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Di�usion models have made signi�cant strides in image generation, mastering tasks such as

unconditional image synthesis, text-image translation, and image-to-image conversions. However,

their capability falls short in the realm of video prediction, mainly because they treat videos as a

collection of independent images, relying on external constraints such as temporal attention

mechanisms to enforce temporal coherence. In our paper, we introduce a novel model class, that

treats video as a continuous multi-dimensional process rather than a series of discrete frames. We

also report a reduction of 75% sampling steps required to sample a new frame thus making our

framework more e�cient during the inference time. Through extensive experimentation, we

establish state-of-the-art performance in video prediction, validated on benchmark datasets

including KTH, BAIR, Human3.6M, and UCF101.1
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1. Introduction

In the evolving landscape of machine learning and generative models, particularly in the domain of

video representation[1][2][3][4][5][6][7], there exists a pivotal challenge in adequately capturing the

dynamic transitions between consecutive frames. In this paper, we introduce a novel approach to video

representation that treats the video as a continuous process in multi-dimensions. This methodology is

anchored in the observation that transitions between consecutive frames in a video do not uniformly

contain the same amount of motion. Modeling these transitions with a single-step process often leads

to suboptimal quality in sampling. Our method, therefore, involves multiple prede�ned steps between
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two consecutive frames, drawing inspiration from recent advancements in di�usion models for image

data. This multi-step di�usion process has been instrumental in better modeling image data, and we

aim to extend this success to video data.

Previous e�orts in video modeling with di�usion models have tended to approach videos as a series of

images, generating separate volumes of video frame sequences and applying external constraints such

as applying temporal attention to maintain the temporal coherence. We argue that this approach

overlooks the inherent continuity in video data, which can be more naturally conceptualized as a

continuous multi-dimensional process. Our proposed method[8]  de�nes this continuous process,

beginning with two consecutive frames from a video sequence as endpoints this can be observed in Fig.

1. We delineate the forward process through interpolation between these endpoints, with a prede�ned

number of steps guiding the transition from one point to another. To ensure the existence of   at all

points, we introduce a novel noise schedule that applies zero noise at both endpoints.

Figure 1. The �gure is divided into two parts. The top portion of the �gure

illustrates the intermediate frames   between two consecutive frames. 

 represents consecutive frames from a video sequence where   and 

.   denotes some frame at timestep   in the video sequence  . 

 denotes the white noise. The lower portion of the �gure represents the directed

graphical model considered in this work to represent the continuous video

process.
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We approximate each step between these endpoints using a Gaussian distribution, following the

assumptions made in di�usion models for images by the paper[9][10][11][12]. In de�ning this forward

process, we also lay the groundwork for estimating a reverse process. This paper presents a novel lower

variational bound for estimating this reverse process.

To summarize, our contribution in this work is as follows:

We introduce a novel approach for representing videos as multi-dimensional continuous processes.

We introduce a novel approach for representing videos as multi-dimensional continuous processes.

We derive a novel variational bound that e�ciently estimates the reverse process in our proposed

‘Continuous Video Process (CVP)’ model.

Our method employs a unique noise schedule for the continuous video process, characterized by

zero noise at both endpoints, ensuring the existence of   at all intermediate timesteps.

We demonstrate the e�cacy of our approach through state-of-the-art results in video prediction

tasks across four di�erent datasets namely, KTH action recognition, BAIR robot push, Human3.6M,

and UCF101 datasets. Additionally, our model requires 75% fewer sampling steps when sampling a

frame compared to a di�usion-based baseline.

2. Related Works

Understanding and predicting future states based on observed past data[13][14][15][16][17][18][19]  is a

cornerstone challenge in the domain of machine learning. It is crucial for video-based applications

where capturing the inherent multi-modality of future states is vital, such as in autonomous vehicles.

Early methods in this �eld, as noted by Yuen et al.[20]  and Walker et al.[21], primarily focused on

matching past frames within datasets to extrapolate future states, although these predictions were

constrained to either symbolic trajectories or directly retrieved future frames. The advent of deep

learning has signi�cantly propelled advancements in this area. One of the seminal works by Srivastava

et al.[22]  leveraged a multi-layer LSTM network for deterministic representation learning of video

sequences. Subsequent studies[23][24][25][26][27][28][29], have expanded the scope of this research by

constructing models that account for the stochastic nature of future states, marking a notable shift

from earlier deterministic approaches.

Recent research in this domain has explored both implicit and explicit probabilistic modeling

approaches. Implicit probabilistic modeling, typi�ed by GAN[30]-based models, has a substantial
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history. Nonetheless, these models[31][32][33]  often grapple with training stability issues and mode

collapse(where model only focuses on a few modes in the dataset) issues. On the other hand, explicit

probabilistic modeling for video prediction encompasses a range of methodologies, including

Variational Autoencoders (VAEs)[34], Gaussian processes, and Di�usion models. VAE-based video

prediction methods[35][36][31] tend to average results to align with all potential future scenarios, which

undermines the �delity of predictions. Gaussian process-based models[1][37]  exhibit pro�ciency with

smaller datasets but encounter scalability issues owing to matrix inversion limitations when

calculating training likelihood. While workarounds exist, they tend to compromise result �delity.

Recent advancements in di�usion models[38][39][40][41] have positioned them as the preferred choice

for video prediction tasks. These multi-step models o�er superior sample quality and are resilient to

mode collapse. However, even with such lucrative advantages, modeling videos with these models

tends to have downsides. Majorly methods falling under this category enforce temporal consistency

using arti�cial external constraints such as the introduction of temporal attention blocks. This might

be e�ective but comes at a cost of signi�cant computing power.

Another class of popular video prediction models is hierarchical prediction[42][43][44][45][2]  models.

These models are multistage models that decompose the problems into two stages. They �rst predict a

high-level structure of a video, like a human pose, and then leverage that structure to make predictions

at the pixel level. These models generally require additional annotation for the high-level structure for

training, unlike ours that predicts future frames utilizing only the pixel-level information of context

frames.

We also want to highlight some very recent works like InDI[46], and Cold di�usion[47] that provide an

alternate approach to denoising di�usion models that is similar to our approach. However, their works

only explored such formulation for image-based computational photography and image generation

tasks.

3. Method

Instead of introducing noise iteratively to the frames until they conform to a Gaussian distribution, and

adopting a reverse process such as denoising di�usion, a commonly employed technique for video

prediction, we introduce a novel model category designed to depict videos as continuous processes.

This section delves into the modeling of this continuous video process.
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Suppose we have a video sequence denoted by    where    is the frame at the

timestep  . We represent this video sequence as a continuous process. The intermediate frames

between   and   are given by the following equation.

Here,   denotes the white noise. From the above Eqn, it can be seen that at  , we get the

frame    and at  , we get the frame  . We utilize this continuous process of evolving 

 given by Eqn. 1 and derive both the forward and reverse processes. For de�ning the forward

process, we take steps in the direction   instead of the other way, which happens in denoising

di�usion process[9]. The reason for this is we want the reverse process to start from past frame   and

according to the Eqn. 1   at  .

We can write the forward process, i.e., going from the start point   at   to endpoint   at  ,

From the above equation, we can write the posterior for the forward process as 

. Where  . The whole derivation is provided

in the appendix.

For modeling our video di�usion process, we like to model the likelihood function 

  and minimize the negative log-likelihood to obtain the best �t for our

model. Here,   is the probability of the reverse process, and it is de�ned as a Markov chain with

learned Gaussian transitions starting at  . Important note about the notations  ,

unless speci�ed consider   and   where   is the frame in the video sequence at   position

and   is the frame at   position. One important assumption about the continuous video process

is we assume the transition between the frames   and   to follow Markov chain, i.e., the current state at

timestep    only depends on the previous state at timestep  . Leveraging this assumption we can

de�ne the reverse process as follows,

where,  . We are interested in learning the reverse

process to perform our video prediction task.

V = {xj}N1 ∈xj
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The forward process or the di�usion process is a �xed Markov chain that gradually transforms the

frame   to frame  .

Training is performed by minimizing the variational bound on the negative log-likelihood.

This variational bound can be simpli�ed to the following (we refer the readers to the appendix to follow

the simpli�cation of from Eqn. 7 to the following equation),

In the above Eqn, the KL divergence term utilizes the comparison of   with forward process

posterior term, which is tractable under the process given by Eqn.  2. The forward process posterior

term is given by

where,    and  . Consequently, all KL divergences in Eqn.  8 are

comparisons between Gaussians, so they can be calculated in a Rao-Blackwellized fashion with closed-

form expressions instead of high-variance Monte Carlo estimates. It is important to note while

deriving the Eqn. 8, we ignore some terms that purely involve the forward process posteriors as   has

no learnable parameters, so such terms are constants during training.

Now we discuss our choices in    for 

. First, we set    to untrained time dependent constants.

Experimentally, the choice of    works the best. This noise function has an interesting

property that noise is absent both at the start and end points, i.e.,  .

Second, to represent the mean  , we propose a speci�c parameterization motivated by the

forward process posterior given by Eqn.  9. With  , we

can write:

y x

q( | ) := q( | ),x0:T−1 xT ∏
t=1

T

xt−1 xt (4)
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where    is a constant that does not depend on  . So, we see that the most straightforward

parameterization of   is a model that predicts  , the forward process posterior mean.

However, we can simplify Eqn. 10 further and obtain a very simple training loss objective by delving in

the term  . We further parameterize the term   as follows,

When we substitute this   parameterization in the Eqn. 10 we get the simpli�ed version of the

loss   as follows,

For training the video prediction model utilizing the above Eqn. 12 we obtain the   as a function of   by

leveraging the Eqn.  1. The following equation gives a more generic form of the �nal loss function

utilized to train the video prediction model,

The whole training and sampling pipeline is described in the training Alg.  1, sampling Alg.  2 and

depicted in Fig. 2.

Figure 2. Fig. (a) demonstrates the methodology for estimating   in a single step, showcasing the

speci�c computational process involved. Fig. (b) details the training pipeline of our Continuous Video

Process (CVP) model, where   and   are fed as inputs to the U-Net architecture, and the anticipated

output is  , with   in this scenario. Fig. (c) provides an overview of the sampling pipeline

utilized in our CVP method, illustrating the sequential steps to predict the next frame of the video

sequence given the context frames.

C θ
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4. Experiments

Video prediction task can be de�ned as given a few context frames, the model has to predict the

subsequent future frames. In this section, we empirically demonstrate that our approach yields

superior results in modeling the video prediction task.

4.1. Datasets

We chose 4 di�erent types of datasets to demonstrate the e�cacy of our approach. These are standard

benchmarks for video prediction tasks. Dataset lists include KTH action recognition dataset[15], BAIR

robot pushing dataset[19], Human3.6M[13] and UCF101[16] datasets. Training and architecture-speci�c

details about the approach are included in the appendix.

KTH Action Recognition Dataset. The KTH action dataset[15] consists of video sequences of 25 people

performing six di�erent actions: walking, jogging, running, boxing, hand-waving, and hand-clapping.

The background is uniform, and a single person is performing actions in the foreground. The

foreground motion of the person in the frame is fairly regular. The frames in the video for this dataset
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consist of a single channel. The spatial resolution of the frames in the video is downsampled to the size

of  .

BAIR pushing Dataset. The BAIR robot pushing dataset[19] contains the videos of table mounted sawyer

robotic arm pushing various objects around. The BAIR dataset consists of di�erent actions given to the

robotic arm to perform. The spatial resolution of the frames in the video is kept to be  .

Human3.6M Dataset. Human3.6M[13]  dataset consists of 10 subjects performing 15 di�erent actions.

The pose information from the dataset was not used in predicting next frame. The background is

uniform, and a single person is performing actions in the foreground. The foreground motion of the

person in the frame is fairly regular. The frames in the video for this dataset consist of ‘RGB’ channels.

The spatial resolution of the frames in the video is downsampled to the size of  .

UCF101 Dataset. This dataset[16] consists of 13,320 videos belonging to 101 di�erent action classes. The

video seems to have a variety of backgrounds and the frames of the video have three channels, namely

‘RGB’. We reshape the resolution of frames from the original size of   down to   for

our video prediction tasks. The downsampling is done utilizing the bicubic downsampling.

4.2. Metrics

We primarily use the FVD[48]  metric to determine the best-performing baseline when evaluating a

video prediction task. FVD metric evaluates a baseline on both terms, the reconstruction quality and

diversity of the generated samples. FVD is calculated as the frechet distance between the I3D

embeddings of generated video samples and real samples. The I3D network used for obtaining the

embeddings for real and generated video is trained on the Kinetics-400 dataset.

5. Setup and Results

Below, we describe in detail how the setup for our experiment looks compared to baselines. We also

showcase our �ndings about the performance of our method and comparison to baselines in this

section.

KTH action recognition dataset: For this dataset, we adhered to the baseline setup[38], which utilizes

the �rst 10 frames as context frames. In baseline setup, these 10 frames are utilized to predict the

subsequent 30 and 40 frames. A notable aspect of our experiment is we only used the last 4 frames from

this sequence of 10 frames as context frames in our CVP model, while disregarding the information in

64 × 64

64 × 64

64 × 64

320 × 240 128 × 128
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the remaining 6 frames. This decision was taken to maintain consistency with the experimental setups

used in prior baseline methodologies. The outcomes of this evaluation are summarized in Table 1.

KTH [10    ; trained on  ] FVD PSNR SSIM

SVG-LP[35] 10 30 377 28.1 0.844

SAVP[31] 10 30 374 26.5 0.756

MCVD[38] 5 30 323 27.5 0.835

SLAMP[49] 10 30 228 29.4 0.865

SRVP[50] 10 30 222 29.7 0.870

RIVER[39] 10 30 180 30.4 0.86

CVP (Ours) 1 30 140.6 29.8 0.872

Struct-vRNN[51] 10 40 395.0 24.29 0.766

SVG-LP[35] 10 40 157.9 23.91 0.800

MCVD[38] 5 40 276.7 26.40 0.812

SAVP-VAE[31] 10 40 145.7 26.00 0.806

Grid-keypoints[52] 10 40 144.2 27.11 0.837

RIVER[39] 10 40 170.5 29.0 0.82

CVP (Ours) 1 40 120.1 29.2 0.841

Table 1. Video prediction results on KTH ( ), predicting 30 and 40 frames using models trained to

predict   frames at a time. All models condition on 10 past frames on 256 test videos.

It can be observed from the Table  1, our model’s unique approach requires a signi�cantly reduced

number of frames for training. Contrary to other methods that train on an additional set of    frames

(10[context frames]+k[future frames]), our model uses just one frame (e�ectively 4[context

→ #pred k k #pred ↓ ↑ ↑

64 × 64

k

k
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frames]+1[future frames]). We employ the 4 context frames to predict the immediate next frame and

then autoregressively generate either 30 or 40 frames, depending on the evaluation requirement. This

methodology is supported by our model’s e�cient handling of video sequences as continuous

processes, which eliminates the need for external arti�cial constraints, such as temporal attention

mechanisms.

The results, as shown in Table 1, clearly indicate that our method delivers state-of-the-art

performance when compared to other baseline models. Additionally, the qualitative results for our CVP

model on the KTH dataset can be observed in Fig. 3.

Figure 3. Figure represents qualitative results of our CVP model on the KTH

dataset. The number of context frames used in the above setting is 4 for all three

sequences. Every   predicted future frame is shown in the �gure.

BAIR Robot Push dataset: The BAIR Robot Push dataset is characterized by highly stochastic video

sequences. In our study, we adhered to a baseline setup[38] with three main experimental settings: 1)

using only one context frame to predict the next 15 frames, 2) employing two context frames to predict

14 future frames, and 3) utilizing two context frames to forecast the next 28 frames. The outcomes of

these approaches are summarized in Table 2.

As observed in Table 2, a trend emerges where increasing the number of frames predicted at a time

concurrently results in a degradation of prediction quality. This phenomenon is hypothesized to stem

4th

qeios.com doi.org/10.32388/DM98UZ 11

https://www.qeios.com/
https://doi.org/10.32388/DM98UZ


from an augmented disparity between the blocks of context frames and predicted future frames.

Speci�cally, consider the scenario where two context frames are designated as  , corresponding to 

  in the context of Eqn.1. Under the �rst experimental condition, where the model predicts a single

frame at a time, the future frame prediction block is represented as  , analogous to    in Eqn.1.

Conversely, in the second condition, where two frames are predicted simultaneously, the future frame

block extends to  , again paralleling   in the equation. This setup implies that in the former setting,

interpolation occurs between adjacent frames (i.e., the transition from   and  ), while in

the latter, interpolation spans a two-frame interval (i.e., the transition from    and from 

). The expanded interval in the second scenario is posited as the causative factor for the

observed reduction in predictive performance, particularly in con�gurations where   and  .

The results, as shown in Table 2, clearly indicate that our method delivers state-of-the-art

performance compared to other baseline models. Additionally, the qualitative results for our CVP model

on the BAIR dataset can be observed in Fig. 4.

Figure 4. Figure represents qualitative results of our CVP model on the BAIR dataset.

The number of context frames used in the above setting is two for both sequences.

Every   predicted future frame is shown in the �gure.

x0:2

x

x1:3 y

x2:4 y

→x0 x1 →x1 x2

→x0 x2

→x1 x3

k = 2 p = 2

6th
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BAIR ( ) FVD

LVT[53] 1 15 15 125.8

DVD-GAN-FP[32] 1 15 15 109.8

TrIVD-GAN-FP[33] 1 15 15 103.3

VideoGPT[54] 1 15 15 103.3

CCVS[55] 1 15 15 99.0

FitVid[56] 1 15 15 93.6

MCVD[38] 1 5 15 89.5

NÜWA[57] 1 15 15 86.9

RaMViD[41] 1 15 15 84.2

VDM[40] 1 15 15 66.9

RIVER[39] 1 15 15 73.5

CVP (Ours) 1 1 15 70.1

DVG[1] 2 14 14 120.0

SAVP[31] 2 14 14 116.4

MCVD[38] 2 5 14 87.9

CVP (Ours) 2 2 14 68.2

CVP (Ours) 2 1 14 65.1

SAVP[31] 2 10 28 143.4

Hier-vRNN[36] 2 10 28 143.4

MCVD[38] 2 5 28 118.4

CVP (Ours) 2 2 28 95.1

CVP (Ours) 2 1 28 85.1

64 × 64 p k #pred ↓
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Table 2. BAIR dataset evaluation. Video prediction results on BAIR ( ) conditioning on   past

frames and predicting   frames in the future, using models trained to predict   frames at at time.The

common way to compute the FVD is to compare 100 256 generated sequences to 256 randomly

sampled test videos. Best results are marked in bold.

Human3.6M dataset: Similar to the KTH dataset, the Human3.6M dataset features actors performing

distinct actions against a static background. However, the Human3.6M dataset distinguishes itself by

o�ering a greater variety of distinct actions within its videos and providing three-channel video

frames, in contrast to the single-channel frames of the KTH dataset. For evaluating the Human3.6M

dataset, we employed a similar setup to that used for the KTH dataset, where 5 frames are provided as

context, and the model predicts the subsequent 30 frames based on these context frames. The results of

this evaluation are summarized in Table 3.

An analysis of Table 3 reveals that our model, with its unique approach, requires a signi�cantly lower

number of frames for training, needing only a total of 6 frames per block to yield results that are

considerably better than those of the baselines.

The results, as presented in Table 3, unequivocally demonstrate that our method outperforms other

baseline models, establishing a new state-of-the-art on the Human3.6M dataset. Furthermore, the

qualitative e�cacy of our CVP model on the Human3.6M dataset is illustrated in Fig. 5, showcasing the

model’s ability to e�ectively capture and predict the dataset’s varied actions.

64 × 64 p

pred k

×
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Figure 5. Figure represents qualitative results of our CVP model on the Human3.6M dataset. The number

of context frames used in the above setting is 4 for all three sequences. Every   predicted future frame is

shown in the �gure.

Human3.6M p FVD

SVG-LP[35] 5 10 30 718

Struct-VRNN[51] 5 10 30 523.4

DVG[1] 5 10 30 479.5

SRVP[50] 5 10 30 416.5

Grid keypoint[52] 8 8 30 166.1

CVP (Ours) 5 1 30 144.5

Table 3. Quantitative comparisons on the Human3.6M dataset. The best results under each metric are

marked in bold.

4th

k #pred ↓
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UCF101 dataset: The UCF101 dataset presents a greater level of complexity compared to the KTH or

Human3.6M datasets, owing to its substantially higher number of action categories, diverse

backgrounds, and signi�cant camera movements. Notably, we only use information from the context

frames for our frame-conditional generation task. No extra information, like class labels, was used for

the prediction task. In evaluating the UCF101 dataset, we adopted an approach similar to that used for

the Human3.6M dataset, where 5 context frames are provided, and the model is tasked with predicting

the next 16 frames based on these. The outcomes of this evaluation are detailed in Table 4.

An examination of Table  4 reveals that our CVP model surpasses the performance of other baseline

models, thereby setting a new benchmark for the UCF101 dataset. Additionally, the qualitative

performance of our CVP model on the UCF101 dataset is depicted in Fig. 6. This illustration showcases

the model’s pro�ciency in accurately capturing and predicting the diverse range of actions featured in

the dataset.
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Figure 6. Figure represents qualitative results of our CVP model on the UCF dataset. The number of

context frames used in the above setting is 5 for all three sequences. Every   predicted future frame is

shown in the �gure.

UCF101 [ ] FVD

SVG-LP[35] 5 10 16 1248

CCVS[55] 5 16 16 409

MCVD[38] 5 5 16 387

RaMViD[41] 5 4 16 356

CVP (Ours) 5 1 16 245.2

Table 4. Video prediction results on UCF ( ), predicting 16 frames. All models are conditioned

on 5 past frames.

4th

5 → 16 p k #pred ↓

128 × 128
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6. Ablation Studies

In this section, we present a series of ablation studies conducted to ascertain the impact of various

components in our proposed methodology. These studies focus on three primary aspects: the

modi�cation of the noise schedule denoted as  , the variation in the number of sampling steps, and

the exploration of di�erent strategies for sampling the timestep  . Our experimental framework utilizes

the KTH dataset for these evaluations.

The outcomes of these experiments are systematically tabulated in Table 6, o�ering a comprehensive

view of the results. The key insights derived from these ablation studies are threefold. Firstly, our

analysis underscores the criticality of sampling the timestep   from a uniform square root distribution,

speci�cally  . This approach appears to signi�cantly in�uence the model’s performance.

Secondly, regarding the noise schedule  , we �nd that the optimal formulation for the task of video

prediction is given by  . This particular noise schedule is characterized by a zero initial

and �nal noise level, with a peak near  . Such a con�guration is advantageous for our application.

Thirdly, our results, as detailed in Table 6, indicate that an increase in the number of sampling steps

beyond 25 does not substantially improve the outcome. Our method outperforms MCVD by producing

higher-quality frames in just 25 sampling steps, a 75% reduction compared to its 100 steps. This

e�ciency is attributed to our CVP method, which retains information from preceding frames,

eliminating the need for regeneration from a Gaussian noise vector. Refer to the Table  5 for more

details.

In summary, these ablation studies provide valuable insights into the dynamics of our model under

varying conditions, highlighting the importance of speci�c parameter settings and o�ering guidance

for future research directions.

g(t)

t

t

t ∼ U[0, 1]
− −−−−

√

g(t)

g(t) =
−tlog (t)

2√

t = 0
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Method Sampling(Steps/Frame) Time Taken(hrs)

MCVD 100 2

RaMVID 500 7.2

Ours 25 0.45

Table 5. Comparison with baselines on sampling steps and sampling time required for BAIR robot push

dataset.
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KTH
Noise Sampling

FVD

Schedule( ) steps Distrbution

CVP Model Ablations

- 25 348.2

25 278.2

25 237.7

25 240.7

25 208.4

25 209.6

25 187.8

25 190.4

25 140.6

5 165.7

10 144.3

50 139.4

Table 6. Ablation study: Video prediction results on KTH ( ), predicting 30 frames. All models

condition on 4 past frames on 256 test videos. The method with settings marked with   is reported in the

main paper.

7. Limitation

While our method demonstrates promising results in video prediction, it is important to acknowledge

its limitations to guide future research and application development.

A primary limitation of our approach is its reliance on a limited context frame window for predicting

the next frame. Speci�cally, when a context vector, denoted as  , comprising 4 video frames is used,

the prediction of the subsequent frame is entirely dependent on this four-frame window. This model

architecture performs adequately in scenarios involving uniform video sequences. However, its e�cacy

t

↓

g(t)2–√

U[0, 1]

sin(πt) U[0, 1]

sin(πt) U[0, 1]
− −−−−

√

tsin(πt) U[0, 1]

tsin(πt) U[0, 1]
− −−−−

√

t (1 − t)
− −−−−−

√ U[0, 1]

t (1 − t)
− −−−−−

√ U[0, 1]
− −−−−

√

−tlog(t) U[0, 1]

−t log(t)∗ ∗ ∗U[0, 1]
− −−−−

√ ∗

−tlog(t) U[0, 1]
− −−−−

√

−tlog(t) U[0, 1]
− −−−−

√

−tlog(t) U[0, 1]
− −−−−

√

64 × 64

∗

x0:4
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diminishes in a setting that requires more context to predict the future frame. Addressing this

limitation requires a more adaptive approach that can handle varying contextual information, a

challenge we have earmarked for future research.

Another constraint lies in the computational e�ciency of our model. Currently, it necessitates multiple

steps to sample a single frame, which could become a signi�cant bottleneck, especially when a larger

number of frame predictions are required. Although our method is more e�cient in terms of the

number of steps needed for frame sampling compared to di�usion-based counterparts, further

optimization is necessary to reduce the computational overhead associated with this process.

Additionally, our experimental setup was constrained by the computational resources available to us.

The model was developed and tested using just two A6000 GPUs. This limitation raises questions about

the potential improvements that could be achieved with a more powerful computational setup. A larger

model with an increased number of parameters, trained on more advanced hardware, could potentially

unveil further advancements in video prediction capabilities. We recognize this as an important area

for investigation and encourage labs with more substantial resources to explore this avenue.

In summary, while our model represents a signi�cant step forward in video prediction, these

limitations highlight crucial areas for future research and development, paving the way for more

robust and versatile video prediction models.

8. Broader Impact

We used this method for video prediction; however, such modeling can make a major impact on many

computational photography tasks. Here, one end of the CVP can be a corrupted image and the other end

be a clean ground truth image. Additionally, a larger model with an increased number of parameters,

trained on more advanced hardware, could potentially have advanced video prediction capabilities. This

can lead to a signi�cant increase in the creation of high-quality arti�cially generated content, further

compounding the problems of fake content. However, a positive contribution of this approach can help

with its application in autonomous driving.

9. Conclusion

In this work, we have presented a novel model class designed speci�cally for video representation,

marking a signi�cant advancement in the �eld of video prediction tasks. Our comprehensive

experimental evaluations across various datasets, including KTH, BAIR, Human3.6M, and UCF101, have
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not only validated the e�ectiveness of our model but also established new benchmarks in state-of-the-

art performance for video prediction tasks.

A notable aspect of our approach is its e�ciency in terms of the required number of context and future

frames for training. Moreover, our model’s continuous video process capability uniquely operates

without the need for additional constraints such as temporal attention, which are typically employed to

ensure temporal consistency. This aspect of our model underscores its inherent ability to maintain

temporal coherence, further simplifying the video prediction process while enhancing its e�ectiveness.

In conclusion, the innovations introduced in our model o�er promising directions for future research

in video representation and prediction. The achievements demonstrated in this paper not only

contribute to the advancement of video prediction methodologies but also open avenues for exploring

more e�cient and e�ective ways of video representation in various real-world applications.

Appendix A. Extended derivations of Eq. (8)

Below is a derivation of Eq. (8), the reduced variance variational bound for our CVP models.

L = [log ]Eq

( )pθ x0:T

q ( | )x0:T−1 xT

= [− logp ( ) − log ]Eq x0 ∑
t≥1

( | )pθ xt xt−1

q ( | )xt−1 xt

= [− logp ( )Eq x0

− log ⋅ ]∑
t≥1

( | )pθ xt xt−1

q ( | , , )xt xt−1 x0 xT

q ( | , )xt x0 xT

q ( | , )xt−1 x0 xT

= [− logp ( ) − logEq x0 ∑
t≥1

( | )pθ xt xt−1

q ( | , , )xt xt−1 x0 xT

− log ( | , )]
q ( | , )xT x0 xT

q
x0 x0 xT

= [− logp ( ) − log ]Eq x0 ∑
t≥1

( | )pθ xt xt−1

q ( | , , )xt xt−1 x0 xT

= [− logp ( )Eq x0

− log ⋅ ]∑
t≥1

( | , )pθ xt xt−1 x0

q ( | , , )xt xt−1 x0 xT

p ( | )x0 xt−1

p ( | )x0 xt

= [− logp ( ) − logEq x0 ∑
t≥1

( | , )pθ xt xt−1 x0

q ( | , , )xt xt−1 x0 xT

− log ]
p ( | )x0 x0

p ( | )x0 xT

= [− log − log ]Eq

p ( )x0

p ( | )x0 xT

∑
t≥1

( | , )pθ xt xt−1 x0

q ( | , , )xt xt−1 x0 xT
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Both    and    are observed variable hence, we ignore the �rst term in the RHS. We focus on the

second term for training the parameters for our CVP models. Therefore, the resulting loss function

becomes,

Appendix B. Extended derivation for Eq. (2)

Using Eq. (2) we can write the term   as follows,

Considering the term   we simplify further,

if   is in�nitesimally small we can write  . Using this property we can rewrite   as,

Now, Subtracting  (Eq. (16)) and  (Eq. (1)) we get,

Focusing on the term  . Here,  . Hence, we can write,

Substituting this result back to Eq. (17) we get the following,

Rearranging the terms we get the Eq. (2).

x0 xT

L(θ) =: (q ( | , x, y) ∥ ( | , )) .∑
t≥1

DKL xt xt−1 pθ xt xt−1 x0

xt+Δt

xt+Δt = (1 − (t + Δt))x + (t + Δt)y

−
(t + Δt) log(t + Δt)

2–√
zt+Δt

(t + Δt) log(t + Δt)

(t + Δt) log(t + Δt) = t(1 + ) log t(1 + ) .
Δt

t

Δt

t
(14)

Δt (1 + ) → 1Δt
t

xt+Δt

= (1 − (t + Δt)) x + (t + Δt) y −xt+Δt

t log(t)

2–√
zt+Δt (15)

xt+Δt xt

− = (y − x) Δt − ( − )xt+Δt xt

t log(t)

2–√
zt+Δt zt (17)

( − )zt+Δt zt , ∼ N (0, I)zt zt+Δt

( − ) = zwhere,~z ∼ N (0, I)zt+Δt zt 2–√ (18)

− = (y − x) Δt − t log(t)z.xt+Δt xt (19)
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Module Type Num Inputs Num Outputs

  Conv2D 128

  DownBlock2D 128 128

  DownBlock2D 128 128

Encoder DownBlock2D 128 256

  DownBlock2D 256 256

  AttnDownBlock2D 256 512

  ResnetDownsampleBlock2D 512 512

  ResnetUpsampleBlock2D 512 512

  AttnUpBlock2D 512 512

  UpBlock2D 512 256

Decoder UpBlock2D 256 256

  UpBlock2D 256 128

  UpBlock2D 128 128

  Conv2d 128

Table 7. U-NET: We utilize Hugging face di�users library for our U-Net implementation. We utilize

‘positional’ type for timestep embeddings. We utilize 4 layers per block. The target resolution for KTH,

BAIR and Human3.6M is kept at   and   for UCF101 dataset. Additionally, we keep the

number of timesteps   as 100 given our compute resources.   denotes the number of channels present

in the frame.   is the number of initial context frames based on which next frame is predicted,i.e., 

.

Appendix C. Training Details

For the optimization of our model, we harnessed the compute of two Nvidia A6000 GPUs, each

equipped with 48GB of memory, to train our CVP model e�ectively. We adopted a batch size of 64 and

n × c

n × c

64 × 64 128 × 128

T c

n

→x0:n x1:n+1
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conducted training for a total of 500,000 iterations. To optimize the model parameters, we employed

the AdamW optimizer. Additionally, we incorporated a cosine decay schedule for learning rate

adjustment, with warm-up steps set at 10,000 iterations. The maximum learning rate (Max LR) utilized

during training was 5e-5.
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Footnotes

1 Navigate to the webpage for video results.
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