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Abstract

We study the spread of the epidemic via Atangana-Baleanu Fractional Derivatives. We
present the mathematical analysis and formulation of a fractional model for the epidemic. The
existence and uniqueness of the solution for the proposed model are proved. The study also
investigates the existence of disease-free equilibrium and analyzes its stability properties. To
validate the theoretical results, we provide a numerical scheme for the fractional model and
present various simulation results. These results can serve as a valuable resource in developing
strategies to mitigate the spread of the epidemic.
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1 Introduction

The coronavirus epidemic emerged in the Chinese city of Wuhan in December 2019, and it rapidly
disseminated to other parts of the world. This virus is primarily transmitted through respiratory
infection in humans [2]. The disease is characterized by symptoms such as difficulty breathing
and fever. The incubation period of the virus ranges from 2 to 14 days before symptoms become
evident [2, 3, 13]. In February 2020, Algeria and other countries reported their first confirmed
case of the virus in an Italian citizen who had recently arrived. Authorities promptly conducted
scans on individuals showing suspicious symptoms or signs of infection. However, despite the
daily checks carried out by health authorities, there remains a significant gap between the day of
infection and the day of diagnosis. This gap has severe implications for the spread of the disease,
as it hinders the accurate assessment of the number of affected individuals and the severity of the
disease. Consequently, obtaining precise figures regarding the number of infected and recovering
individuals becomes challenging.

1https://doi.org/10.32388/D7U6UD



In order to study the clinical development and spread of the epidemic, researchers formulate
mathematical models that help assess the severity of the disease and determine necessary interven-
tions to mitigate its impact, such as social isolation, quarantine measures, and travel restrictions
[17]. One widely used model for studying disease dynamics is the classical susceptible-infected-
recovered (SIR) model [14]. These models provide insights into the dynamics of disease spread, and
the timing of outbreaks and declines, and aid in determining when it is appropriate for individuals
to return to work. Typically, these models are formulated as differential or stochastic equation sets.
The initial results introducing these models date back to the following references [14]. Our model
encompasses seven distinct compartments, each representing a different stage or condition related
to the epidemic. These compartments include: susceptible individuals, exposed individuals, recov-
ered individuals, quarantined individuals, recovered-exposed individuals and death individuals. By
considering these seven compartments, our model aims to provide a comprehensive representation
of the different stages and conditions related to the epidemic. In our research, we propose a re-
formulation of the model presented in reference [13] by incorporating a fractional derivative of the
Atangana-Baleanu type. The motivation behind utilizing the Atangana-Baleanu derivative (ABD)
in our model is due to its distinct properties, such as a nonlocal and nonsingular kernel. These prop-
erties are crucial for accurately capturing the crossover behavior observed in the dynamics of the
epidemic. Other fractional derivative operators, such as Riemann-Liouville, Caputo, and Caputo-
Fabrizio, do not possess these specific properties, which may or may not adequately describe the
future dynamics of the coronavirus. This motivates our choice of the Atangana-Baleanu derivative
in our reformulated model [3].

Fractional differential equations have proven to be highly valuable in modeling various biologi-
cal systems. This can be observed in several research papers that have explored their applications.
Some notable papers related to the use of fractional calculus in modeling biological systems include
[3, 7, 11, 12, 15]. These studies have highlighted the effectiveness and relevance of fractional differen-
tial equations in capturing the complex dynamics and behaviors exhibited by biological phenomena.
Additionally, there are specific papers that focus on approximating the Atangana-Baleanu deriva-
tive [4, 9]. These works further demonstrate the significance of fractional calculus in accurately
describing and understanding the dynamics of biological systems.

This paper presents a comprehensive analysis of the epidemic by introducing a mathematical
model that captures the dynamics of disease spread, as described in reference [13, 18]. Subsequently,
we propose a fractional model of the epidemic and investigate the existence and uniqueness of
solutions for our system. Additionally, we examine the existence of a disease-free equilibrium and
analyze its stability properties.

The structure of the article is as follows: In Section 2, we provide definitions and explana-
tions pertaining to fractional calculus. We then proceed to present the mathematical model of the
coronavirus, followed by its formulation using fractional derivatives. In Section 3, we conduct a
detailed analysis of the fractional model for the coronavirus, focusing specifically on the existence
and uniqueness of solutions. We delve into the mathematical properties and characteristics of the
model in order to gain deeper insights into its behavior. Moving on to Section 4, we explore the
equilibrium points of the model and examine their stability properties. This analysis allows us
to understand the long-term behavior of the epidemic and assess the potential for disease control
and mitigation strategies. In Section 5, we present a numerical scheme for the fractional model,
providing a practical approach to simulate and study its dynamics. We include illustrative results
from numerical simulations conducted with various values of the fractional order paramete. These
simulations help us visualize and analyze the impact of different parameters on the spread and
control of the epidemic.
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Finally, in the conclusion, we summarize our findings and offer recommendations based on the
insights gained from the study. These recommendations aim to guide future research and inform
potential strategies for managing and combating an epidemic.

2 Preliminaries

In this section, we will cover some of the most important basic concepts and definitions of fractional
calculus and epidemic models.

Definition 1. [6] Let z ∈ H1(a, b), where b > a. The Atangana-Baleanu’s derivative (ABD) of
order γ ∈ (0, 1] is defined as follows:

ABD
a Dγ

t z(t) =
B(γ)

1− γ

∫ t

a
Eγ

(
(t− v)γ

γ

γ − 1

)
z′(v)dv,

in which Eγ is the one-parameter Mittag-Leffler function and B(γ) = 1 − γ + γ
Γ(γ) is called the

normalization function featuring B(0) = B(1) = 1.

Definition 2. [6] The Riemann-Liouville’s integral (RLI) of order γ is defined as follows:

RLIIγ(z(t)) =
1

Γ(γ)

∫ t

a
(t− v)γ−1z(v)dv, γ > 0.

Definition 3. [6] The Antangana-Baleanu’s integral(ABI) of order γ ∈ (k, k + 1] and k ∈ Z+ is
defined by:

ABIIγ(z(t)) =
γ

B(γ)

RLI
Iγ(z(t)) +

1− γ

B(γ)
z(t),

in which
B(γ) = 1− γ +

γ

Γ(γ)
,

is called the normalization function featuring B(0) = B(1) = 1.

Property 1. [2] The Atangana-Baleanu’s integral of order γ ∈ (k, k + 1] and k ∈ Z+ is stated as :

ABIIγ(z(t)) =
γ − k

B(γ − k)

RLI

Iγ(z(t)) +
1 + k − γ

B(γ − k)

RLI

Ikz(t).

Remark 1. For γ(k ∈ Z+), and t > a, the following properties are satisfied:

1. ABDDγABIIγ(z(t)) = z(t),

2. ABIIγABDDγ(z(t)) = z(t)−
∑k

d=0 z
(d)(a) (t−a)d

d! .

2.1 Model description of corona-virus with Atangana-Baleanu fractional deriva-
tive

We analyze the corona–virus model discussed by Ben Fradj and Cherif [13] . Let us consider the
total population at time t as N(t). We divide the population N(t) into seven distinct subgroups:
susceptible individuals S(t), exposed individuals E1(t), infected individuals I(t), recovered-exposed
individuals E2(t), recovered individualsR(t), deceased individualsD(t), and quarantined individuals
Q(t).
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Figure 1: Schematic diagram of the model [13].

The relationships and interactions between these subpopulations can be visually represented
through the following compartmental diagram: The model is developed based on a system of non-
linear differential equations, which can be expressed as follows:

Ṡ(t) = −λ1
N S(t)E1(t)− λ2

N S(t)I(t)− λ3S(t),

Ė1(t) =
λ1
N S(t)E1(t) +

λ2
N S(t)I(t)− (α1 + α2)E1(t),

İ(t) = α1E1(t)− (β1 + β2)I(t),

Ė2(t) = α2E1(t),

Ṙ(t) = β1I(t),

Ḋ(t) = β2I(t),

Q̇(t) = λ3S(t),

(1)

with the initial conditions

S(0) = S0, E1(0) = E01, I(0) = I0, E2(0) = E02, R(0) = R0, D(0) = D0, Q(0) = Q0,

where λ1 is the contact rate between S and E1, λ2 is infection rate, λ3 is the rate at which susceptible
people enter in quarantine, α1 is the inverse of the average latent time, α2 is the recovered rate of
E1, β1 is the recovered rate, β2 is the death rate and the total constant population N is give by

N = S(t) + E1(t) + I(t) + E2(t) +R(t) +D(t) +Q(t).

To incorporate the aforementioned effect into the mathematical representation, we modify the sys-
tem by replacing the traditional time derivative with the Atangana-Baleanu ordered derivative [6].
The resulting formulation is as follows:

ABD
0 Dγ

t S(t) = −λ1
N S(t)E1(t)− λ2

N S(t)I(t)− λ3S(t),
ABD
0 Dγ

t E1(t) =
λ1
N S(t)E1(t) +

λ2
N S(t)I(t)− (α1 + α2)E1(t),

ABD
0 Dγ

t I(t) = α1E1(t)− (β1 + β2)I(t),
ABD
0 Dγ

t E2(t) = α2E1(t),
ABD
0 Dγ

t R(t) = β1I(t),
ABD
0 Dγ

t D(t) = β2I(t),
ABD
0 Dγ

t Q(t) = λ3S(t),

(2)

where ABD
0 Dγ

t the Antangana-Baleaneau fractional derivative of order γ ∈ (0, 1], the model variables
in (1) are non negative, and has appropriate initial conditions.
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3 Existence and uniqueness of solutions via Atangana-Baleanu
fractional derivative

The initial value problem (2) can be written as the following matrix from :

ABD
a Dγ

t X
′(t) = MX(t) + f(X),

where X(t) = (S,E1, I, E2, R,D,Q),

M =



−λ3 0 0 0 0 0 0
0 −(α1 + α2) 0 0 0 0 0
0 α1 −(β1 + β2) 0 0 0 0
0 α2 0 0 0 0 0
0 0 β1 0 0 0 0
0 0 β2 0 0 0 0
λ3 0 0 0 0 0 0


,

f(x) =

(
−λ1

N
SE1 −

λ2

N
SI,

λ1

N
SE1 +

λ2

N
SI, 0, 0, 0, 0, 0

)
.

In order to establish the nonnegative of solutions with the initial conditions, we need also the
following lemmas.

3.1 Bounded and non-negative solutions

For the proof of the theorem about non-negative solutions and bounded we shall need the following
lemma

Lemma 1. [3] Let 0 < γ ≤ 1 and f : [a, b] → R be a differentiable function such that f ′ ∈ L1[a, b]
and ABDDγ

a+
f ∈ C[a, b]. Then, for any t ∈ [a, b], there exists ξ ∈ [a, b] such that

f(t) = f(a) +
1− γ

B(γ)

ABD

Dγ
a+

f(t) +
(t− a)γ

B(γ)Γ(γ)

ABD

Dγ
a+

f(ξ).

Remark 2. Let f(t) ∈ C[a, b] and ABDDγf ∈ C[a, b] for 0 < γ ≤. It is clear from Lemma(1) that
if ABDDγf ≥ 0 for all t ∈ (0, b), then the function f is non-decreasing, and if ABDDγf ≤ 0 for all
t ∈ (0, b), then the function f is non-increasing.

Definition 4. [11] Let C[0, T ] be the class of continuous functions x(t) defined on the interval
[0, T ], satisfying the condition sup|x(t)| < ∞ for t ∈ [0, T ]. Additionally, let C([0, T ]) be the class
of continuous column vectors X(t) defined as:

X(t) =
(
x1(t) x2(t) x3(t) x4(t) x5(t) x6(t) x7(t)

)T
,

where xi(t) ∈ C[0, T ], i = 1, . . . , 7. The norm of X(t) ∈ C[0, T ] is given by :

∥X∥ =
7∑

i=1

sup|xi(t)|, t ∈ [0, T ].

Lemma 2. [11] Consider the interval E = [0, T ]× [X(0)(0)−ϵ,X(0)(0)+ϵ], where T > 0 and ϵ > 0.
Let f : E → R be a function. Then, the fractional differential equation

ABD
a Dγ

t X(t) = f(t,X(t)), γ > 0, X(0)(0) = X0, k = 0, 1, 2, . . . ,m− 1,

has a solution, and this solution is unique if the following two conditions hold simultaneously:
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(1) f is bounded and continuous on E.

(2) f satisfies the Lipschitz condition with respect to the second variable, i.e.,

|f(t,X(t))− f(t, Y (t))| ≤ L|X(t)− Y (t)|,

where L > 0 is a constant independent of t,X and Y .

Theorem 1. The initial value problem (2) possesses a unique solution. Moreover, this solution
remains nonnegative and bounded.

Proof. We will divide the proof into three steps:
Step 1 Firstly, we will prove that the solution is nonnegative. From equation (2), we have:

ABDDγS(t)|S=0 = 0,

ABDDγE1(t)|E1=0 =
λ2

N
SI ≥ 0,

ABDDγI(t)|I=0 = α1E1 ≥ 0,
ABDDγE2(t)|E2=0 = α2E1 ≥ 0,

ABDDγR(t) = |R=0 = β1I ≥ 0,
ABDDγD(t)|D=0 = β2I ≥ 0,
ABDDγQ(t)|Q=0 = λ3S ≥ 0.

Based on Lemma (1) and Remark (2), we can conclude that the solution of equation (2) is nonneg-
ative.
Step 2 Secondly we prove that solution is bouned. From (2) by using the first equation and adding
the first two equations, we get :

ABDDγS(t) ≤ λ3S(t),

ABDDγN(t) ≤ −ξ1N(t),

with N(t) = S(t) + E1(t) and ξ1 = min(λ3, α1 + α2), by integration of (ABD) we get :

S(t) ≤

(
B(γ)

B(γ) + λ3(1− γ)
S(0)− λ3γB(γ)

B(γ) + λ3(1− γ)

ABI

Iγs(t)

)
≤ S(0),

an in other hand

N(t) ≤

(
−ξ1

B(γ)

B(γ) + ξ1(1− γ)
N(0)− ξ1γB(γ)

B(γ) + ξ1(1− γ)

ABI

Iγs(t)

)
≤ N(0),

Hence
S(t) + E1(t) ≤ S(0) + E1(0).

Then
E1(t) ≤ S(0) + E1(0).
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By adding the first three equations of (2), and the same procedure we get :

ABDDγM(t) ≤ −ξ2M(t),

with M(t) = S(t) + E1(t) + I(t) and ξ2 = min(λ3, α2, β1 + β2), by following the same procedure,
we obtain:

M(t) ≤

(
−ξ2

B(γ)

B(γ) + ξ2(1− γ)
N(0)− ξ2γB(γ)

B(γ) + ξ2(1− γ)

ABI

Iγs(t)

)
≤ M(0).

Hence, we have:
S(t) + E1(t) + I(t) ≤ S(0) + E1(0) + I(0).

Therefore,
I(t) ≤ S(0) + E1(0) + I(0).

We can follow the same approach for the remaining variables E2, R, D, and Q, and obtain:

E2(t) = E2(0) +
α2(1− γ)

B(γ)
(E1(0) + S(0)),

R(t) = E2(0) +
β1(1− γ)

B(γ)
(S(0) + E1(0) + I(0)),

D(t) = D(0) +
β2(1− γ)

B(γ)
(S(0) + E1(0) + I(0)),

Q(t) = Q(0) +
λ3(1− γ)

B(γ)
(S(0)).

Step 3 We define the matrix norm as |||.|||, where |||M ||| = ρ(M) and ρ(M) represents the largest
eigenvalue of the matrix M . Let us consider the bounded and continuous function

F (X) = MX + f(X).

Assume that X(t) and Y (t) are two distinct solutions of the initial value problem (2), such that:

X = (S,E1, I, E2, R,D,Q), Y = (S′, E′
1, I

′, E′
2, R

′, D′, Q′) and X,Y ∈ C[0, T ],

then

∥F (X)− F (Y )∥ = ∥MX + f(X)−MY − F (Y )∥
≤ ∥M(X(t)− Y (t))∥+ ∥f(X)− f(Y )∥

≤ |||M |||∥X(t)− Y (t)∥+ λ1

N
|S||E1 − E′

1|+
λ1

N
|E′

1||S − S′|

+
λ2

N
|S||I − I ′|+ λ2

N
|I ′||S − S′|

≤ sup {λ3, α1 + α2, β1 + β2} ∥X − Y ∥

+
λ1 + λ2

N
sup

{
|S|, |E′

1|, |I ′|
}
∥X − Y ∥

≤ max {λ3, α1 + α2, β1 + β2} ∥X − Y ∥

+
λ1 + λ2

N
max

{
|S|, |E′

1|, |I ′|
}
∥X − Y ∥.
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Let

L = max {λ3, α1 + α2, β1 + β2}+
λ1 + λ2

N
max

{
|S|, |E′

1|, |I ′|
}
.

It is clear that L > 0. Then

∥F (X)− F (Y )∥ ≤ L∥X(t)− Y (t)∥.

By applying Lemma (2), and since F (X(t)) is continuous and satisfying Lipschitz condition, the
initial value problem (2) has a unique solution.

4 The stability result of the equilibrium point

To determine the equilibrium points of the system (2), we set the Atangana-Baleanu arbitrarily
ordered derivatives to zero, i.e.,

ABDDγS =ABD DγE1 =ABD DγI =ABD DγE2 =ABD DγR =ABD DγD =ABD DγQ = 0,

From this, we can deduce that the equilibrium point is given by

E∗ = (0, 0, 0, 0, 0, 0, 0)T .

Now, we proceed to evaluate the equilibrium point for the system (2). The Jacobian matrix of
the system (2) is determined as follows:

J =



−λ1
N E1 − λ2

N I − λ3 −λ1
N S −λ2

N S 0 0 0 0
λ1
N E1 +

λ2
N I λ1

N S − (α1 + α2)
λ2
N S 0 0 0 0

0 α1 −(β1 + β2) 0 0 0 0
0 α2 0 0 0 0 0
0 0 β1 0 0 0 0
0 0 β2 0 0 0 0
λ3 0 0 0 0 0 0


.

Substituting by the equilibrium point E∗ in the above Jacobian matrix, we get :

J(E∗) =



−λ3 0 0 0 0 0 0
0 −(α1 + α2) 0 0 0 0 0
0 α1 −(β1 + β2) 0 0 0 0
0 α2 0 0 0 0 0
0 0 β1 0 0 0 0
0 0 β2 0 0 0 0
λ3 0 0 0 0 0 0


.

The Jacobian matrix obtained from the system (2) has eigenvalues equal to zero. Therefore, the
equilibrium point E∗ is determined to be unstable.
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5 Numerical results and discussions

Upon applying the fractional integral operator ABII to equation (2) and utilizing the property (1),
we obtain the following numerical results for our fractional model with the ABD derivative:

S(t) = S(0) +
1− γ

B(γ)
K1(t, S) +

γ

B(γ)

∫ t

0
(t− v)γ−1K1(v, S)dv,

E1(t) = E1(0) +
1− γ

B(γ)
K2(t, E1) +

γ

B(γ)

∫ t

0
(t− v)γ−1K2(v,E1)dv,

I(t) = I(0) +
1− γ

B(γ)
K3(t, I) +

γ

B(γ)

∫ t

0
(t− v)γ−1K3(v, I)dv,

E2(t) = E2(0) +
1− γ

B(γ)
K4(t, E2) +

γ

B(γ)

∫ t

0
(t− v)γ−1K4(v,E2)dv,

R(t) = R(0) +
1− γ

B(γ)
K5(t, R) +

γ

B(γ)

∫ t

0
(t− v)γ−1K5(v,R)dv,

D(t) = D(0) +
1− γ

B(γ)
K6(t,D) +

γ

B(γ)

∫ t

0
(t− v)γ−1K6(v,D)dv,

Q(t) = Q(0) +
1− γ

B(γ)
K7(t, Q) +

γ

B(γ)

∫ t

0
(t− v)γ−1K7(v,Q)dv.

The kernel functions for the fractional epidemic model (2) are defined as follows:

K1(t, S) = −λ1

N
SE1 −

λ2

N
SI − λ3S,

K2(t, E1) =
λ1

N
SE1 +

λ2

N
SI − (α1 + α2)E1,

K3(t, I) = α1E1 − (β1 + β2)I,

K4(t, E2) = α2E1,

K5(t, R) = β1I,

K6(t,D) = β2I,

K1(t, Q) = λ3S.

To solve the fractional epidemic model (2), we employ the numerical procedure outlined in
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reference [3]. The model can be represented as follows:

S(tn+1) = S(t0) +
1− γ

B(γ)
K1(tn, S) +

γ

B(γ)Γ(γ)

∫ t

0
(tn+1 − v)γ−1K1(v, S)dv,

E1(tn+1) = E1(t0) +
1− γ

B(γ)
K2(tn, E1) +

γ

B(γ)Γ(γ)

∫ t

0
(tn+1 − v)γ−1K2(v,E1)dv,

I(tn+1) = I(t0) +
1− γ

B(γ)
K3(tn, I) +

γ

B(γ)Γ(γ)

∫ t

0
(tn+1 − v)γ−1K3(v, I)dv,

E2(tn+1) = E2(t0) +
1− γ

B(γ)
K4(tn, E2) +

γ

B(γ)Γ(γ)

∫ t

0
(tn+1 − v)γ−1K4(v,E2)dv,

R(tn+1) = R(t0) +
1− γ

B(γ)
K5(tn, R) +

γ

B(γ)Γ(γ)

∫ t

0
(tn+1 − v)γ−1K5(v,R)dv,

D(tn+1) = D(t0) +
1− γ

B(γ)
K6(tn, D) +

γ

B(γ)Γ(γ)

∫ t

0
(tn+1 − v)γ−1K6(v,D)dv,

Q(tn+1) = Q(t0) +
1− γ

B(γ)
K7(tn, Q) +

γ

B(γ)Γ(γ)

∫ t

0
(tn+1 − v)γ−1K7(v,Q)dv.

Discretizing the above equation yields the following system:

S(tn+1) = S(t0) +
1− γ

B(γ)
K1(tn, S) +

γ

B(γ)Γ(γ)

n∑
j=0

∫ tj+1

tj

(tn+1 − v)γ−1K1(v, S)dv,

E1(tn+1) = E1(t0) +
1− γ

B(γ)
K2(tn, E1) +

γ

B(γ)Γ(γ)

n∑
j=0

∫ tj+1

tj

(tn+1 − v)γ−1K2(v,E1)dv,

I(tn+1) = I(t0) +
1− γ

B(γ)
K3(tn, I) +

γ

B(γ)Γ(γ)

n∑
j=0

∫ tj+1

tj

(tn+1 − v)γ−1K3(v, I)dv,

E2(tn+1) = E2(t0) +
1− γ

B(γ)
K4(tn, E2) +

γ

B(γ)Γ(γ)

n∑
j=0

∫ tj+1

tj

(tn+1 − v)γ−1K4(v,E2)dv,

R(tn+1) = R(t0) +
1− γ

B(γ)
K5(tn, R) +

γ

B(γ)Γ(γ)

n∑
j=0

∫ tj+1

tj

(tn+1 − v)γ−1K5(v,R)dv,

D(tn+1) = D(t0) +
1− γ

B(γ)
K6(tn, D) +

γ

B(γ)Γ(γ)

n∑
j=0

∫ tj+1

tj

(tn+1 − v)γ−1K6(v,D)dv,

Q(tn+1) = Q(t0) +
1− γ

B(γ)
K7(tn, Q) +

γ

B(γ)Γ(γ)

n∑
j=0

∫ tj+1

tj

(tn+1 − v)γ−1K7(v,Q)dv.

By utilizing the general formula for Adams’ method [16, 2], we derive the subsequent numerical
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approach for the Corona virus model 2:

S(tn+1) = S(t0) +
1− γ

B(γ)
K1(tn, S) +

γhγ

B(γ)Γ(γ + 2)

n∑
j=0

σj,n+1K1(tj , S),

E1(tn+1) = E1(t0) +
1− γ

B(γ)
K2(tn, E1) +

γhγ

B(γ)Γ(γ + 2)

n∑
j=0

σj,n+1K2(tj , E1),

I(tn+1) = I(t0) +
1− γ

B(γ)
K3(tn, I) +

γhγ

B(γ)Γ(γ + 2)

n∑
j=0

σj,n+1K3(tj , I),

E2(tn+1) = E2(t0) +
1− γ

B(γ)
K4(tn, E2) +

γhγ

B(γ)Γ(γ + 2)

n∑
j=0

σj,n+1K4(tj , E2),

R(tn+1) = R(t0) +
1− γ

B(γ)
K5(tn, R) +

γhγ

B(γ)Γ(γ + 2)

n∑
j=0

σj,n+1K5(tj , R),

D(tn+1) = D(t0) +
1− γ

B(γ)
K6(tn, D) +

γhγ

B(γ)Γ(γ + 2)

n∑
j=0

σj,n+1K6(tj , D),

Q(tn+1) = Q(t0) +
1− γ

B(γ)
K1(tn, Q) +

γhγ

B(γ)Γ(γ + 2)

n∑
j=0

σj,n+1K7(tj , Q),

where

σj,n+1 =


(nγ+1 − (n− γ)(n+ 1)γ), if k = 0,

((n− k + 2)γ+1 + (n− k)γ+1 − 2(n− k + 1)γ+1), if 1 ≤ k ≤ n,

1, if k = n+ 1.

5.1 Data fitting and numerical simulations

We present a set of numerical findings. Firstly, we draw upon data from the National Office of
Statistics (NOS) in Algeria to provide key demographic insights for the year 2019. The total
population during that period stood at 43,400,000, and the average life expectancy was 76.79 years.
Additionally, based on the available information, the estimated mortality rate is µ = 0.0048.

Subsequently, we analyze data collected in Algeria from March 24, 2020, to June 30, 2020, and
deduce the following parameter values: λ1 = 0.8, λ2 = 0.02, λ3 = 0.155, α1 = 0.01, α2 = 0.2,
β1 = 0.023, and β2 = 0.0041.

For the simulation, we have chosen the following initial conditions: The total population at time
t = 0 is N(0) = 43, 400, 000, which can be expressed as

N(0) = S(0) + E1(0) + I(0).

To determine the number of susceptible individuals at t = 0, we use the formula

S(0) = N(0)− E1(0)− I(0).

Moreover, we consider the initial conditions for the infected and exposed populations as follows:
I(0) = 70 and E1(0) = 200.
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Figure 2: Susceptible population
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Figure 3: Exposed population

Figure 3 displays the plotted curves that represent the number of individuals who are exposed
to the infection. A noteworthy observation from the graph is that an escalation in the number of
people exposed to the infection directly corresponds to an increase in the number of individuals
who subsequently become infected.

This observation highlights the crucial role of the exposed population in driving the spread of the
infection. As more individuals are exposed to the virus, there is a higher likelihood of transmission to
susceptible individuals, leading to a rise in the number of infections. Understanding and monitoring
the dynamics of the exposed population are crucial for assessing the potential risk and impact of an
infectious disease outbreak. In Figure 4, the plotted curves illustrate the evolution of the number
of infected individuals over time. It is evident from the graph that the number of infected people
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Figure 4: Infected population

reached its peak approximately 50 days ago and has since started to decrease.
The dynamics of infection can be influenced by altering the values of two key parameters: the

fractional order γ and the quarantine rate λ3. By varying these parameters, different patterns in
the infection dynamics can be observed. Adjusting γ affects the rate at which infected individuals
recover, while modifying λ3 influences the effectiveness of the quarantine measures in limiting the
spread of the infection.

Understanding the impact of these parameters is essential for devising effective strategies to
control and manage the spread of the infection. The simulation results provide valuable insights
into the behavior of the infected population and the potential outcomes under different parameter
settings.

In Figure 7, the graph showcases the evolution of the number of deceased individuals over time.
The number of deaths is significantly influenced by changes in the number of infected individuals,
as expected. As the infection spreads and the number of infected individuals rises, the number of
deaths also increases due to the severity of the disease.

Moreover, the values assigned to the two parameters, the fractional order γ and the quarantine
rate λ3, have a notable impact on the number of deceased individuals. Altering these parameters
can lead to different outcomes in terms of the mortality rate and the overall impact of the infection
on the population.

Understanding the relationship between the number of infected individuals and the resulting
number of deaths, as well as the role of parameter values, is crucial for predicting and mitigating
the consequences of an infectious disease outbreak. This information can aid policymakers and
public health officials in making informed decisions to implement effective measures for reducing
the impact of the disease on the population.
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Figure 5: Exposed-Recovered population
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Figure 6: Recovered population

6 Conclusions

This paper presented a fractional order model of Covid-19 using the Atangana-Baleanu’s fractional
derivative. The mathematical analysis of the model demonstrated the existence of bounded and
nonnegative solutions. Furthermore, a numerical scheme was developed to solve the fractional model
of Covid-2019, allowing for variations in the fractional order and quarantine rate. The obtained
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Figure 7: Death population
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Figure 8: Quarantine Population

graphical results clearly indicated that decreasing the fractional order and quarantine rate leads to
a decrease in the infection population. These findings contribute to a better understanding of the
dynamics of the Covid-19 pandemic and can aid in the development of effective control measures.
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