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Commentary

No Qualia? No Meaning (and no AGI)!

Marco Masi1

1. Independent researcher

The recent developments in arti�cial intelligence (AI), particularly in light of the impressive

capabilities of transformer-based Large Language Models (LLMs), have reignited the discussion in

cognitive science regarding whether computational devices could possess semantic understanding

or whether they are merely mimicking human intelligence. Recent research has highlighted

limitations in LLMs’ reasoning, suggesting that the gap between mere symbol manipulation

(syntax) and deeper understanding (semantics) remains wide open. While LLMs overcome certain

aspects of the symbol grounding problem through human feedback, they still lack true semantic

understanding, struggling with common-sense reasoning and abstract thinking. This paper argues

that while adding sensory inputs and embodying AI through sensorimotor integration with the

environment might enhance its ability to connect symbols to real-world meaning, this alone would

not close the gap between syntax and semantics. True meaning-making also requires a connection

to subjective experience, which current AI lacks. The path to AGI must address the fundamental

relationship between symbol manipulation, data processing, pattern matching, and probabilistic

best guesses with true knowledge that requires conscious experience. A transition from AI to AGI can

occur only if it possesses conscious experience, which is closely tied to semantic understanding.

Recognition of this connection could furnish new philosophical insights into longstanding practical

and philosophical questions for theories in biology and cognitive science and provide more

meaningful tests of intelligence than the Turing test.

Introduction

Theories of language and meaning are not new. One could begin with Ferdinand de Saussure’s

fundamental insights about the meaning of signs and words as arising from their relationships with

other signs and words. The structure of language is based on these relationships and di�erences,
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without which meaning could not emerge. This approach laid the foundation for modern structural

linguistics and semiotics.

Later, Ludwig Wittgenstein, in his masterpiece of logical positivism, Tractatus Logico-Philosophicus,

emphasized that meaningful statements must be rooted in the clarity of concepts within a logical

system of propositions. He described language as mirroring the world of facts (not things), developing

a “picture theory” of language as a description of our experiences of these facts. The later

Wittgenstein departed from the Tractatus in his Philosophical Investigations, realizing that language

derives its meaning not only from logical structures but also from its contextual dependency.

Language mirroring the world and facts is speci�c to social and practical contexts, and the meanings it

conveys must have inherent �exibility and vagueness.

Noam Chomsky’s theory of “transformational-generative grammar” championed the view that

language is a product of the mind, an idea based on a biolinguistic conception, in which the human

ability to use complex forms of language is pre-wired in the brain, in a “language acquisition device.”

This premise led him to hypothesize the existence of universal grammar, with core syntactic linguistic

knowledge being genetically inherited.

Saussure’s, Wittgenstein’s, and Chomsky’s theories are just a few examples of the many competing

theories that have emerged over the years. However, a de�nitive answer to the question of the nature

of language and meaning remains elusive.

Similar questions arose in the �eld of IT. Shortly before Wittgenstein published his Investigations,

Claude Shannon, the modern father of information theory, was contemplating the notion of

information. What does the word “information” mean? The etymology of words is often more

insightful than our contemporary understanding of them. The word “information” derives from the

Latin “informare,” which suggests that something has been formed or shaped–by molding, carving,

or puncturing an object into a pattern or by modifying its physical, internal, or external state. It is

about forming or changing something, making it a medium for symbols that convey a message,

expressing our thoughts to someone who can understand those symbols and refer to them

meaningfully. Whether it is letters and words on paper or bits in a computer, information is always

about forming patterns or modifying internal states in objects.

On the other hand, the information we receive also “forms” and “shapes” ideas in our minds. There

is, therefore, an important distinction to be made between physical information and semantic

information. Physical information conveys a message in the form of symbols, signs, and tokens, and
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in communication theory, it is quanti�ed by the Shannon information measure. However, a sequence

of symbols and its quanti�cation in bits are, in and of themselves, not meaningful unless a mind

apprehends them and “collapses” them into a meaningful semantic whole. Physical information has

no meaning whatsoever if there is no mind receiving the message and translating it into coherent

thoughts.

Shannon was acutely aware of this distinction. In his seminal 1948 paper, “A Mathematical Theory of

Communication,” he pointed out: “The fundamental problem of communication is that of reproducing at

one point either exactly or approximately a message [a sequence of discrete symbols] selected at another

point. Frequently the messages have meaning; that is they refer to or are correlated according to some system

with certain physical or conceptual entities. These semantic aspects of communication are irrelevant to the

engineering problem”[1].

In physics and statistical theory, several other de�nitions of information exist. However, most of

these information measures are closely related to Shannon information, and none of them quantify

semantic content.

Unlike a mathematical or physical theory of communication, semantic information concerns the

meaning of a message. The idea that meaning cannot be reduced to pattern recognition alone and that

a physical representation of something is fundamentally di�erent from the thing being represented

becomes intuitively evident with the famous Gestalt �gures. For example, the popular Rubin’s vase-

face �gure, where our mind switches between the visual interpretation of a vase and two faces, shows

how patterns in-formed into material structures (the �gure on a piece of paper) have no meaning in

and of themselves. A meaning-making mind must convert physical information into a coherent

semantic whole and eventually even make a choice between mutually exclusive ones. It is a cognitive

process that highlights how the signi�cance of things isn’t inherent in the things themselves “out

there” but rather emerges as a perceived content in us.

For about three decades, these questions were largely ignored as irrelevant philosophical subtleties.

Unfortunately, physical information was often con�ated with semantic information, and both were

simply referred to as “information” without further distinctions. However, the progress of IT, the

ever-increasing (physical) information processing power of computers, the advent of AI, and new

�ndings in neuroscience have forced us to reconsider these simplistic assumptions. Questions about

the nature of consciousness and the mind have resurfaced, and the relationship between

computational and mental states has become a matter of debate.
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In 1980, one of the most debated arguments against computationalism came from Searle, who

formulated his celebrated “Chinese Room Argument.” This thought experiment was designed to

challenge the notion that a Turing machine–and, by extension, any (non-quantum) computer or AI

system running an algorithm–can truly understand something simply by processing symbols[2].

Searle, who does not understand Chinese, imagined himself locked in a room with a set of rules (in

English) for manipulating Chinese symbols. By receiving Chinese characters as input and following

the rules to produce the correct output in Chinese, he could mimic a native Chinese speaker, though

without understanding what the Chinese symbols actually referred to–that is, what they meant. No

matter how perfect a simulation of understanding might be, it does not imply genuine comprehension

of the language. One is merely following the syntactic rules of a program without any grasp of

meaning (semantics).

By highlighting the distinction between syntax (symbol manipulation) and semantics (meaning), this

thought experiment demonstrates the possibility of correctly processing symbols without

understanding what they mean. Thus, it raises the question of whether machines, while capable of the

former, are also capable of the latter. There is only the signi�er without the signi�ed, in the sense that

a Turing machine manipulates symbols according to syntactic rules (an algorithm) without having

either an abstract conceptual designation or any real-world referents.1

Based on these arguments, Searle introduced the distinction between “strong AI”–nowadays referred

to as “Arti�cial General Intelligence” (AGI)–and “weak AI”[3]. There is no consensus on what exactly

“general intelligence” means. Here, as will become clear throughout this essay, general intelligence

refers to a system possessing what I like to call “semantic awareness”–that is, a form of cognition

capable of reasoning and generalization abilities based on a genuine semantic comprehension (in a

sense that will be clari�ed later) of language, data, and, eventually, sensory inputs. Such a system

would go beyond the mere emulation currently achieved by symbol manipulation, best-�t algorithms,

or next-token predictions.

Nobel laureate Roger Penrose also expressed his doubts in his seminal book “The Emperor's New Mind:

Concerning Computers, Minds, and the Laws of Physics” (Penrose, 1989), where he laid out his argument

that the mind can’t be equated with a Turing machine and emphasizes the role of non-algorithmic

processes. His ideas were in�uenced by Gödel's incompleteness theorems, which demonstrate the

existence of true mathematical statements that cannot be proven algorithmically within any formal

system. While he does not provide a singular, de�nitive explanation, Penrose contends that conscious
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understanding isn’t computational. The quality of understanding requires awareness and arises from

the conscious mind's ability to perceive and interpret reality in ways that transcend purely

mechanistic or computational systems, suggesting that consciousness involves non-algorithmic

processes that are tied in particularly to quantum mechanics.[4]

In the 1990s, Searle’s thought experiment and Penrose’s argument were reinforced by the so-called

“symbol grounding problem,” discussed by Harnad[5]. This issue highlights the di�culty of

explaining how symbols in computational systems–whether words, numbers, streams of bits, signals,

or more complex representations–can carry meaning without being grounded in sensory experiences

or real-world interactions. A gap remains between functional symbols and number-crunching

processes on the one hand and meaningful mental states on the other. The divide between syntax and

semantics persists.

The question becomes even more complex when we consider that symbols do not always refer to

concrete objects or real-world phenomena but can also represent abstract and intangible concepts like

“beauty,” “justice,” or even the concept of “abstraction” and “meaning” itself.

Harnad raises the issue that we do not really know what “meaning” itself is. We cannot simply assume

that semantics can be reduced to a form of computation, as computation follows speci�c syntactic,

logical, and mathematical rules based on symbol manipulation–not their meanings. He referred to

this as the “symbol/symbol merry-go-round”–the idea that symbols can refer only to other

meaningless symbols. Avoiding this in�nite regress requires a bridge between those representations

and the things or concepts to which they refer.

Even for a Turing machine that convincingly passes the Turing test–that is, its cognitive processes are

indistinguishable from those of a human, the question would remain: Does it meaningfully connect its

internal representations to their referents and its causal relationships, or is it mere mimicry, without

any real semantic awareness of what they mean? Does it truly understand? What does it mean to

“truly understand”? Harnad realized that “there is a di�erence between inert words on a page and

consciously meaningful words in our heads”[5][6].

Thus, following mechanical rules in symbol manipulation is one thing, and what humans mean by

“understanding,” “knowing,” or “comprehension” is another. Semantics remains outside the formal

description of any computational model.
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The question, then, is: If symbols are meaningless in and of themselves, what generates meaning?

While Shannon’s notion of physical information is conceptually and mathematically well-de�ned, it

is unclear how to de�ne semantic information and even less clear how minds convert the former into

the latter. How do neural activity patterns supposedly constitute and implement meaning? How do

symbols and signs encoded in language elicit meaning in the brain through their reciprocal exchange?

It seems that a mind is required as an interface between Shannon information (which refers to

physical patterns or states in a medium) and semantic information (which meaningfully grounds the

symbol to its referent in a much less tangible mental domain).

The most promising approach to answering these questions and aiming at “naturalizing meaning”

seemed to be representationalism–an attempt to explain mental states and their contents in terms of

representations and intentionality. However, decades of research in cognitive science and

philosophical debates aimed at connecting mental processes that manipulate representations of

external reality with cognition, perception, and consciousness have led to little substantial progress.2

Currently, non-representational theories emphasizing cognition as deeply rooted in bodily

experiences and actively engaged with the environment are receiving more attention. (We will address

these in the concluding section.) The advent of Large Language Models (LLMs) and their limitations

suggests that this must be the case. However, I will argue that while embodiment might provide

valuable insights into the relationship between computation, symbols, representations, and sense-

making semantics, it can, at best, be only a necessary but not su�cient condition. Phenomenal

consciousness and its whole psychological dimension cannot be sidestepped, as it is inextricably

intertwined with meaning-making.

Meaning in a Time of Large Language Models

With the advent of transformer-based Large Language Models (LLMs), particularly in their popular

form as ChatGPT, these questions elicited renewed interest. LLMs are designed to understand and

generate human-like text based on vast amounts of data. Using deep learning neural networks, they

predict and generate word sequences by learning patterns, grammar, context, and semantics from

large datasets. Trained on diverse sources, including books, websites, and conversations, LLMs can

answer questions, complete texts, translate languages, summarize information, and engage in natural

dialogue. We have all been impressed by their abilities, which seem to suggest that they can reason

e�ectively and possess a degree of semantic understanding.3 The deep learning architecture
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underpinning these models is the transformer, whose key feature is its ability to e�ectively process

and understand long-range dependencies in input data. Key components of transformer-based LLMs

include: the self-attention mechanism (which weights the importance of di�erent tokens in a

sequence relative to one another); positional encoding (accounting for the order and relative position

of words); multi-head attention (using multiple attention “heads” to capture di�erent types of

relationships between words in parallel, thereby enhancing the model’s �exibility in understanding

context); feedforward neural networks (applying neural networks to re�ne each token’s

representation based on the context derived from the attention mechanism); and layer normalization

and residual connections (stabilizing training and improving information �ow through the network,

often reinforced by learning from human feedback).

In simpler terms, transformers in LLMs process and generate text by learning the probability

distribution of long-range sequences of words and predicting the next word based on those previously

generated. The transformer architecture has proven to be exceptionally powerful, especially in tasks

that seem to require some level of semantic understanding. This fact challenges the notion that

symbol manipulation alone is insu�cient for cognitive states involving deep understanding.

Do LLMs truly understand? Do they possess a semantic understanding beyond imitation? Do they

ground symbols as humans do?

While LLMs perform surprisingly well, nobody knows exactly why. Their internal complexity is such

that they must be regarded as a black box. The issue is further complicated by the possibility of

distinguishing di�erent forms of “grounding.” Modern LLMs, as arti�cial neural networks, compute

over high-dimensional vectors rather than discrete symbols, making it more accurate to speak of a

“vector grounding problem”[7]. Millière and Mollo distinguish �ve notions of grounding: referential

(how linguistic items refer to real-world objects), sensory-motor (such as linking textual and visual

representations), relational (how words relate to other words through de�nitions), communicative

(the establishment of an intersubjective, rule-based language to communicate meaning and ensure

mutual understanding), and epistemic (the relationship between linguistic expressions and factual

knowledge-based data). Using an analogy with Chalmers’ distinction between the easy and hard

problems of consciousness[8], the hard problem of symbol grounding pertains to referential

grounding. The other forms of grounding are, so to speak, “easy” in the sense that they can be

addressed through a more or less sophisticated representational theory. Harnad’s “symbol/symbol

merry-go-round” relates to the referential grounding.
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However, Millière and Mollo argue that LLMs can partially overcome the referential grounding

problem, thereby acquiring more than interlinguistic functions through human �ne-tuning. This

�ne-tuning endows LLMs with normative, world-involving functions that allow them to develop

intrinsically meaningful representations of the world–going beyond mere word associations by

adding an epistemic layer that connects language to world references. Through human feedback,

LLMs gain knowledge about how the world operates, which enables them to form world-model

representations rather than purely linguistic ones, even without embodiment. In this way, LLMs at

least partially address the referential grounding problem.

Yet, these world-involving functions are ultimately human-induced; the human factor is the bridge

between language and the world. Human feedback via supervised learning provides modern LLMs

with a form of referential grounding that aligns vector representations of words with real-world

referents, endowing them with intrinsic meaning that, once �ne-tuned, may no longer rely directly

on human input. The only way for LLMs to achieve any form of referential grounding is through the

intervention of a semantically grounded human agent who sets the normative framework, thereby

guiding the non-grounded agent in establishing a world model–that is, a world-system of referents.

Thus, even if this approach succeeds, it merely shifts the symbol grounding problem from the

machine to the human agent: If an arti�cial neural network cannot achieve symbol (or vector)

referential grounding, how are those biological neural networks inside our skulls able to do so?

Moreover, empirical evidence suggests that there is not anything or “anyone” in an LLM that

genuinely “understands” beyond best-guessing and mimicry. Recent research has shown that LLMs

can deviate in their responses when presented with irrelevant information, with performance

declining when an unrelated sentence is added to a problem. This does not alter the problem’s

semantic content but appears to “distract” the model[9]. The illusion of “reasoning” displayed by

LLMs relies largely on recognizing patterns with a strong token bias rather than true comprehension;

this also accounts for their limited generalization ability[10]. Further studies reveal that LLMs lack

genuine mathematical reasoning; instead, they replicate logical steps seen in training data without

understanding. For instance, rephrasing the same question can yield di�erent answers, and adding

redundant information irrelevant to the solution signi�cantly lowers their mathematical reasoning

performance. A slight increase in task di�culty can similarly lead to notable performance drops[11].

LLMs tend to translate statements into operations (e.g., interpreting “discount” as “multiplication”)

without understanding the underlying semantics. This behavior aligns more closely with probabilistic
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pattern matching than with actual logical reasoning. Such limitations are evident even in basic grade-

school math problems and are expected to become more apparent in complex mathematical

assessments. That LLMs do not go much beyond sophisticated forms of “semantic-free“ imitation is

also suggested by the fact that they are inherently limited by their ability to solve problems that

signi�cantly di�er from those they saw during their training session.4 Additionally, the idea that

LLMs exhibit “emergent abilities”–skills that are absent in smaller models and that appear only in

larger ones–is also under scrutiny. These abilities may be �ctitious and not an inherent result of

scaling models up in complexity[12].

Other investigations have highlighted AI’s limitations in reasoning, as demonstrated by LLMs’

failures in seemingly simple tasks such as counting words or reversing a list[13]. This raises the

question of why LLMs are generally e�ective in multi-step reasoning yet struggle with surprisingly

trivial problems. Chain-of-thought prompting, which involves generating intermediate reasoning

steps before arriving at a �nal output, exhibits characteristics of both memorization reasoning (in

which the model mimics patterns learned from training data) and probabilistic reasoning (in which

the model selects the most probable output based on the input)[14]. Further studies have examined

how transformer LLMs tackle compositional tasks that require breaking problems into sub-steps and

synthesizing those steps into precise answers. It turns out that they often simplify these tasks by

matching linearized subgraphs–training examples that mirror the computations needed to solve test

examples–without developing systematic problem-solving skills. Moreover, abstract multi-step

reasoning problems based on autoregressive generation (the statistical prediction of the next

sequence value based on previous values) tend to deteriorate rapidly as task complexity increases[15].

This suggests that LLMs’ abilities scale asymptotically: Beyond a certain threshold, adding more

neural layers, faster processing, increasing training data, enhancing supervised reinforcement

learning, and further �ne-tuning or prompt engineering do not signi�cantly improve their

performance.5

Additionally, unlike humans, LLMs cannot correct their erroneous guesses[16]. This aspect is crucial,

as one might argue that humans are prone to similar �aws. However, humans can recognize their

logical, inferential, and deductive mistakes, which allows them to restart the problem-solving process

with di�erent premises or methodological approaches. This capacity to overcome biases and reach the

desired result is possible only because of a semantic awareness that extends beyond mere symbol
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manipulation, enabling individuals to identify incorrect or nonsensical outcomes even if they do not

know the correct answer.

After all, it does not require complex scienti�c research to recognize the shortcomings of LLMs in

reasoning, semantic competence, and the understanding of inherent meaning. Sustained use and

interaction often reveal interesting insights.6 For example, if one were to ask how many U.S. states

have names beginning with the letter K, one might be told that there are four: Kansas, Kentucky,

Kansas, and Kentucky. These issues similarly a�ect generative AI. If instructed to create a picture with

no elephant in the room, it might repeatedly generate images featuring an elephant in a room, thereby

demonstrating a failure to grasp negation (the “not-questions”). When asked to depict someone

writing with their left hand, the model may refuse to comply, always producing an image of a right-

handed person instead. This makes sense if we keep in mind that the model makes probabilistic

guesses rather than semantic ones, as it has been trained predominantly on images of right-handed

individuals.

Similarly, self-driving cars’ ability to classify objects and people is impressive, yet countless instances

reveal their lack of comprehension regarding what they are “seeing” (e.g., distinguishing between real

people on the street and �ctional �gures on a billboard). Classifying and categorizing are not the same

thing as understanding. The critical questions are whether a car can e�ectively navigate without a

semantic understanding of its environment–recognizing the street, cyclists, tra�c lights, and so on–

and whether a level V self-driving car could achieve comprehension that even humans might struggle

to acquire without conscious experience.

It could be argued that further �ne-tuning and additional training sessions might resolve these issues

and reduce the error rate. After all, humans also make mistakes. However, this is not the decisive

point. The crux of the matter is that when the model fails, it can do so spectacularly, sometimes

producing absurd answers that clearly illustrate a lack of genuine understanding.

On the other hand, it is also true that humans are not entirely immune to similar senseless perceptual

hallucinations or ludicrous cognitive failures, particularly in individuals with neurological disorders.

Oliver Sacks’s best-selling book “The Man Who Mistook His Wife for a Hat” (Sacks, 1985) compiles case

studies of such rare but real phenomena. However, the question remains whether such pathologies

can be addressed without consciousness. Neural networks �t data and classify information, whereas

humans integrate sensory data into a uni�ed experience—what we might call a “perception of

meaning”—that represents a semantic whole, no matter how senseless it may appear. Humans can
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overcome these hallucinations precisely because of conscious experience, while machines are

con�ned to sense-making that cannot go beyond relational systems and statistical inferences based

on abstract tokens.[17]

Overall, we are beginning to realize that despite billions being invested in research and development,

LLMs continue to hallucinate, fabricate information, and lack true representation of the world. They

excel in deep learning but struggle with generalized abstract reasoning, and they have di�culty

understanding wholes in terms of their parts.7 Though we are dealing with a black box, we know it is

ultimately a Turing machine working with symbols according to logical, syntactic, context-based, or

probabilistic rules in someone else’s natural language. These symbols stand for external referents

grounded in the subjective experiences of someone else–experiences that the symbols themselves

cannot convey to others.

While LLMs’ cognitive skills are undoubtedly impressive and surprising, it is becoming increasingly

evident that there is still no true reasoning or common-sense knowledge that extends beyond

sophisticated Chinese room machinery. There is no “ghost in the machine” with semantic awareness;

fundamentally, the machine does not understand a thing.

If even the most advanced AI can pass a molecular biology exam yet remains far from achieving

human intelligence–or even the intelligence of a cat or dog–something might be fundamentally

�awed in our understanding of what intelligence truly is. Alternatively, we might be overlooking a

crucial aspect of our nature as living beings.

Meaning and Qualia

Following Wigner’s famous question about “The Unreasonable E�ectiveness of Mathematics in the

Natural Sciences”[18], for reasons we are still struggling to fully comprehend, mathematics appears to

mirror aspects of the world. At least in physics, chemistry, and, to some extent, biology, it serves as a

descriptive framework for physical reality. Perhaps the question is not so much why mathematics is

e�ective but why it mirrors some aspects of the world at all.

One might ask a similar question in the domain of AI: If LLMs lack a true understanding of what they

are doing, why are they so unreasonably e�ective?

It is challenging to discern precisely how modern AI implementations–essentially black boxes–

operate, given that they employ millions of neurons and billions of weighting parameters and
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manipulate trillions of numbers, vectors, matrices, and tensors. As of the time of this writing, there is

no de�nitive answer. For now, we can only speculate.

For example, Wittgenstein might not have been entirely o�: Language, like mathematics, isn’t merely

a human cognitive creation unrelated to the organization of the world but, rather, might re�ect its

structure. We might conjecture that the statistical distribution of words is not solely tied to human

cognition but also o�ers a window into the conditional structure of the world as mediated through

human language. The patterns embedded in language might re�ect the patterns inherent in the world.

Linguistic patterns track real-world patterns, and which representational structure may be captured

within LLMs[19]. If so, given that LLMs are pattern matchers trained to “autocomplete” based on

complex relationships between vast numbers of tokens (representing properties of the world and their

interrelations), their e�ectiveness might be less surprising.

Nonetheless, while any mathematical or formal proposition acquires meaning only when it is

communicated from grounded semantic agents to other grounded semantic agents, one could go a

step further and suggest that all of what we perceive and conceptualize about the world is ultimately a

symbol, sign, token, or image within our cognitive awareness. This might be even less surprising to

the philosophical idealist, who posits that the world itself is an “idea” or symbolic expression. Such a

view aligns with certain Eastern philosophical and mystical theories in which the universe represents

the expression of a creative, transcendental “real-idea,” forming the foundation for all meanings,

signs, words, and human language[20].

Be that as it may, it is not necessary to venture into metaphysical speculations to capture some

essential aspects of how our sense-making cognitive processes emerge. The primary challenge here is

not conceptual or theoretical but, rather, the shift from a third- to �rst-person perspective.

In this respect, it might also be interesting to consider Harnad’s recent follow-up, which he

formulated in the form of a dialogue with ChatGPT-4[21]. According to Harnad, what ChatGPT lacks is

“a direct sensorimotor grounding to connect its words to their referents and its propositions to their

meanings.” Machines operate within the realm of symbol manipulation without any grounding in real-

world physical interactions and experiences; they lack the subjective and conscious dimensions of

understanding. He further suggests that the only solution is to embody AI models–that is, to ground

them–with sensory and motor outputs that allow them to interact with and learn from their

environment.
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However, he carefully distinguishes the symbol grounding problem from any allusion to the hard

problem of consciousness (or the “problem of qualia” or the “explanatory gap”[8]). The symbol

grounding problem concerns how symbols acquire meaning by linking them to their referents in the

real world or to concepts that enable understanding. In contrast, the philosophical issue of qualia

involves how neural processes give rise to the subjective experiences of “what it is like” to be in a

qualitative state of consciousness. The symbol grounding problem is about representation and

understanding in arti�cial systems, not about why the complex machinery in our brain supposedly

gives rise to subjective experiences.

Qualia–the introspectively accessible, subjective, phenomenal aspects of our conscious lives, such as

the bitterness and warmth of co�ee, the redness of an apple, the smell of freshly cut grass, or the

sharp pain from a paper cut–are not reducible to mere information processing. Our private

experiences of pleasure, pain, feelings, and emotions, along with sensory perceptions like seeing,

hearing, touching, smelling, and tasting, convey qualities of the world such as colors, sizes, and

shapes. These experiences are not merely concepts or abstract symbols in a quantitative database;

they are grounded in a qualitative experiential dimension.

Harnad’s insights are inspiring; however, in my view, he fails to close the circle. He begins by

associating meaning with “the subjective, felt experience of understanding,” the “phenomenological

aspect of what it feels like to mean or understand something”–elements that AI lacks, as it has no

“direct experiential grounding” or “direct sensorimotor experiences.” Yet, somewhat surprisingly, he

stops short of explicitly concluding that, for a machine to achieve what he terms “direct symbol

grounding” (and, ultimately, a state of AGI), it must be conscious.

Disentangling the symbol grounding problem from the hard problem of consciousness and then

reiterating that natural language must be grounded in real-world experiences is a misstep. This is

because the former is an aspect of the latter. The symbol grounding problem is itself “grounded” in

the problem of qualia and the explanatory gap. Asking how a symbol can be meaningfully connected to

what it represents without allowing the connection to be linked to phenomenal consciousness is a

form of philosophical self-censorship.

I submit that the gap between syntax and semantics is qualitatively much deeper than previously

assumed. Scaling alone will not bridge this gap. While embodied architectures could extend text-based

information to include sensory-based data with feature-detecting and abstracting capacities from
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real-world engagement, this would not transform Shannon-type sensory information into semantic

information, thereby grounding the ungrounded in any miraculous way.

Sensorimotor embodiment without qualia–that is, without phenomenal consciousness and its

sentient, subjective experiences–could, nonetheless, lead to more nuanced forms of non-human

intelligence. However, there is no reason to believe that replacing or augmenting the linguistic

symbols in an LLM super-dictionary database with a sensorimotor super-dictionary of pixels and

mathematical functions representing environmental sensory signals could provide genuine grounding

beyond syntactic computational understanding within an abstract categorical space. Names and verbal

descriptions require not only a sensorimotor embodiment but also a conscious experience of the

features they represent to be grounded in a semantic space. Vast data sets (textual, numerical, and/or

sensory), immense computing power, and any form of embodiment may be necessary, but it is hard to

believe they would be automatically su�cient to allow an AI system to gain a true understanding of

the properties of the real world with which it is engaging without having a subjective experience of the

very same properties. It will remain a “reasoning” based on complex classi�cation schemes that

formally represent relationships between things and phenomena but without actual understanding.

The result is still akin to a Turing machine or a “Chinese room mimicry” that will ultimately reveal its

limitations. Biological organisms’ meaning-making has an essential component that machines

fundamentally lack–a gap that information processing alone cannot bridge. To put it in Vallor’s

words: “We are more than e�cient mathematical optimizers and probable next-token generators”[22].

Meanwhile, taking a �rst-person perspective reveals that our semantics-based cognition is inherently

tied to conscious experience–always. We cannot truly understand colors, sounds, tastes, smells,

temperature, touch, or sight without having directly experienced seeing a color, hearing a sound,

tasting chocolate, smelling an odor, or touching an object. Is there a di�erence in “meaning”

between, say, listening to a symphony of Tchaikovsky and “knowing” it only in the form of a digital

transcription? An LLM might “know” everything textually about apples or the Fourier transform of a

sound signal, but there is no semantics to extract, as all this remains an abstract, multidimensional

vector representation de�ned by weighted numerical parameters. Without experiencing “what it is

like” to taste an apple or feel its texture or to be immersed in the chills and thrills of musical rapture,

it cannot achieve any form of symbol–or vector–grounding. Similarly, someone might explain all the

chemistry and physics of an H2O molecule, but you cannot grasp the essence of wetness until you have

felt the sensation of water yourself.

qeios.com doi.org/10.32388/DN232Y 14

https://www.qeios.com/
https://doi.org/10.32388/DN232Y


This leads us to Jackson’s famous knowledge argument[23]: Neurophysiologist Mary may have all the

physical information about color vision, but she still lacks knowledge if she has not experienced the

qualia of colors.

The question is: Can any physical information be linked to semantic information without the presence

of subjective experience?

One could reverse the argument and ask, “What kind of ‘knowledge’ could a purely phenomenological

experience without physical information or conceptualization convey?” It is unlikely that this would

lead to semantic comprehension. I might experience the blueness of the ocean, the chill of an

environment, the sourness of a lemon, or its shape in my hands without having any concept or

understanding of what the ocean, the environment, or a lemon truly represents.

This does not mean, however, that congenitally blind individuals cannot understand others discussing

spatial properties, geometric forms, light, colors, or other visual sensations. They have an indirect

understanding of these concepts, achieving referential grounding much like an LLM–not through

sentience but via information mediated by other sentient agents. The key di�erence between even the

most advanced AI and a person with sensory impairments is that the absence of sight in humans is

compensated for by other subjective experiences, like sound, touch, taste, and smell. These

experiences enable the indirect semantic comprehension of visual concepts even if direct visual

perception is lacking, as the representation is supported by other forms of conscious experience–

something a machine cannot replicate.8

What kind of comprehension do blind individuals have of the visible world, and to what extent can

they eventually recover an ordinary understanding of it? This is not a new question. For instance, in

the 17th century, William Molyneux proposed a thought experiment involving a congenitally blind

person who has learned to recognize objects solely through touch. Imagine this person can distinguish

a sphere from a cube by touch but has never seen them. Now, suppose this person could suddenly see.

Molyneux questioned whether, if the sphere and cube were placed on a table, this person would be able

to identify which was which without touching them.

The question was debated by philosophers like Locke and Berkeley, who essentially agreed that if our

mind cannot establish a relationship between the tactile and visual worlds, the answer to Molyneux’s

question must be negative. The connection between these two realms–speci�cally, grounding visual

experience in meaningful semantic content known only through tactile experience–cannot be
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established through mere intellectual inference. To create this connection, one must link real-world

experiences with previously grounded concepts derived from other kinds of lived experiences into

some world-model.

Interestingly, the Molyneux problem can now receive a scienti�c answer. It is possible to gain some

insights into the state of “meaningless awareness” from individuals a�ected by congenital cataracts

that are later treated. A congenital cataract is an organic anomaly present at birth that clouds the eye’s

natural lens and can result in amblyopia–a disorder in which the brain fails to process visual stimuli.

In the 1930s, Marius von Senden became the �rst to describe the perception of space and shape in

congenitally blind individuals before and after surgery[24]. When the sight of previously blind patients

was restored and their bandages removed, they did not see the world as one might assume. Instead,

they experienced a blotch of chaotic colored patches that meant nothing to them. They required time

and practice to make sense of what they saw.

In 2011, neuroscience shed further light on this topic. An Indian research project, “Project Prakash,”

aimed at treating blind children while also seeking answers to scienti�c questions about how the brain

develops and learns to see, provided evidence supporting Locke and Berkeley’s views[25]. In the

treatment of congenitally blind children aged 8 to 17, researchers found that, upon gaining sight,

these children struggled to visually match objects they had previously known only through

somatosensory information. However, this capacity developed quite rapidly; their skills in relating

visual perception to somatosensory sensation improved within a few days of sight restoration and

were nearly fully present within a few months. Physical information could �nally be grounded in

semantic information through sensory tactile experiences, as the latter was already rooted in a

meaningful conceptual unity.

This indicates that linking tactile knowledge to visual knowledge is not an innate ability. Furthermore,

it demonstrates that meaning emerges not only from the relationships among words, symbols, or

vectors but also through the contextualization of di�erent forms of qualitative experiences. Only after

this experiential stage can the mind connect a symbol (the signi�er) to its referent in the real world

(the signi�ed).9

One thing that must be noted is that semantic content does not require an experiential link to the

physical world–that is, direct sensorimotor engagement. Most notably, abstract and intangible

concepts like “freedom,” “courage,” “truth,” “beauty,” “justice,” and “wisdom” lack objective

referents in the physical world. Nonetheless, they are deeply meaningful to us and, in a sense, real and
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concrete. Their concreteness arises from subjective feelings and a “perception of meaning” rooted in

the experiential dimension of the mind. These concepts are thoughts, often accompanied by an inner

emotional state, that also have a qualitative meaningful aspect. Even purely abstract entities, such as

numbers, lack physical reality outside our minds (or, as Platonists would argue, exist only in a world

of perfect Forms), and the symbols for numbers hold no inherent signi�cance unless they are

associated with a “number sense”–an experiential link between symbol and quantity mediated by a

subjective mental experience of extension or quantity.10

Qualia are not limited to sensory experiences; thoughts are “mental qualia,” and emotions are

“emotional qualia.” The “perception of meaning” is, above all, a subjective “mental quale” that

emerges from and is intertwined with other qualitative experiences, whether somatosensory,

a�ective, or otherwise. In this way, there exists a phenomenon of what “it is like to be” in each of

these internal states–an aspect that any symbol-to-symbol or representation-to-representation

relationship cannot fully capture.

Moreover, semantics has a wholistic character. The perception of meaning is always associated with

an integration of information that neuroscience still struggles to understand[26]. How the brain

integrates information from various sensory inputs (sight, sound, touch, etc.11) and distinct neural

processes into a uni�ed, coherent experience is unclear. For example, when we look at an apple, we

don’t perceive separate visual features like color, shape, and size individually; rather, we see a single,

whole apple. It is what I referred to as a semantic whole that suddenly appears in our awareness by

looking at a �gure made of pixels, parts, structures, boundaries, colors, etc. The question of how

di�erent parts of the brain “bind" features together into one experience, despite being processed in

di�erent brain regions, is commonly known as the “binding problem” and is intimately related to the

unity of consciousness.

The implications for AI are that without a conscious subject (an entity or individual capable of

conscious qualitative sensations of the properties of the world), a machine cannot grasp anything

beyond the purely abstract “understanding” of its representations, symbols, letters, words,

sentences, signs, and numbers. A self-driving car, no matter how advanced or sophisticated its neural

network and information processing system might be, cannot comprehend what an image of a street,

a cyclist, or a tra�c light represents if it lacks the complementary subjective experience and an

integrative process that binds them into a meaningful unity. True knowledge cannot be achieved

through functional processes alone; understanding requires a speci�c type of qualitative phenomenal
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dimension. An image can be converted into vector spaces, matrices, relationships, curve �ttings, and

probability laws. However, unless the light signals hitting the pixels of the image on the CCD camera

elicit a subjective lived experience in someone or something, all these mathematical abstractions,

multidimensional vectors, or neural representations will remain meaningless physical information

without semantic grounding. While physical information can be measured by (negative) Shannon

entropy, without sentience, nothing can convert it into semantic information. This is because

“understanding” is an aspect of phenomenal consciousness itself and can’t be abstracted from the

hard problem of consciousness.

Discussion and Conclusion

Thus, consciousness plays a fundamental role in the transition from symbols to semantics. An

information processing system may interact with the environment through sensory-motor

embodiment, but that alone does not make it a true semantic agent. For it to achieve this, it must

possess a representation of the world based on experiences, not just representations, abstract

symbolic descriptions, or indirect linguistic grounding–that is, “qualia-less” physical information.

Transitioning from the vectorization of language to the vectorization of the environment may

represent a signi�cant advancement in AI, but this alone is unlikely to overcome its semantic

de�ciencies, as these will still be ungrounded quantifying numbers or symbols all the way down.

Embodiment may be a necessary condition, but it is not su�cient to transform unconscious

comprehension into conscious comprehension. To achieve a deeper understanding of the world,

including its contents, properties, and related concepts, I must grasp it qualitatively through

conscious experience–that is, with qualia in the form of sensations, feelings, and lived sensory

perceptions. A tight and inextricable relationship exists between feeling and knowing, sensing and

understanding, perceiving and comprehending. We cannot disconnect these aspects of cognition and

treat them separately. Otherwise, no symbol grounding can occur. True understanding is inherently

rooted in and inseparable from consciousness. While the hard problem of consciousness addresses

how consciousness emerges from material and/or functional processes, such as neural activity in the

brain, the symbol grounding problem explores how meaning arises from these same processes.

Symbol grounding is impossible without experience because meaning is an inherent aspect of

consciousness. To understand something implies being conscious of it. Meaning is subjective

perception; the “perception of meaning” is a quale in itself.12
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Embracing this standpoint might have signi�cant implications for theories in biology and cognitive

science that explore the relationship between cognition and the de�ning characteristics of life.

Examples include autopoiesis and enactivism, complex dynamical systems theories based on

predictive processing, the Free Energy Principle theory, the Extended Mind hypothesis, Integrated

Information Theory, the Cellular Basis of Consciousness model, Rosennean complexity, and

biosemiotics, to name just a few.

Due to space limitations, this essay cannot summarize these theories, not even super�cially. However,

it can be said that one common theme they emphasize is the close intertwining of cognition and life

processes. This suggests that cognition is not merely a high-level brain function but, rather, is

foundational to life itself. The mind is not a passive container or a separate system that simply models

the world; instead, cognition emerges from the direct interaction between organisms and their

environments (and, eventually, among multiple agents, objects, or biological networks). The

embodied mind encompasses more than the brain; it represents a synergistic relationship between the

brain and the body, in which cognition is a process of minimizing predictive error and energy

expenditure to maintain self-identity and is deeply rooted in bodily experiences actively engaged with

the environment. Cognition, problem-solving skills, perception, and goal-directedness are not

limited to brain functions in complex organisms but, rather, are essential traits of life, present even in

simple bacteria, slime molds, and plants.

The relevant common trait in the present context is that, according to these perspectives, meaning-

making is a fundamental characteristic of all living systems as well. It emerges from the continuous

interaction between an organism and its environment. Meaning is enacted through the adaptive

coupling between the internal state of the organism–whether unicellular or multicellular–and its

surroundings (e.g., what supports survival is meaningful, while what threatens existence becomes

meaningless). In biosemiotics, life is viewed as a network of semiotic (sign-based) processes, with

organisms constantly interpreting signals and symbols from their environment. Here, meaning

emerges as an intrinsic feature of life through signs and codes operating at cellular, genetic, and

ecological levels[27].

In other words, these approaches aim to reduce meaning-making starting from non-reductionist and

wholistic perspectives described by di�erent forms of material causation. They seek to naturalize

meaning by beginning with basic physical information processes and bottom-up or top-down

complex dynamics accounting for the emergence of semantic information in cognitive biological

qeios.com doi.org/10.32388/DN232Y 19

https://www.qeios.com/
https://doi.org/10.32388/DN232Y


systems. For instance, this is visible in the “experience-blind” naturalism pursued by enactive theory,

which attempts to reduce experience to a “naturalized phenomenology.” While enactivism recognizes

the limitations of traditional naturalism and advocates for a “new naturalism,” it still struggles to

account for the emergence of experience within the natural world. There are good reasons to believe

this will end similarly to the pragmatist philosophy of nature from the previous century[28].

Consequently, I argue that for these same reasons, attempts to explain the emergence of “semantic

agency” in nature from an experience-blind perspective are bound to fail. As this paper has argued,

semantics is inherently tied to conscious experience and, therefore, cannot be separated or abstracted

from it. To put it metaphorically, trying to account for the emergence of meaning in living systems

without conscious experience is like trying to explain water waves without water.

As for any AGI narrative, since the success of ChatGPT and the impressive capabilities of LLMs, there

has been a marked increase in discussions about the imminent arrival of AGI–human-like

intelligence. However, many of these discussions overlook the intrinsic connection between general

intelligence and consciousness.

Enhancing AI performance by adding another trillion neurons, increasing the number of parameters,

providing sensory-motor environmental interaction, integrating it with neuro-symbolic AI, or

developing more advanced deep learning algorithms, internal feedback loops between sensory

acquisition and a central processing system to construct more accurate world-models, etc., will no

doubt advance current AI capabilities. However, it will not accomplish the “semantic trick.” The

elephant in the room must be addressed: the possibility that human-like intelligence, with its

semantic awareness, might not be replicable in machines unless we learn how to manufacture

consciousness itself (if it is even possible to do so). Without consciousness, true AGI cannot exist. The

current widespread discourse on the impending AGI revolution, which is predicted to shape our future,

warrants a more critical examination that considers the �rst-person perspective.13

On the other hand, recognizing the relationship between meaning and consciousness might o�er new

approaches to longstanding questions. The distinction between conscious intelligence and machine

intelligence (or even the distinction between machine and living organism itself?) becomes apparent

when, sooner or later, the machine makes a glaringly irrational mistake–one that no conscious,

semantically aware agent would make. This reveals its lack of genuine semantic understanding and

could be taken as evidence of its absence of subjective experience. In principle, this could suggest the

basis for a new test of intelligence, potentially replacing the famous Turing test. The goal would be to
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develop a test designed to assess whether a machine possesses a deep, semantic understanding

comparable to that of a conscious being building its meanings beyond symbol manipulation in a

semantic space determined by qualitative experiences. If it does, this would imply a form of

intelligence that points to some level of experiential awareness, even if not necessarily human.

It is important to note that no contemporary AI exhibits any signs of agency. Without input, these

systems do not act autonomously. The scienti�c concept of agency—encompassing intentionality,

autonomy, self-determination, purposeful decision-making, and its connection to cognition—is

itself a complex subject[29]. However, it is clear that regardless of the de�nition we adopt, nothing

resembling agency exists in current AI systems. The question of whether agency and consciousness

might be intrinsically related deserves more attention, particularly as we speculate about the potential

emergence of AGI.

This line of thought could also serve as an argument against the hypothetical existence of

“philosophical zombies” (or “p-zombies”). A p-zombie is imagined as a being physically identical to

a human and behaving exactly like a conscious person but lacking any inner life or conscious

experiences. However, because a p-zombie would not have the sentience necessary for meaning-

making, it would eventually reveal itself by making naïve errors, much like non-conscious AI systems

do. This would betray its lack of consciousness and semantic understanding. It is reasonable, then, to

conclude that beings that act like humans yet lack subjective experiences do not exist, as otherwise,

we would have already distinguished them from conscious humans. A test centered on meaning-

making provides a stronger and potentially more convincing proof of the presence or absence of

consciousness and true intelligence in a machine than the Turing test does.

I have focused primarily on the relationship between human-like experience and semantics because it

represents the most familiar form of cognition for us. Nonetheless, I believe similar arguments can

apply to non-human animals, with sentience also serving as the basis for meaningfully navigating the

world.

Conversely, one could argue that machine learning without any conscious experience could be viewed

as a form of “understanding” as well. Avoiding an anthropocentric perspective means acknowledging

that our concept of understanding need not be con�ned to human ways of making sense of the world;

indeed, computers could “understand” things in their own manner. Perhaps there even exists an

extraterrestrial civilization with a radically di�erent understanding of reality. What do we know?
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This is plausible, as human semantics might be only one of in�nitely many varieties of semantics.

However, this paper’s main claim does not focus on any speci�c form of human cognition. Rather, the

paper posits that semantics is inherently tied to conscious experience. If this hypothetical

civilization’s semantics is not grounded in some form of consciousness and sentience, without any

perception of the world’s properties through qualitative subjective experiences, then it would, by

de�nition, be a civilization of p-zombies. In principle, we would eventually be able to distinguish its

members from other conscious beings. Their “understanding,” exhibited by a cognition devoid of

qualia–no matter how complex, powerful, or sophisticated–would remain at the level of a Turing

machine head processing physical information on a strip of tape. Nothing would convert this physical

information into genuine semantic understanding.

In any case, the realization of AGI, if it ever happens, will �rst require the creation of conscious

machines. There is a foundational, principled argument against the imminent arrival of AGI, as we

remain far from developing systems that transcend memorization, pattern matching, or probabilistic

assessments to achieve genuine, complex abstract reasoning based on conscious experience. Meaning

and conscious experience are inseparable. Therefore, a �rst-person perspective, not only in the

philosophy of mind but also with regard to addressing fundamental questions about AI, is essential.

Approaching AI from this perspective might also help us gain a deeper understanding of ourselves.

Footnotes

1 One might argue that the meaning of symbols lies in their “use.” However, there is no “use”

inherent in the cell state that a Turing machine’s head reads and reacts to other than that which an

external semantic agent assigns.

2 For a good summary of these theories and their inability to solve the problem of meaning in AI

shortly before LLMs took center stage, see[30].

3 Here, the term “reasoning” encompasses not only problem-solving abilities that rely on logical

processes like deduction, induction, abduction, multi-step inference, or mathematical skills, but also

those requiring abstraction, generalization, semantic discrimination rather than plausible best

guesses, and the capacity to organize thoughts and conceptual structures into coherent, meaningful

wholes–that is, what is commonly referred to as “common sense,” “rationality,” or “thinking” in

human cognitive skills.
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4 Anyone with teaching experience recognizes this behavior in students who cheat. When they do not

know the answer, they abandon meaningful reasoning and instead try to arrive at the correct answer

by guessing–mimicking the methods and rules they have seen applied but without truly

understanding the problem-solving method.

5 This is also reminiscent of the fact that, contrary to popular belief, humans do not possess the

largest brain. Other species have larger brains in terms of size, number of neurons, or weight. What,

then, determines human cognitive dominance?

6 For many more examples, see Dr. W. Hsu’s collection of LLM failures: https://lnkd.in/eUW6TYCY.

7 For further review on how close we are to AGI, see also[31], and references therein.

8 One of the most dramatic and well-known examples of this is the story of deafblind Helen Keller.

9 One might argue that in human infants, certain cognitive developments occur prior to full conscious

awareness. This suggests that some forms of understanding can arise without phenomenal

consciousness. However, this conclusion relies on the questionable assumption that newborns have

no subjective experiences, which contradicts all external evidence. The burden of proof lies with those

who claim that babies lack sentience.

10 Children who, for whatever reason, do not learn to relate the number symbols, or a perception of

numerosity of objects, to a “number sense” are most likely to develop mathematical learning

disabilities like dyscalculia[32].

11 A careful �rst-person investigation reveals that this isn’t the case only with sensory inputs, but with

thoughts and emotions as well.

12 I like to reframe this as the “hard problem of semantic awareness.”

13 Though I am an “AGI-skeptic,” the rationale presented here does not necessarily imply that AGI is

impossible. It merely states that, if we want the machine to become semantically aware, it must

become conscious as well.

References

1. ^Shannon CE. (1948). "A Mathematical Theory of Communication." Bell System Technical Journal. 27

(3): 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x.

qeios.com doi.org/10.32388/DN232Y 23

https://lnkd.in/eUW6TYCY
https://www.qeios.com/
https://doi.org/10.32388/DN232Y


2. ^Searle J. (1980). "Minds, Brains and Programs." Behavioral and Brain Sciences. 3: 417–57.

3. ^Searle J (1990). Is the brain a digital computer? Am Philos Assoc. 64(3):21-37.

4. ^Penrose R (1989). The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics. O

xford: Oxford University Press.

5. a, bHarnad S. (1990) "The Symbol Grounding Problem." Physica D: Nonlinear Phenomena. 42(1-3): 335

-346. doi:10.1016/0167-2789(90)90087-6.

6. ^Harnad S. (2007). "Symbol grounding problem." Scholarpedia. 2(7): 2373. doi:10.4249/scholarpedia.2

373.

7. ^Mollo DC, Millière R. (2023) "The Vector Grounding Problem." doi:10.48550/arXiv.2304.01481

8. a, bChalmers D. (1995). "Facing up to the Problem of Consciousness." Journal of Consciousness Studies, 2

(3): 200-19.

9. ^Shi F, Chen X, Misra K, et al. (2023) "Large Language Models Can Be Easily Distracted by Irrelevant Co

ntext." International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,

USA, volume 202 of Proceedings of Machine Learning Research, pp. 31210–31227. PMLR, 2023. URL: htt

ps://proceedings.mlr.press/v202/shi23a.html

10. ^Jiang B, Xie Y, Hao Z, et al. (2024) "A Peek into Token Bias: Large Language Models Are Not Yet Genui

ne Reasoners." https://arxiv.org/abs/2406.11050

11. ^Mirzadeh I, Alizadeh K, Shahrokhi H, et al. (2024). GSM-Symbolic: understanding the limitations of m

athematical reasoning in large language models. Available from: https://arxiv.org/abs/2410.05229

12. ^Sche�er R, Miranda B, Koyejo S. (2023). "Are Emergent Abilities of Large Language Models a Mirag

e?" 37th Conference on Neural Information Processing Systems (NeurIPS 2023).

13. ^McCoy RF, Yao S, Friedman D. (2024). "Embers of autoregression show how large language models ar

e shaped by the problem they are trained to solve." PNAS, Computer Science, 121(41): e2322420121. doi:

10.1073/pnas.2322420121.

14. ^Prabhakar A, Gri�ths TL, McCoy T. (2024). "Deciphering the Factors In�uencing the E�cacy of Chain

-of-Thought: Probability, Memorization, and Noisy Reasoning." doi:10.48550/arXiv.2407.01687

15. ^Dziri N, Ximing L, Sclar M, et al. (2023) "Faith and Fate: Limits of Transformers on Compositionality."

Advances in Neural Information Processing Systems, vol. 36, pp. 70293-70332.

16. ^Kambhampati S. (2024). "Can large language models reason and plan?" Annals of the New York Acad

emy of Sciences. 1534: 15–18. doi:10.1111/nyas.15125.

qeios.com doi.org/10.32388/DN232Y 24

https://www.qeios.com/
https://doi.org/10.32388/DN232Y


17. ^Sacks O (1985). The Man Who Mistook His Wife for a Hat. New York: Summit Books.

18. ^Wigner EP. (1960). "The unreasonable e�ectiveness of mathematics in the natural sciences." Communi

cations on Pure and Applied Mathematics. 13(1): 1–14. doi:10.1002/cpa.3160130102.

19. ^Queloz M. (2024) "Can Word Models be World Models? Language as a Window onto the Conditional St

ructure of the World." https://philpapers.org/rec/QUECWM

20. ^Masi M. (2024). "The Nature and Origin of Language in Abhinavagupta and Sri Aurobindo." Upcomin

g.

21. ^Harnad S. (2024). "Language Writ Large: LLMs, ChatGPT, Grounding, Meaning and Understanding." h

ttps://arxiv.org/abs/2402.02243

22. ^Vallor S. (2024). "The Danger Of Superhuman AI Is Not What You Think." Noema, Technology & the H

uman. URL: https://www.noemamag.com/the-danger-of-superhuman-ai-is-not-what-you-think/

23. ^Jackson F. (1982). "Epiphenomenal Qualia." Philosophical Quarterly. 32: 127–136. doi:10.2307/296007

7.

24. ^Senden M. v. (1960). "Space and sight." Methuen, London.

25. ^Held R, Ostrovsky Y, de Gelder B, et al. (2011). "The newly sighted fail to match seen with felt." Nature

Neuroscience. 14: 551–553. doi:10.1038/nn.2795.

26. ^Herzog M. (2008). "Binding Problem." In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of

Neuroscience. Springer, Berlin, Heidelberg. doi:10.1007/978-3-540-29678-2_626.

27. ^Else L (2010). A meadowful of meaning. New Sci. 207(2774):28-31.

28. ^Barrett FN. (2024) "Experience and nature in pragmatism and enactive theory." Phenomenology and t

he Cognitive Sciences. doi:10.1007/s11097-024-10012-z.

29. ^Virenque L, Mossio M. (2024) "What is Agency? A View from Autonomy Theory." Biol Theory. 19: 11–1

5. doi:10.1007/s13752-023-00441-5.

30. ^Froese T, Taguchi S. (2019). "The Problem of Meaning in AI and Robotics: Still with Us after All These Y

ears." Philosophies. 4(2): 14. doi:10.3390/philosophies4020014.

31. ^Ananthaswamy A. (2024). "How close is AI to human-level intelligence?" Nature. 636: 22-25. doi:10.1

038/d41586-024-03905-1.

32. ^Decarli G, Sella F, Lanfranchi S, et al. (2023). "Severe Developmental Dyscalculia Is Characterized by C

ore De�cits in Both Symbolic and Nonsymbolic Number Sense." Psychological Science. 34(1): 8-21. doi:1

0.1177/09567976221097947.

qeios.com doi.org/10.32388/DN232Y 25

https://www.qeios.com/
https://doi.org/10.32388/DN232Y


Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/DN232Y 26

https://www.qeios.com/
https://doi.org/10.32388/DN232Y

