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Whether wave function collapses or not is a major remaining question in the theory

of quantum measurement. This difficulty stems from following two facts. First, it

has not been recognized that single-particle quantum mechanics and many-particle

quantum mechanics must be treated separately. Second, quantum jump (QJ) and

wave function collapse (WFC) need clearer definitions. We define a QJ as a process of

selecting a set of system eigenvalues (SEVs) of an observable and a WFC as a process

of determining the probability distribution (PD) of SEVs, both from a single mea-

surement. The goal of quantum observation is to obtain the PD, which is determined

from an ensemble of SEVs. The wave function becomes an observable when the PD

is determined. In single-particle quantum mechanics, a single measurement results

in only one set of SEVs and the PD is not observable. Therefore the WFC does not

happen. In many-particle quantum mechanics, we focus on the occupation number

of a singe quantum state. The wave function does not collapse in general, but there

are exceptions. The occupation number can be huge and macroscopic for photons

or for Bose-Einstein condensates. In such a case, the PD is determined from a sin-

gle measurement of a real ensemble and the WFC occurs. We call it a macroscopic

quantum jump, which effectively is a measurement of a classical observable.
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I. INTRODUCTION

Nearly a century has passed, since the birth of quantum mechanics, and yet the mea-

surement problem has not been fully solved. One major remaining question is whether wave

function collapses or not.

In a previous paper (Paper I1), we have given an interpretation of single-particle quantum

mechanics, which elucidates a quantum jump (QJ) to be a jump from microscopic to micro-

scopic. We call this process a microscopic quantum jump (MIJ). This MIJ interpretation

better defines the QJ and allows clearer distinction between QJ and wave function collapse

(WFC). Until recently, the QJ and the WFC are treated to be the same thing, but here we

distinguish them clearly.

First, we define a QJ as a process of selecting a set of system eigenvalues (SEVs) of

an observable. It is an experimental entity determined from a single measurement. On

the other hand, wave function (WF) is a theoretical notion associated with a probability

distribution (PD) of quantum states. Now we define a WFC to be a phenomenon associated

with a single measurement. For single-particle quantum mechanics, the PD is obtained from

repeated measurements. A single event does not tell anything about the PD, and therefore

WF does not collapse. In Section II, we present representative experiments of single-particle

quantum mechanics in which the WFC does not happen.

How about many-particle quantum mechanics? In general, the situation is the same as

that for single-particle quantum mechanics. However, there are some interesting exceptions,

in which the WFC happens due to a large occupation number of a quantum state. For

these cases, quantum states are macroscopic and the wave function is for a superposition of

these macroscopic quantum states. Therefore a single measurement yields a PD and WFC

is realized. We discuss many-particle quantum mechanics in Section III. Implication of our

results is discussed in Section IV.

II. SINGE-PARTICLE QUANTUM MECHANICS

A. Summary of microscopic quantum jump interpretation

In a previous paper (Paper I), we have introduced a new interpretation of the mea-

surement problem in single-particle quantum mechanics. Here we briefly summarize this
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interpretation. Since von Neumann2, a single quantum system was implicitly supposed to

interact with enormously many degrees of freedom in an apparatus, but we do not think this

is the case. We have shown that a single quantum system interacts with only one particle

in an apparatus at a time as a quantum jump (QJ). This jump emits a microscopic particle

(MIP) which carries the information of system eigenvalues (SEVs) potentially. We call this

process a microscopic quantum jump (MIJ). The MIJ is a decision3, before which quantum

states interfere, but after which no interference occurs. After the MIJ, there are two possi-

ble paths toward the SEVs becoming macroscopic. One path is amplification in which the

MIP triggers multiplication of secondary particles which eventually produces a macroscopic

observable (MAO) carrying the information of the SEVs in actuality. One measurement is

complete when a MAO is obtained. The experiment continues until an ensemble of MAOs

are collected and a probability distribution (PD) of SEVs is obtained from statistics of

MAOs. The other path is the accumulation of the MIPs to obtain the statistics of the SEVs

directly. In this case, an ensemble of the SEVs or MAOs are obtained without forming a

MAO from each event. The amplification is outside the domain of single-particle quantum

mechanics, because it occurs after the MIJ. Accumulation is also outside the domain of

single-particle quantum mechanics, because each MIP is generated as a result of one MIJ.

In Paper I, we did not ask the mechanism of the MIJ, since we cannot investigate it by

experiments, following the attitude of Dirac4. Although we still consider that the argument

of Dirac is valid, now it seems that we can be more specific about the MIJ in relation to the

WFC. In this paper, we discuss the distinction and relation between the MIJ and the WFC

by focussing on the meaning of the PD. The MIJ is strictly true for single-particle quantum

mechanics and we will discuss many-particle quantum mechanics later in Section III.

B. PD obtained from a virtual ensemble: Two-dimensional photon-counting

detection

As we have already mentioned, a MIJ is a process of selecting a set of SEVs of an

observable, but not a collapse of wave function. We will clarify this point by introducing

concrete examples.

Let us consider a double slit experiment using a two-dimensional photon-counting de-

tector. At low light levels, individual photons arrive at the detector surface sequentially.
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Details of this kind of experiment are described in Paper I.

What we observe as a MAO for one photon event is a two-dimensional position (x, y) plus

an arrival time t. (x, y) are a set of SEVs related to an interference pattern, while t is not

related to the interference pattern. At this point, we have no information on the observed

PD, PO(x, y). It is not clear if we should interpret this MIJ as a collapse of wave function

because a wave function ψ is a quantity related to a theoretical PD PT(x, y)=ψ
∗(x, y)ψ(x, y),

which should be compared with an observed PD PO(x, y).

PO(x, y) becomes an observable from an ensemble of (x, y)s after integrating MAOs in

time t. Individual photon events follow the fixed PD PO(x, y)., but we cannot tell anything

about PO(x, y), only from one event. An observed PO(x, y) and a theoretical PT(x, y)

are to be compared by an experiment, which collects an ensemble of SEVs. The simplest

interpretation of this situation is that the theoretical PD PT(x, y) is the same for each MIJ,

and also the WF ψ(x, y) is the same for each MIJ, and they do not collapse.

This ensemble interpretation of ψ(x, y) is a primitive form of second quantization5, since

Ψ(x, y) =
√
N(x, y)ψ(x, y) becomes an observable or q-number, where N(x, y) is the num-

ber of photon events at (x, y) in the interference pattern and N(x, y) = Ψ†(x, y)Ψ(x, y).

Since N(x, y) is obtained from repeated measurements of MAOs, this ensemble is a virtual

ensemble.

C. PD obtained from an integrated real ensemble: Photon detection by a

CCD

Now we consider a double slit experiment using an integration-type detector such as a

CCD, which is described in detail in Paper I. In order to obtain an observed PD, PO(x, y),

it is not always necessary to count individual photon events as MAOs. Instead, one can

accumulate photoelectrons as MIPs at each pixel at (x, y) until the number of MIPs becomes

macroscopic. A photon is absorbed at one pixel and a photoelectron is generated as a MIP

by internal photoelectric effect. However this MIP does not trigger amplification and stays

at that pixel. The MIJ is a selection of the pixel location (x, y) and this process follows

PO(x, y). After accumulating MIPs at pixel (x, y), the number of MIPs, N(x, y) becomes a

MAO. PO(x, y) becomes an observable from the MAOs at all pixels. N(x, y) at all pixels is

obtained from a real ensemble after the accumulation.
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Is there any difference between photon counting detection and photon detection by a CCD

in terms of a MIJ? One MIJ is a selection of SEVs or (x, y) obeying the PD PO(x, y). All MIJs

follow the same PO(x, y) and there is no point in assuming collapses of PO(x, y). Photon

counting detection and photon detection by a CCD are the same until a photoelectron

which carries the information of SEVs is generated. Although there is a difference between

amplification and accumulation, they are outside the domain of single-particle quantum

mechanics, since quantum mechanics covers up to the stage of emission of a MIP.

PT(x, y) (perfect interference pattern) and PO(x, y) can be compared only after an en-

semble of SEVs have been obtained. Ψ(x, y) =
√
Nψ(x, y) becomes a q-number only when

we compare these PDs. There is no point in considering a collapse of wave function for each

MIJ.

III. MANY PARTICLE QUANTUM MECHANICS

We have seen that a QJ or a MIJ is not a WFC for single-particle quantum mechanics.

The essential point of the single-particle quantum mechanics is that the observed PD PO is

not an observable for a single measurement. Now we examine the situation in many-particle

quantum mechanics by considering the occupation number of a quantum state.

A. Fermions

The occupation number for a fermion state Nf is either 0 or 1. So ordinary fermions

do not have macroscopic Nf and the observed PD PO cannot be obtained from a single

measurement. The PD must be obtained from repeated measurements or from an virtual

ensemble. Formation of a macroscopic quantum state is prohibited by the Pauli exclusion

principle. For fermions in general, WFC does not happen.

B. Bosons

The occupation number for a boson state Nb is 0, 1, 2, ..., ∞. So light bosons can have

macroscopic Nb and the observed PD PO can be an observable for a single measurement.

Since photons are massless and their chemical potential is zero, photons can condense into
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many photon states and effectively form classical electromagnetic wave. Liquid He4 con-

denses into superfluid at low temperatures6,7, and π-on condensation may occur in neutron

stars8. These are Bose-Einstein condensates. For these bosons, a superposition of macro-

scopic states can occur and the PD can be obtained from a single measurement. Therefore

WFC can happen.

There is an uncertainty relation,

∆ϕ ∼ 1√
Nb

, (1)

where ∆ϕ is the phase fluctuation of a macroscopic quantum state. A boson state follows

this relation and becomes macroscopic for a large Nb.

C. Bosons composed of Cooper pairs of fermions

Exceptions of fermions are Cooper pairs in Bose-Einstein condensates. They are Cooper

pairs of electrons in superconductor9, those of Liquid He3 in superfluid10, and possibly those

of neutrons in superfluid and those of protons in superconductor in neutron stars11. These

Bose-Einstein condensates have superpositions of macroscopic quantum states, and therefore

WFC can occur.

IV. DISCUSSION

Previously, theories of quantum measurement have focussed on explaining how SEVs

become classical and have not covered an ensemble of measurements. The MIJ interpre-

tation made the measurement problem simple and allowed the analysis of an ensemble of

measurements.

For single-particle quantum mechanics, a MIJ or a single measurement does not produce

a PD and the wave function does not collapse. We have given some concrete examples.

For many particle quantum mechanics, we have only presented a framework and did not

present concrete examples. However, thanks to the macroscopic nature of many-photon

states and Bose-Einstein condensates, we can comment on their measurements as follows.

Many-photon states are effectively classical electromagnetic waves, and they are amenable

to ordinary measurements in a laboratory. Superconductor is also routinely measured in
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a laboratory and in a sense, they are more easily measured than single quantum systems.

What we have found is an obvious fact that a measurement of a classical system gives a

classical result.

Without confusion we can introduce a new terminology, macroscopic quantum jump

(MAJ), which is a QJ from macroscopic to macroscopic. In short, a MIJ is not a WFC, but

a MAJ is a WFC,

V. CONCLUSION

We have shown that the final goal of quantum measurements is the determination of

probability distribution from an ensemble of system eigenvalues. If we define the collapse of

wave function to be the measurement of probability distribution from a single measurement,

wave function does not collapse in single-particle quantum mechanics. In case of many-

particle quantum mechanics, wave function collapses for many photon states and Bose-

Einstein condensates.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding

author upon reasonable request.
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