from a randomly selected latent value
within a latent cell type distribution. The figure highlights the top seven genes in mice that are significantly
up-regulated (indicated in red) and the top seven that are notably down-regulated (blue) in comparison to
their human equivalents.
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Figure 9: Plots of human and mouse gene LRP scores against each other. Each dot represents a
homologous gene. For every cell, Spearman’s ρ and Person’s R between human and mice LRP values are
given in the axis label. Coloring corresponds to combined products of human and mice gene expression,
with values of 0 are colored in dark tones and high values in bright colors.
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Figure 10: Illustration of the alignment process of scSpecies with k = 25 neighbors. On the y-axis,
we plot the negative log-density values derived from reconstructing human liver cell prototypes using their
candidate set of mouse latent variables. The x-axis shows a log-scale trajectory of these values, averaged
over the last ⌈min(10, 0.05× steps)⌉ iterations.
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