
Qeios PEER-APPROVED

v1: 10 April 2025 Research Article

Arithmetic on Continued

Fractions

Peer-approved: 10 April 2025

© The Author(s) 2024. This is an

Open Access article under the CC BY
4.0 license.

Qeios, Vol. 7 (2025)
ISSN: 2632-3834

Michael J. Collins1

1. Daniel H. Wagner Associates (United States), Exton, United States

Gosper developed algorithms for adding, subtracting, multiplying, or dividing

two CFs, and for solving quadratics with CF coefficients, getting a CF as the

result. Straightforward implementation of these algorithms can lead to infinite

loops; here we present modified versions of those algorithms which avoid all

difficulties with infinite loops. We have implemented these algorithms in

Haskell.

Corresponding author: Michael J. Collins,

mjcollins10@gmail.com

1. Introduction

A continued fraction is a (possibly infinite) expression

of the form

where the terms are integers, with positive when

. It is written more compactly as . The

properties of continued fractions are very well-known1,

so here we only remind the reader of some notation we

will use:

A quadratic irrational has a periodic CF expansion.

We denote the periodic part by putting it in

parentheses, i.e .

A rational number has a finite CF expansion

. It will be convenient to consider a

finite CF as ending with an infinite term ,

treating as equal to zero.

Gosper (in an appendix to the famous HAKMEM

report[1]) developed algorithms for adding, subtracting,

multiplying, or dividing two CFs, and for solving

quadratics with CF coefficients, getting a CF as the

result; the point of course is that we can do this entirely

within the CF representation, making no use of

floating-point arithmetic. Here we present modified

versions of those algorithms which avoid all difficulties

with infinite loops; any combination of arithmetic

computations can be carried out to any required degree

of accuracy in a finite number of steps. We have

implemented these algorithms in Haskell2.

2. Arithmetic on One CF

Before we describe how to add or multiply two CFs, we

consider the simpler problem of operations combining

a single CF with a rational number . A few examples

reveal there is no evident general pattern for

transforming the CF terms of irrational into the terms

of or , even in the apparently simplest

cases:

 As a motivating example for the general algorithm, we

compute

 It will be convenient to have notation for the “tail" of a

continued fraction, so let

+a0

1

+a1
1

+a2
1

+ ⋯a3

ai ai
i > 0 [, , ⋯]a0 a1

[1, (2, 3)] = [1, 2, 3, 2, 3, 2, 3, ⋯]

[, , ⋯]a0 a1 ak
= ∞ak+1

1
∞

p/q

x

px/q x + p/q

7–√
/27–√

11−−√
/211−−√
π

π + 1/2

=

=

=

=

=

=

[2, (1, 1, 1, 4)]

[1, (3, 10, 3, 2)]

[3, (3, 6)]

[1, (1, 1, 1, 12, 1, 1, 1, 2)]

[3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, ⋯]

[3, 1, 1, 1, 3, 1, 3, 4, 73, 6, 3, 3, 2, 1, 3 ⋯]

[, , ⋯] = π/2 = 1.5707963267948966 ⋯ .y0 y1 y2

= [, , ⋯] .ri πi+1 πi+2

qeios.com doi.org/10.32388/DD1PU3.2 1

mailto:mjcollins10@gmail.com
https://www.qeios.com/
https://doi.org/10.32388/DD1PU3.2

Note that all , and . The fact

that is enough to determine

; more precisely

Now we have to get from

The mere fact that is enough to tell us that

, so we obtain and continue

Now the floor of ranges from one to infinity as

 ranges from one to infinity, so we need to make use

of ; we substitute to get

Thus . We also get from

Going further will require substituting

 into . It is now clear that

we will generate terms of by repeatedly determining

the integer part (i.e. floor) of expressions of the form

where and the continued fraction expansion of

 is known. Functions of this form are called

homographic. We will identify a homographic function

with the matrix .

To formalize our observations, we first define the range

of the function given by (1) as the set of possible floors,

i.e.

We will be able to produce the next term of output when

this set is a singleton. If then the

denominator cannot be zero, and the upper and lower

limits are the min and max of : if

 is the max, and is also an integer, then the integer

part cannot be larger than , since we are

approaching from below. If the range will

be infinite, so there is no need to compute it explicitly;

we need to transform the expression by incorporating

more information about .

We define two transformations on homographics.

When the range of the homographic expression for

 is not a singleton set, we do not yet have

enough information to determine , and must

 the next term of . If this term is we make the

substitution , leading to the definition

When the range of the homographic expression for

 consists of a single integer , we can

produce the next output term ; the rest of the

output, , is the continued fraction

expansion of

so we define

Note that if we started with rational , we will

eventually reach ; ingesting infinity returns the

limit . This is the constant function at the

rational number , so there will never be any need to

ingest the (nonexistent) subsequent terms of . If we

proceed as in the examples above, we will compute the

CF representation of as the last part of the finite

expansion of , ending with a production that subtracts

the final term from the expression ; this leads to

, which we may read as infinity.

So now we have an algorithm for producing the CF

expansion of , assuming the expansion

of is known. To compute we would start with

; to get we would start with ;

while would be .

≥ 1ri = + 1/ri πi+1 ri+1

= ⌊π⌋ = 3π0

= ⌊π/2⌋ = 1y0

y = = = = 1 + = 1
π

2

3 + 1/r0

2

3 + 1r0

2r0

+ 1r0

2r0

+ .
1

[, , ⋯]y1 y2

y1

= .
2r0

+ 1r0

> 1r0

⌊ ⌋ = 1
2r0

+1r0
= 1y1

= 1 + = +
− 1r0

+ 1r0
y1

1

[, ⋯]y2 y3

= .
+ 1r0

− 1r0

+1r0

−1r0

r0

= 7π1 = 7 + 1/r0 r1

= = = 1 + = 1 + .
8 + 1/r1

6 + 1/r1

8 + 1r1

6 + 1r1

2r1

6 + 1r1

1

[, ⋯]y3

= 1y2 = 3y3

= = 3 + = 3 + .
6 + 1r1

2r1

1

2r1

1

[, ⋯]y4

= 15 + 1/r1 r2 2 = [, ⋯]r1 y4

y

px + q

rx + s
(1)

x > 1
x

()p
r
q
s

R () = {⌊ ⌋ | 1 ≤ x < ∞}p
r
q
s

px + q

rx + s

−s/r ≤ 1

{p/r, (p + q)/(r + s)}
p/r

p/r − 1
p/r −s/r > 1

x

[, , ⋯]yj yj+1

yj
ingest x k

x ← k + 1/x

ingest(k, ()) = ()p
r
q
s

q + kp

s + kr

p

r

[, , ⋯]yj yj+1 k

= kyj
[, , ⋯]yj+1 yj+2

=
1

− k
px+q

rx+s

rx + s

(p − kr)x + (q − ks)

produce(k, ()) = () .p
r
q
s

r

p − kr

s

q − ks

x

= ∞xi

()0
0
p
r

p/q
x

p/q
y

yk
yk

1

M = ()0
0

1
0

[, , ⋯]y0 y1
px+q

rx+s

x x/k

M = ()1
0

0
k

kx M = ()k
0

0
1

x +
j

k
M = ()k

0
j

k

qeios.com doi.org/10.32388/DD1PU3.2 2

https://www.qeios.com/
https://doi.org/10.32388/DD1PU3.2

Figure 1. Algorithm for arithmetic on a CF and a

rational number

2.1. Properties of the Algorithm

The outer loop “while " is an infinite loop if

 is irrational (here we use boldface for

the real-valued input, as distinct from the symbolic

variable in the homographic expression). This can be

implemented quite directly in a language like Haskell3

with lazy evaluation; such languages support

conceptually infinite data structures, which are a

perfect fit for working with continued fractions. Under

lazy evaluation, defining a variable to be the result of

an algorithm just associates with the finite recursive

expression that defines the algorithm; the number of

 terms actually generated will be only what is needed

by subsequent computations.

The inner loop “while is not a singleton" is

guaranteed to terminate; we will never be in an infinite

loop waiting for the next term. We have already

observed that this loop terminates if is rational, so

assume it is irrational. As we iterate through this loop,

we are repeatedly rewriting the initial with

 in place of . As goes to infinity, the

upper and lower bounds on approach , so

the upper and lower bounds of the matrix approach

. This limit is irrational, so eventually the

bounding interval contains no integers; at this point

 will be a singleton (namely the common floor of

all numbers in the interval), and we will produce a term.

2.2. Visualizing the Algorithm

Since returns a matrix whose right

column is , and returns a matrix

whose top row is , we can visualize the progress of

the algorithm as moving a window through a

two-dimensional grid of integers. We start with in

the upper right corner; ingest moves left and produce

moves down. We put the on the top row, at the

positions where we ingest, and in the right column,

at the positions where we produce. Here is such a

representation of our earlier example of , taken

further to use to obtain

.

3. Arithmetic on Two Continued

Fractions

We now turn to adding or multiplying two CFs.

Conceptually, this is hardly any different from what we

have already done; but it will raise some

implementation issues that require care. As a

motivating example, let

with . We can write this sum

as

Substituting and

 leads (after a lot of high-

school algebra) to

The integer parts of and are all 4; therefore

. The next term will be the floor of

into which we can substitute

 and so on.

Similarly, the product is

M ≠ ∞
x = [, , ⋯]x0 x1 x

x

y

y

y

R(M)

x

M = ()p
r
q
s

[, ⋯ ,x]x0 xi x i

[, ⋯ ,x]x0 xi x

px+q

rx+s

R(M)

ingest(k, ())p
r
q
s

()pr produce(k, ())p
r
q
s

(r s)
2 × 2

M

xi

yj

π/2
π = [3, 7, 15, 1 ⋯]

π/2 = [1, 1, 1, 3, 31, ⋯]

32

1

1

1

30

1

−1

15

8

6

2

0

7

3

2

1

1

0

1

3

1

0

1

−1

0

2 1

1

1

3

31

z = π + = 4.555806215962888 ⋯2–√

[, , ⋯] = = [1, (2)]y0 y1 2
–√

3 + + 1 +
1

[, ⋯]π1 π2

1

[, ⋯]y1

= .
4[, ⋯][, ⋯] + [, ⋯] + [⋯]π1 y1 π1 y1

[, ⋯][⋯]π1 y1

[, ⋯] = 7 + 1/[, ⋯]π1 π2

[, ⋯] = 2 + 1/[, ⋯]y1 y2

z =
65[, ⋯][, ⋯] + 29[, ⋯] + 9[, ⋯] + 4π2 y2 π2 y2

14[, ⋯][, ⋯] + 7[, ⋯] + 2[, ⋯] + 1π2 y2 π2 y2

, ,65
14

29
7

9
2

4
1

⌊z⌋ = 4

=
1

z − 4

14[, ⋯][, ⋯] + 7[, ⋯] + 2[, ⋯] + 1π2 y2 π2 y2

9[, ⋯][, ⋯] + [, ⋯] + [, ⋯]π2 y2 π2 y2

[, ⋯] = 15 + , [, ⋯] = 2 +π2
1

[,⋯]π3
y2

1

[,⋯]y3

π = 4.442882938158366 ⋯2–√

qeios.com doi.org/10.32388/DD1PU3.2 3

https://www.qeios.com/
https://doi.org/10.32388/DD1PU3.2

into which we can make the same substitutions.

In general, computing terms of a sum or product of CFs

will require finding the floors of two-variable

expressions of the form

where and independently vary from 1 to . Such an

expression is called bihomographic, and will be

represented by the matrix . To determine

bounds on the floor of (2), it is convenient to make the

substitutions , and consider

as range independently from zero to infinity. If the

denominator cannot be zero, the floor is always

between the minimum and maximum of

where we may ignore fractions with numerator and

denominator both zero.

When the floor (i.e. the next term of output) is known,

we produce output and the next bihomographic

expression is

so we define the corresponding operation on matrices

If the floor is not determined (in particular when the

denominator might be zero), we must narrow the range

by ingesting the next term of either or . If we use

, we make the substitution

 to get

so we define

with the analogous

for the result of substituting . If one or both

inputs are rational, we will eventually ingest infinity,

which we define by taking the limit:

Figure 2. Preliminary algorithm for arithmetic on two

CFs

We now have a preliminary algorithm for arithmetic;

this will in fact require substantial modification, but we

include it as a summary of the key ideas. It is not much

different from the single-CF case. Computations of

, and begin with matrices

 and .

Note that it is not at all necessary to ingest terms of

both inputs in lockstep as we have here; Gosper

suggests heuristics for accelerating the algorithm by

choosing the input term most likely to get us to the

next production step more quickly. This appears to be a

worthwhile subject for further work.

It is interesting that the algorithms for all arithmetic

operations are identical, except for the initial . The

reason, one might say, is that division is the hardest

arithmetic operation, and the definition of continued

fractions has division built-in to everything.

3.1. Failure to Converge

Our preliminary algorithm demonstrates the basic idea

of CF arithmetic, but is insufficient because it can fail to

converge; we might endlessly ingest terms of both

 and without ever obtaining a bihomographic

(3 +)(1 +)
1

[, ⋯]π1

1

[⋯]y1

= .
3[, ⋯][⋯] + 3[, ⋯] + [⋯] + 1π1 y1 π1 y1

[, ⋯][⋯]π1 y1

axy + bx + cy + d

exy + fx + gy + h
(2)

x y ∞

()a
e
b
f

c
g
d
h

= x − 1, = y − 1x̂ ŷ

a + (a + b) + (a + c) + (a + b + c + d)x̂ŷ x̂ ŷ

e + (e + f) + (e + g) + (e + f + g + h)x̂ŷ x̂ ŷ

,x̂ ŷ

{ , , , }
a

e

a + b

e + f

a + c

e + g

a + b + c + d

e + f + g + h

= kzj

(− k)
axy + bx + cy + d

exy + fx + gy + h

−1

=
exy + fx + gy + h

(a − ke)xy + (b − kf)x + (c − kg)y + (d − kh)

produce(k,()) = ()a
e
b
f

c
g
d
h

e

(a−ke)
f

(b−kf)
g

(c−kg)
h

(d−kh)

x y

x = [s, , ⋯]xk+1 xk+2

x ← s + 1/x

(sa + c)xy + (sb + d)x + ay + b

(ae + g)xy + (af + h)x + ey + f

ingest_x(s,()) = ()a
e
b
f

c
g
d
h

(sa+c)
(ae+g)

(sb+d)
(af+h)

a

e

b

f

ingest_y(s,()) = ()a
e
b
f

c
g
d
h

(sa+b)
(se+f)

a

e

(sc+d)
(sg+h)

c

g

y ← s + 1/y

ingest_x(∞,()) = ()a
e
b
f

c
g
d
h

0
0

0
0
a
e
b
f

ingest_y(∞,()) = ()a
e
b
f

c
g
d
h

0
0
a
e

0
0
c
g

x + y,x − y,xy x/y

() ,() , ()0
0

1
0

1
0

0
1

0
0

1
0

−1
0

0
1

1
0

0
0

0
0

0
1 ()0

0
1
0

0
1

0
0

M

x y

qeios.com doi.org/10.32388/DD1PU3.2 4

https://www.qeios.com/
https://doi.org/10.32388/DD1PU3.2

expression whose floor is known. The simplest case is

multiplying by itself. The first iteration,

ingesting 1 from and from , gives

Repeatedly ingesting 2 from both and yields

and so on. The matrix (3) takes values ranging from

 to (i.e. 1.777 to 2.25) as and range from one to

infinity; similarly matrix (4) is between and (i.e.

1.96 to 2.0408). And the last ranges from to ,

which is about 1.993 to 2.00694.

The source of the problem is now clear: we should have

, but no finite number of terms can

ever tell us that . It is always possible that one

input is in fact less than , so it is always possible

that and .

Our approach to the problem (see[2] for an entirely

different approach) is to separate the internal

representation of a CF as a data structure from the

mathematical notion of a sequence of integer terms.

The internal representation will contain explicit terms

(i.e.) whenever such can be determined, but

might also contain arbitrary bounds on the tail

, such as the sequence of bounds we derived

for . This is a direct generalization, because the

explicit term is equivalent to the bound

Therefore, when a CF is constructed explicitly from a

known sequence of integer terms , it will be

represented internally as the sequence of half-open

intervals

At the opposite extreme, the internal representation for

 will consist entirely of ever-tighter bounds on the

first term, i.e. the sequence of intervals

The general idea (elaborated more fully in section 3.3) is

that we will generate output on every iteration of the

arithmetic algorithm; when we cannot produce the next

term of , we output upper and lower bounds on the

current homographic matrix, leaving the matrix

unchanged. Reading such output, there can be no

ambiguity about the term to which a bound applies; the

first bound applies to , and as soon as we encounter

an explicit term we know that and the

next bound will apply to . This implies that any

finite prefix of the output sequence will determine a

finite prefix of the actual CF, followed by a

bound on the tail . The exact value

of the CF is between and ;

here we extend the usual CF notation by allowing a

rational number, instead of an integer, as the last term.

Note that storage of a long sequence of intervals is not

an issue for implementation; successive bounds on the

same term are always tighter, so there is no need to

retain earlier bounds when a new one is obtained.

3.2. Extracting Terms

We must note that our representation of CF arithmetic

makes it impossible to simply ask a question like “what

are the first five terms of ?" An explicit list of

terms can only be relative to a required degree of

accuracy . Our arithmetic algorithms consume and

return theoretically infinite sequences of intervals;

extracting a finite sequence of terms is a separate

“post-processing" step, carried out only when a

numerical approximation is required. To obtain such an

approximation, we find a prefix of the output interval

sequence which is long enough to make the difference

between and less than ;

then our approximate CF is , where is some

integer in the interval . We might as well always

take , which is the only integer in the interval

if the interval is small.

In the case of , any accuracy threshold will yield the

same result, .

3.3. An Algorithm for CF Arithmetic

We now present the full details of the algorithm

suggested in the previous section. We augment the

matrix with a pair of intervals

, the current bounds on

the remaining tails of the inputs . These intervals

start at , since the first term could be any

integer. When we read an interval of the form

 from or from , we modify as before

with or ,

= [1, (2)]2–√
x y

z = ∗ = [, , ⋯] = .2–√ 2–√ z0 z1
xy + x + y + 1

xy

x y

[, , ⋯] =z0 z1
9xy + 3x + 3y + 1

4xy + 2x + 2y + 1
(3)

[, , ⋯] =z0 z1
49xy + 21x + 21y + 9

25xy + 20x + 10y + 4
(4)

[, , ⋯] =z0 z1
289xy + 119x + 119y + 49

144xy + 60x + 60y + 25
(5)

16
9

9
4

x y
49
25

100
49

576
289

289
144

z = [,] = [2, ∞]z0 z1

= 2z0

2–√
z < 2 = 1z0

= nzk

[, ⋯]zk zk+1

∗2–√ 2–√
= nzk

n ≤ [, ⋯] < n + 1 .zk zk+1

[, , ⋯]a0 a1

[[, + 1), [, + 1), ⋯] .a0 a0 a1 a1

2–√
2

[[,), [,), [,), ⋯] .
16

9

9

4

49

25

100

49

576

289

289

144

z

z0

[a,a + 1) = nzk
zk+1

[⋯]z0 zk−1

[,)ℓk uk [, ⋯]zk zk+1

[⋯ ,]z0 zk−1 ℓk [⋯ ,]z0 zk−1 uk

z = xy

ε

[⋯ ,]z0 zk−1 ℓk [⋯ ,]z0 zk−1 uk ε

[⋯]z0 zk zk
[,)ℓk uk

= ⌊ ⌋zk uk

2–√
2

z = [2]

M

{ , } = {[,), [,)}Ix Iy xℓ xu yℓ yu
x,y

(−∞, ∞)

[a,a + 1) x y M

M ← ingest_x(a,M) M ← ingest_y(a,M)

qeios.com doi.org/10.32388/DD1PU3.2 5

https://www.qeios.com/
https://doi.org/10.32388/DD1PU3.2

and we change that variable’s bound to . When we

read an ambiguous interval (i.e. a bound that does

not determine the next term of the input), we replace

the bound or with , leaving unchanged.

For output, we first redefine to take the bounds

into account, i.e.

When this is a singleton set , we output

 and modify as before with

; the intervals and do not

change. Otherwise we leave unchanged and output

the interval from min to max of subject to

: denote this interval

. These bounds are easily

computed, see section (3.4). To retain unlimited

accuracy, the bounds must be computed with exact

rational arithmetic.

Figure 3. Algorithm for arithmetic on two CFs

(without optimizations)

3.4. Computing the range of

To compute :

Let

Substitute and . Now

 goes from to as goes from 0 to infinity,

similarly for

Let the coefficients of the resulting matrix be

The range of subject to the bounds will be the min

and max of

assuming no sign change in the denominator as goes

from 0 to infinity; fractions with numerator and

denominator both can be ignored.

3.5. Possible Optimizations of the CF Arithmetic

Algorithm

3.5.1. Winnowing Interval Sequences

When we have to ingest the next interval from or ,

and we see an ambiguous interval at the head of the list,

it is not necessary to ingest that interval; we may skip it

and go on to the next element of the list, which will give

a tighter bound on the next term. Any such heuristic

must guarantee that, given an infinite list of ambiguous

input intervals, we eventually ingest something.

Similarly, the algorithm does not need to output every

ambiguous interval of ; but we must guarantee that we

eventually output something, even if we are generating

an infinite list of ambiguous intervals. The most

obvious idea is to read and produce ambiguous intervals

only if the gap is smaller than some threshold.

3.5.2. Taming Large Coefficients

If a high degree of accuracy is required, the coefficients

of may grow very large; performing rational

arithmetic on arbitrarily large integers will incur a

performance penalty. We might be able to take

advantage of the fact that we do not require the tightest

possible bounds on the next term; the only requirement

for correctness is that the bounds converge to the

correct value. We might divide every coefficient of by

some large integer , rounding each result up or down

in whichever direction slightly widens the range of .

We might do the same with intervals whose numerators

and denominators are very large. To guarantee

convergence, we must never make an adjustment which

makes a new bound weaker than the current bound.

Any such decision to “simplify" must consider the

gap between the upper and lower bounds of ; if the

[1, ∞)
[ℓ,u)

Ix Iy [ℓ,u) M

R(M)

R(() , ,)a
e
b
f

c
g
d
h

Ix Iy

= {⌊ ⌋ | x ∈ ,y ∈ }
axy + bx + cy + d

exy + fx + gy + h
Ix Iy

{a}
[a,a + 1) M

M ← produce(a,M) Ix Iy
M

M(x,y)
x ∈ ,y ∈Ix Iy

ρ(() , ,)a
e
b
f

c
g
d
h

Ix Iy

M

ρ(() , [,), [,))a
e
b
f

c
g
d
h

xℓ xu yℓ yu

, = − , −δx δy xu xℓ yu yℓ

x ← +xℓ
δ

+1x′ y ← +yℓ
δ

+1y ′

x xℓ xu x′

y,y ′

()a′

e′
b′

f ′
c′

g′
d ′

h′

M

{ , , , }
a′

e′

b′

f ′

c′

g′

d′

h′

x′

0

x y

z

M

M

k

M

M

M

qeios.com doi.org/10.32388/DD1PU3.2 6

https://www.qeios.com/
https://doi.org/10.32388/DD1PU3.2

gap is large relative to the reciprocals of the coefficients,

we might be carrying too many digits. However, with

lazy evaluation, all computations are driven by how

much accuracy we need; if the gap is small, yet we are

still continuing the computation, it means that we need

even tighter bounds. In such cases large coefficients

might be unavoidable.

4. Solving Quadratic Equations

4.1. Square root of a rational number

The arithmetic algorithm can be extended to solve

quadratic equations with CF coefficients. We begin with

the special case of computing the square root of a

rational number . The key idea is that is the fixed

point of a homographic function, i.e. the solution to

We thus need to find a continued fraction which

produces given the initial matrix , where

.

As a concrete example, we find . The first term will

be the floor of the fixed point of . It is easy

to observe in this case that and , so

the first term is ; but we must find a better

algorithm than linear search through

. We can make use of the fact that

any homographic function of the form

is self-inverse: i.e. . This immediately

implies that, given any , the fixed point is between

 and . So we can use binary search to find the

desired term. Search can begin with the smallest

positive integer greater than the root of the

denominator, . In fact, the self-inverse property

implies the existence of an integer such that

 or ; in either case

 is the next term of . The self-inverse property

is preserved by ingesting and then producing the same

term:

Thus each subsequent iteration can be handled the

same way. After we obtain

which yields since now . Ingesting

and producing 3 leads to

implying because . The next

iteration puts us in a loop: ingesting and producing 6

takes us back to

 proving that .

4.2. Square root of an explicit CF

Now we consider how to extract the square root of a real

number given as a continued fraction. We will start

with the simpler case in which expressed as an

explicit list of integer terms, before generalizing to an

algorithm that operates on our internal representation

of a CF as a list of intervals.

The square root of is the fixed point . The

matrix is bihomographic, but we can also

think of it as a homographic matrix with

constant and variable . More generally let

 denote with fixed at , i.e. if

 then

 As before, we use boldface to distinguish a specific

input from the symbolic variable. is the limit

.

Starting from , we must ingest terms of until

we reach a stage at which the floor of the fixed point

does not depend on ; in other words, until the floor of

the fixed point is the same when and .

This floor will be the next term of . To find the next

term, we first use binary search to get , the floor of the

fixed point of of ; then we check whether is also

the floor of the fixed point of . If so, we ingest and

produce ; if not, we ingest another term of and

continue.

This works because the matrices will always have

the self-inverse property. Such is clearly the case with

the initial matrix, and a similar computation to what we

did for rational proves the property is preserved when

we ingest and produce a term.

α α−−√

y = .
α

y

y

y ()0
q
p
0

α =
p

q

11−−√

M = ()0
1

11
0

M(3) > 3 M(4) < 4
= 3y0

M(1),M(2),M(3) ⋯

M = ()
p

r

q

−p

M(M(y)) = y

ŷ

ŷ M()ŷ

p

r

ŷ

= ⌊M()⌋ŷ ŷ = 1 + ⌊M()⌋ŷ ŷ

⌊M()⌋ŷ y

produce(, ingest(,())) = () .ŷ ŷ p
r

q
−p

r−pŷ

q+2 p− rŷ ŷ
2

r

p− rŷ

= 3y0

M = ()
3

2

1

−3

= 3y1 M(3) = 10
3

M = ()
3

1

2

−3

= 6y2 M(6) = 20
3

()
3

2

1

−3

= [3, (3, 6)]11−−√

x

x

x y = x
y

()0
0

1
0

0
1

0
0

()0
1
x
0

x y

Mx M x x

M = ()a
e
b
f

c
g
d
h

= () .Mx

(ax + c)

(ex + g)

(bx + d)

(fx + h)

x

M∞

()a
e
b
f

()0
0

1
0

0
1

0
0 x

x

x = 1 x = ∞
y

ŷ

M1 ŷ

M∞ ŷ

ŷ x

Mx

x

qeios.com doi.org/10.32388/DD1PU3.2 7

https://www.qeios.com/
https://doi.org/10.32388/DD1PU3.2

As an example, we compute the fourth root of 2, i.e. the

square root of . Making the substitution

 gives

The fact that should be enough to imply that

, and indeed this is the case:

Ingesting and producing leads to ;

then ingesting 2 from gives

We do not yet have enough information to determine

the next output term:

Ingesting another 2 from will suffice:

and

so . After ingesting/producing 5 and then

reading another 2 from we reach

which tells us that : and

. The first few terms of are

.

Figure 4. Algorithm for square root of a CF

4.3. Square root of a general CF

The algorithm is not fundamentally different for

 represented as a list of intervals. When we read an

ambiguous interval , we do not change ;

instead we check whether the floors of the fixed points

of and are the same. If so, this common value

is the next term of .

To simplify the algorithm we have assumed that all

terms of , including the first term, are greater than or

equal to 1. The case of is easily handled: if

 then where

.

4.4. Algorithm Termination

It is possible for the square-root algorithm to stall,

reading infinitely many terms from without ever

determining the next term of . Suppose that the true

fixed point of is an integer ; as we ingest more

terms from , the fixed points of and will both

approach , but the floor of one fixed point will be and

the floor of the other will be . We cannot guarantee

that a finite number of terms of will ever determine

. This would happen, for instance, if we tried to

compute the square root of 4, if 4 were given not as

, but instead as an infinite sequence of

ambiguous terms approaching 4.

The solution is the same as in the case of arithmetic; we

can output ambiguous terms of . Let denote the

fixed point of ; we would like to output

x = [1, (2)]

x ← 1 + 1
x

M = .
x + 1

xy

⌊x⌋ = 1
⌊y⌋ = 1

=M1
2
y

(1) = 2M1

=M∞
1
y

(1) = 1M∞

= 1y0 M =
yx+x

y−x

x

M = .
2xy + 2x + y + 1

xy − 2x − 1

=M1
3y+3

y−3

(6) = 7M1

=M∞
2y+2

y−2

(5) = 4M∞

x

M =
5xy + 5x + 2y + 2

2xy − 5x + y − 2

=M1
7y+7

3y−7

(5) =M1
21
4

=M∞
5y+5

2y−5

(5) = 5M∞

= 5y1

x

M =
13xy + 5x + 5y + 2

7xy − 13x + 5y − 5

= 3y2 (3) =M1
61
18

(4) =M∞
19
5

2–√4

1.18921 ⋯ = [1, 5, 3, 1, 1, 40, 5, ⋯]

x

[,)xℓ xh M

Mxℓ Mxh

y

x

= 0x0

x = [0, , , ⋯]x1 x2 = [0, , , ⋯]x−−√ z0 z1

z = =[, , ⋯]x1 x2
− −−−−−−−−

√ 1/x
−−−

√

x

y

Mx k

x Mxℓ Mxh

k k

k − 1
x

= kyi

x = [4, ∞]

y ϕ(M)
M

qeios.com doi.org/10.32388/DD1PU3.2 8

https://www.qeios.com/
https://doi.org/10.32388/DD1PU3.2

. This does not quite work, since

the bounds can be irrational, so we must instead define

rational bounds

; these

bounds must be tight enough to guarantee

convergence. We can find approximate rational bounds

with binary search.

Note that stalling cannot happen if is irrational, since

the fixed point will never be integral; and

 will approach a non-integral limit, and after a

finite number of steps, the floors of the fixed points will

be the same.

4.5. Further Implementation Details

We must take some care in considering the fixed point

of . In our computation of , we obtained

 after ingesting and then

ingesting/producing . At this point, rather than

immediately ingesting , we might see if we can

get another term of from . We have

The fixed point of is between 2 and 3, but the fixed

point of is negative. What is going on? is the

limit as for any fixed , but in this case the fixed

point of approaches infinity as , leading to

the invalid result. At this point we may validly generate

 as a bound on , where is any rational lower

bound on the fixed point of ; for instance

 would be correct.

A similar issue arises in the case where is in fact a

rational number, i.e. a finite continued fraction.

Suppose we apply our algorithm to get the square root

of 9, i.e. . After making the initial

substitution , then ingesting/producing

, we will be seeking the fixed point

Note that (6) is simply a rearrangement of

, i.e. of

Written this way it is obvious that approaches infinity

as approaches infinity. After ingesting , the

variable disappears and we will be trying to solve

Now and must be the same; with gone, both

matrices are just . The fixed point is ,

again meaning that in fact the fixed point goes to

infinity as does; so we terminate the computation

with .

4.6. Quadratic equations

A quadratic equation can be written as the fixed point of

a self-inverse homographic function:

 is equivalent to

If is given as a continued fraction, we can solve (7) by

starting with and finding the fixed

point, ingesting terms of . The cases of or as

continued fractions are similar. Computationally, this

should be faster than direct application of the quadratic

formula, which would require multiple arithmetic

operations as well as a square root.

5. Arithmetic with Arbitrary

Intervals

In the algorithm for CF arithmetic, all intervals are

either ambiguous (i.e. there is an integer in the interior

of the interval), or are of the form for integer

. But this potentially throws away information.

Whenever we are able to produce an explicit output

term , we in fact know that the tail lies

in the possibly smaller interval , and can

set .

If we generate such intervals as output then we must be

able to read them as input. If , we

can ingest into , and set

 instead of . This will yield

a narrower range for .

Of course there is no guarantee that the more precise

representation would give any computational

advantage in practice, since more computation is

required to manipulate the tighter bounds.

Footnotes

1

https://en.wikipedia.org/wiki/Simple_continued_fraction

2 https://github.com/mjcollins10/ContinuedFractions

= (ϕ(),ϕ())yi Mxℓ Mxh

() ≤ ϕ(), () ≥ ϕ()ϕℓ
′ Mxℓ Mxℓ ϕh

′ Mxh Mxh

x

ϕ()Mxℓ

ϕ()Mxh

M∞ 2–√4

M =
yx+x

y−x
= 1x0

= 1y0

= 2x1

y M

=M1
y+1

y−1
= .M∞

y+1

−1

M1

M∞ M∞

x → ∞ y

Mx x → ∞

[α, ∞) y1 α

M1

α = 2

y

x = [9, ∞]

x ← 9 + 1
x

= 3y0

y = .
3xy + x

−3x + y
(6)

3 + =1
y

9 + 1
x

− −−−−
√

3 + = .
1

y

9 + 1
x

3 + 1
y

y

x x = ∞
x

y = .
3y + 1

−3

M1 M∞ x

()3
0

1
−3 y = −1/6

x

= ∞y1

p + qy + r = 0y2

y = .
−qy − 2r

2py + q
(7)

q

M = ()−x
2p

−2r
x

q = x p r

[a,a + 1)
a

← [a,a + 1)zj
ρ(M, ,)Ix Iy

← ρ(M, ,)zj Ix Iy

= (a + ,a +)xi εℓ εu
x = a M

← (,)Ix ε−1
u ε−1

ℓ ← [1, ∞)Ix

zj

qeios.com doi.org/10.32388/DD1PU3.2 9

https://en.wikipedia.org/wiki/Simple_continued_fraction
https://github.com/mjcollins10/ContinuedFractions
https://www.qeios.com/
https://doi.org/10.32388/DD1PU3.2

3 haskell.org

References

1. ^M. Beeler, R. W. Gosper, R. Schroeppel. (1972). HAKME

M. MIT; MIT 1972. Report No.: AIM-293. Available fro

m: https://dspace.mit.edu/handle/1721.1/6086

2. ^David Lester. (2001). Effective continued fractions. In:

Proceedings of 15th IEEE symposium on computer arit

hmetic (ARITH-15 2001). pp. 163–170.

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/DD1PU3.2 10

https://haskell.org/
https://www.qeios.com/
https://doi.org/10.32388/DD1PU3.2

