3 March 2025, Preprint v2 - CC-BY 4.0 Qeio S PREPRINT

Research Article

How to Build an IoT System Using Al and
Drones to Prevent Wildfires in California

Jun Wang!

1. Arizona State University, United States

In the wildfire monitoring system, the DHT22 and BMP180 sensors will be used to collect
temperature, humidity, pressure, and altitude data. This data will be sent to a MySQL database for
storage via AWS MQTT, allowing for SMS and email notifications to monitor analysts and enabling
alerts to fire stations and the data for future research. The Raspberry Pi 4 is utilized in this project as
a compact and portable computer to connect the DHT22 and BMP180 sensors. The Raspberry Pi 4
will have AWS-IOT-MQTT installed to transmit data from the Pi to a Restful server. The Restful
server, built with FastAPI, will persist the data into the MySQL database and send email notifications
to users.

This paper will demonstrate the proper use of sensors to construct your IoT system. The cost of the
project can be influenced by the price of different sensors, and using reliable sensors can save time
during debugging by helping developers identify errors in the code rather than in the hardware. The
project also involves the use of several libraries on the Raspberry Pi, including Adafruit_ DHT,
Adafruit_ Python_ DHT, Adafruit_ CircuitPython, and Adafruit_ Python_ BMP. These libraries are
essential for retrieving data from DHT22 and BMP180 sensors.

By following this paper, readers will understand how to effectively build and manage an IoT weather
monitoring system, taking into consideration the cost and reliability of sensors, as well as the
interaction of various software libraries and drones system. Also, Drones have become a crucial tool
for rescue operations. With continuous advancements in science and technology, their
functionalities are steadily increasing. In rescue missions, drones can monitor wildfire in real time,
scout various hazardous environments, and assist firefighters in firefighting and rescue efforts.
Additionally, modern building structures are complex, and multiple factors influence fire incidents.
Firefighters often cannot promptly assess the specific situation of a fire scene or safely enter to
conduct rescue operations. By utilizing drones, remote-controlled reconnaissance of the fire scene

can be conducted, providing better support for firefighters in their firefighting efforts.

geios.com doi.org/10.32388/DNCo9I.2

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

Introduction

IoT weather monitoring systems leverage cutting-edge IT technologies, including advanced sensors,
portable mini-computers, AWS Cloud services, Drones, high-level programming languages,
databases, and Al, to create versatile systems applicable in various scenarios. These systems can
record data for climate change studies and support future research through AI models like ANN
(Artificial Neural Networks) or the Random Forest method, aiding in weather prediction and natural

disaster prevention.

For instance, an IoT weather monitoring system could be deployed in California to help prevent forest
fires. Historical data shows that the top seven worst wildfires in California each resulted in several
billion dollars in insured losses. The 2018 Camp Fire alone caused estimated damages of $10 billion, or
approximately $10.38 billion in 2020 value. Deploying an IoT weather monitoring system in forests
could enable early detection of high temperatures through sensors, which would then alert fire
stations or weather monitoring stations. These agencies could respond promptly to these alerts,

potentially preventing fires in their early stages.

This paper will demonstrate the process of building an IoT weather monitoring system. How to select
appropriate sensors, connect them to a Raspberry Pi, test their functionality, and use Python code to
read data from these sensors and how to integrate advanced drone in IoT system. Additionally, how to
transmit data to a server via MQTT and troubleshoot any errors that arise. By the end of this paper, a
comprehensive understanding of IoT systems with advanced Drone system. The knowledge and
experience gained from this project can be applied to other IoT applications. Also, An Unmanned
Aerial Vehicle (UAV) is an aircraft controlled by a wireless remote-control device or a pre-
programmed system. It does not require a pilot to operate it from the cockpit, as its flight process is
automatically controlled by electronic equipment. Since no pilot-related equipment needs to be
installed on the aircraft, space can be effectively saved for carrying application devices to complete

various assigned tasks.

The biggest difference between drones and manned aircraft is that a drone cannot complete any task
solely by itself. It requires a strict control system and various application devices depending on the

mission requirements. Therefore, drones are also referred to as unmanned aircraft systems (UAS).

The application of drone technology has overcome the challenges of fire rescue operations, allowing

for more accurate acquisition of fire scene information and the implementation of effective rescue

geios.com doi.org/10.32388/DNCo9I.2

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

strategies, significantly improving the efficiency of firefighting and rescue work. Drones offer distinct

advantages in fire rescue operations and hold great practical significance.

Design Process

o Software and Hardware Preparation

Before we enter the design process, the software and hardware requirement need to show first.

Software requirement Hardware requirement
Python Charm IDE Raspberry Pi 4
MySQL database DHT?22 Sensor
Restful - fastAPI BMP180 Sensor
Python3 Breadboard
BMP180 and DHT22 library(adafruit) Jumper wires
DJI Pilot 2 DJI Matrice 300 RTK
DJI Pilot 2 DJI Mavic 3T
FreeFlight 6 Parrot Anafi Thermal
Ardupilot Gaia 160
K-MAX UAS Ground Control Station Kaman K-MAX UAS

When building a weather IoT system, cost is a crucial factor. Different sensors come at varying prices,
and using unreliable sensors can lead to frequent replacements, increasing both time and budget
costs. Poor-quality sensors can also send inaccurate data to servers, affecting weather information

accuracy and future research outcomes.

For purchasing reliable sensors and devices, Amazon and other E-commence websites are good
choices for reviews from other users and compare prices to make informed decisions. For instance,
HiLetgo offers high-quality DHT22 and BMP180 sensors. Purchase 5 BMP280 sensors for $6 and 2

DHT22 sensors for $13. Additionally, AITRIP provides 10 BMP180 sensors for $8. All these options are

geios.com doi.org/10.32388/DNCo9I.2

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

reliable.To cover wildfire-prone areas in the Los Angeles region (about 1,500—-2,000 square miles), an
IoT wildfire detection system would require 750—2,000 temperature sensors, assuming a density of 1
sensor per 1—2 square miles. Basic IoT sensors cost $50—$200 each, while advanced Al-enabled
sensors range from $500—-S$2,000 each, bringing total sensor costs to $75,000—$4 million. Additional
expenses for connectivity (LoRaWAN, LTE, satellite), power (solar, batteries), cloud Al processing,
and maintenance push the overall budget to $200,000, depending on coverage, sensor type, and

infrastructure needs for a fully integrated wildfire and drone monitoring system.
e IoT Level

In the project, the IoT level 3 is chosen for building the weather monitor system. A level 3 IoT system
has a single node. Data is stored and analyzed in the cloud and the application is cloud-based. Level 3
IoT systems are suitable for solutions where the data involved is big and the analysis requirements are
computationally intensive.ll Based on these characteristics, IoT level 3 is suitable for this IoT monitor
system. Also, the system can integrate smoke concentration monitoring, flame detection, and
temperature monitoring for forest fires, forming a multi-sensor data fusion wireless sensor network
based on DHT22. By deploying multiple sensor nodes, the system continuously monitors forest fire

conditions and periodically uploads monitoring data to the monitoring terminal.

When no fire is detected, the DHT22 module in the nodes remains in sleep mode, while the sensors
monitor environmental parameters at regular intervals to conserve energy and extend the lifespan of
the monitoring nodes. In the event of a fire, the DHT22 module is awakened to transmit real-time
sensor data and relay location information through the node network to the monitoring center. This
enables rapid fire situation assessment and precise fire location tracking, ensuring timely response to

forest fires and minimizing losses.

geios.com doi.org/10.32388/DNCo9I.2

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

10T Level-3

Local

Cloud

I
I
I
I
|
1
I
I
I
1

REST/WebSocket
REST/WebSocket Communication

Cammunllcaﬁon

Monitoring Node -

Cloud Storage & Analysis

Figure1. [

* Block diagram

geios.com doi.org/10.32388/DNCo9l.2

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

Figure 2.

o Data flow charts

DHT22 Temp Sensor

BMP 180 Pressure Sensor

Figure 3.

geios.com

Power on

Sensors ge

nerate data

temperature. humidity.
pressure. and altitude

A}

collec

Raspberry Pi 4

t data

from sensors

L

send

Raspberry Pi 4

data

to AVWS MQTT

L

Restful

from AWVW

server

get data

S MQTT

N2

Restful
store

server
data

to MySQL

Restful
send

server
Email

to Users

~N
Power off

ﬂjﬂﬂ%

RaspBerry Pl 4 AWS-loT MQTT

doi.org/10.3:

2388/DNCo9l.2

Restful Server

Email Server

write Read

MySQL database

Email weather Info

User

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

DHT22 Temp Sensor

BMP180 Pressure Sensor

SDA and

Figure 4.

 Interface design

Raspberry Pi 4 side:

geios.com

RaspBerry Pl 4
weather.py interface

AWS-loT MQTT
Topic Weather

doi.org/10.32388/DNCo9l.2

Restful Server
MessagePesistence Inteface
QueryWeather Interface
SendEmail Interface

Email Server

write

Read

MySQL database

Email weather Info

User

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

Temp.py

Pressure.py

Temp.py

-temperature: double
-humidity: double

Pressure.py

print(temperature)
print(humidity)

-pressure: double
-altitude: double

print(pressure)
print(altitude)

Read data from DHT22

Read data from BMP180

Weather.py

MessagePesistence.py

Weather.py

-temperature: double
-humidity: double
-pressure: double
-altitude: double

MessagePesistence.py

-temperature: double
-humidity: double
-pressure: double
-altitude: double

maqtt_connection.publish()

Read data from DHT22,BMP180
send data DHT22,BMP 180 data

store(temperature,

humidity,pressure ,altitude)
myAWSIoTMQT T Client.subscribe(
temperature,humidity,pressure,altitude)

Read data from MQTT
store data to MySQL

Main.py

QueryWeather.py

geios.com

doi.org/10.32388/DNCo9l.2

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

QueryWeather.py

none
Main.py cursor = connection.cursor()
-none cursor.execute(sql_select_Query)
sendWeatherlnfo() records = cursor.fetchall()
call QueryWeather class send()
call SendEmail class

SendEmail.py SendDrones.py

SendDrones.py

- Longitude: Long
SendEmail.py Latitude: Long
Path:Long

none goToWildFireLocation(longitude latitude)
send() takePicture()

record()

Responsibilities

Send Drones to wildfire location

Take picture

Send back live video

SendEmail to User

Development Process

In the Figure below, DHT22 installed on the breadboard. The DHT22 is a powerful sensor to record

temperature and humility. Some jumper wires are used to connect Raspberry PI 4.

geios.com doi.org/10.32388/DNCo9I.2

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

Figure 5.

For connection to Raspberry PI 4, as the below Figure 6, the positive port in the DHT22 must connect
to the 5V power port. Negative port must connect to the ground port through jumper wires. Here, data

out ports can connect to GPIO4.

geios.com doi.org/10.32388/DNCo9I.2

10

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

Status LED's

microSd slof
on bottom si

=

uy 1amog
Lisgdsws(s) 2w »

oronT

orio27

PI0Y
PO
A et
° P
e
o
s 0 50
8 - e
= arios
" EEEWw
Lo maEeEm
ori013 LA B NN
" EEEmN
oPio1y

cPIO2E

m
fad
=
1]
a

PwayI3

Figure 6.

To test whether DHT22 is working or not, first, install Adafruit_DHT. And then, add the code below to
Adafruit_ DHT/platform_ detect.py
elif match.group(1) == 'BCM2711":
#Pi 4b
return 3
You can write the code as below Figure 7. The code means read data from DHT22 and GPIO4 return in

variable humidity and temperature.

humidity,temperature = Adafruit DHT.read retry(

humidity, temperature = Adafruit_ DHT.read_ retry(22,4)

geios.com doi.org/10.32388/DNCo9l.2

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

§ @ B @ ossw mesmEc. il (New-momercholts. Th Thonny - /omerch.. ® 3 7 @) uss

File Edit View Run Tools Help

%t OB o

temp.py % Assistant

1 import sys
2 import Adafruit DHT
3 import time

4
5 while True:|

6 humidity, temperature = Adafruit DHT.read retry(22,4)

7 if humidity is not None and temperature is not None:

8 print("Temp={0:0.1f}c Humidity={1:0.1f}".format (temperature,humidity))
) else:
10 print("PLease check");

11 time.sleep(3)

Temp=28.3c Humidity=56.5
Temp=28.1c Humidity=50.5
Temp=28.1c Humidity=50.8
Tenp=28.1c Humidity=56.7
Tenp=28.1c Humidity=50.5
Tenp=28.0c Humidity=56.5
Temp=28.6c Humidity=50.6

Python3.9:2

Figure 7.

In the below Figure 8, BMP180 installed on the breadboard. The BMP180 is a powerful sensor to record

pressure, altitude, and temp. Some jumper wires are used to connect Raspberry PI 4.

geios.com doi.org/10.32388/DNCo9l.2

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

Figure 8.

For connection to Raspberry PI 4, as the below Figure 9, the positive port in the BMP180 must connect
to the 3V3 power port. Negative ports must connect to the ground port through jumper wires. Here,

data out ports can connect to SCL and SDA ports.

geios.com doi.org/10.32388/DNCo9I.2

13

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

-,
=2

=
g
[+
@

+
<
-
i~

To test whether the BMP180 is working or not, first, you need to install Adafruit_ BMP.

Write the code below Figure 10. The code means to read data from BMP180 return in variable pressure

and altitude.

temp,pressure,altitude = bmpsensor.readBmp180()

temp, pressure, altitude = bmpsensor.readBmp180()

geios.com doi.org/10.32388/DNCo9I.2 14

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

® @ B @ usrnmasREs. i New-momeicholis. T Thonny - romelch @ 3 50 2%
Thonny - /home/cholt520/pressurepy @ 8: 18 SE =

File Edit View Run Tools Help

%1 OB o

temp.py* | pressure py X Assistant X

import bmpsensor
import time
while True:
4 temp,pressure,altitude = bmpsensor.readBmp180()
print("Temp is",temp)
€ print("Pressure is",pressure)
print("Altitude is",altitude)
time.sleep(2)|

®

Shell x

>>>

Temp is 26.8
Pressure is 96849
Altitude is 379.5

Altitude is 380.88
Temp is 26.8

Pressure is 96847
Altitude is 379.67
Temp is 26.8

Pressure is 96831
Altitude is 381.05

Altitude is 380.88
Temp is 26.8

Pressure is 96835
Altitude is 380.7

Altitude is 380.45

Python 39.2

Figure 10.

When finishing the previous work, it can get the IoT hardware like below Figure 11.

Figure 11.

geios.com doi.org/10.32388/DNCo9l.2

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

Here, Raspberry PI 4 needs to send data to AWS-IOT-MQTT. First, you need to install awsiotsdk. The

below code will send data from sensors to MQTT through mqtt_ connect.publish() function.

publish count =
(publish_count <= message count) or (message count == 0):
humidity temperature = Adafruit DHT.read retry(22,4)
temp,pressure,altitude = bmpsensor.readBmp180()
message = format(temperature,humidity,publish count)
message = message + +str(pressure) + + str(altitude)
print(format(message topic, message))

message json = json.dumps(message)

mgqtt_connection.publish(
topic=message topic
payload=message json
qos=mqtt.QoS.AT LEAST ONCE)

time.sleep(1)

publish count +=

publish_ count =1
while (publish_count <= message_ count) or (message_ count == 0):
humidity, temperature = Adafruit_ DHT.read_ retry(22,4)
temp, pressure, altitude = bmpsensor.readBmp180()
message = "Temp={0:0.1f} Humidity={1:0.1f}" . format(temperature, humidity, publish_ count)
message = message + ' Pressure=" +str(pressure) + " Altitude="" + str(altitude)
print("Publishing message to topic '{}': {}".format(message_ topic, message))
message__json = json.dumps(message)
mgqtt_ connection.publish(
topic=message__topic,
payload=message__json,
gqos=mqtt.QoS.AT_LEAST ONCE)
time.sleep(1)

publish_ count +=1

Run command:

python3 weather.py --topic weather --ca_file ~/certs/AmazonRootCAl.pem --cert
~[certs/certificate.pem.crt --key ~/certs/private.pem.key --endpoint a38fdsv9in84d7-ats.iot.us-

west-2.amazonaws.com

geios.com doi.org/10.32388/DNCo9I.2

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

Now, the data is being sent to AWS-MQTT

& Bl @ sxin mmmims. i ivew- momerchotis. [Elcholts20@raspbery } ns7

Figure 12.

For the AWS-MQTT console, subscribe to the topic: weather. And then the data comes from IoT

devices.

B 4 @ oOmegny chotsaoy

Subscriptions weather Pause | Clear ‘ Export Edit

weather QX
v weather July 28, 2022, 21:58:49 (UTC-0700)

"Tamp=27.6 Humidity=51.9 Precsura-06842 Altitude-38a.1"

¥ weather July 28, 2022, 21:58:47 (UTC-0700)

“remp=27.6 bumidity=s1.9 Pressure=sedis altitude=ing.s1”

¥ weather July 28, 2022, 21:58:45 (UTC-0700)

“Temp=27.7 vumidity=51.9 Pressure=0684e Altitude=3se.27”

¥ weather July 28, 2022, 21:58:44 (UTC-D700)

Tamp-27.6 Humidily-51.9 Prassure-26845 Altitude-379,84"

+ Unified Settings [2, Amazon Veb Services, Inc. oritsaffilistes. Privay Terms Cookie preferences

Figure 13.

geios.com doi.org/10.32388/DNCo9l.2 17

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

In the below Figure 14, it shows the Restful server reading data from MQTT. First, put
certificate.pem.crt, private.pem.key and AmazonRootCAl.pem into the same folder with code. And

then use myAWSIoTMQTTClient.subscribe() to read data from MQTT.

geios.com doi.org/10.32388/DNCo9I.2

18

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

ENDPOINT =

CLIENT ID =

PATH TO CERTIFICATE =

PATH TO PRIVATE KEY =

PATH TO AMAZON ROOT CA 1=

myAWSIoTMQTTClient = AWSIoTPyMQTT.AWSIoTMQTTClient(CLIENT ID)
myAWSIoTMQTTClient.configureEndpoint(ENDPOINT, 8883)

myAWSIoTMQTTClient.configureCredentials(PATH TO AMAZON ROOT CA 1
PATH TO_PRIVATE KEY, PATH TO_CERTIFICATE)

myAWSIoTMQTTClient.connect()

myCallbackContainer = CallbackContainer(myAWSIoTMQTTClient)
myAWSIoTMQTTClient.subscribe(TOPIC, 1, myCallbackContainer.messagePersistence);
time.sleep(10)

myAWSIoTMQTTClient.disconnect()

ENDPOINT = "a38fdsv9oin84d7-ats.iot.us-west-2.amazonaws.com'
CLIENT ID = "testDevice"

PATH_ TO_ CERTIFICATE = "certificate.pem.crt"

PATH_TO_ PRIVATE_ KEY = "private.pem.key"
PATH_TO_AMAZON_ROOT_CA_1 = "AmazonRootCA1.pem"
TOPIC = "weather"

RANGE = 20myAWSIoTMQTTClient = AWSIoTPyMQTT.AWSIoTMQTTClient(CLIENT _ID)
myAWSIoTMQTTClient.conFigure Endpoint(ENDPOINT, 8883)

myAWSIoTMQTTClient.conFigure Credentials(PATH_TO_AMAZON_ROOT_CA_ 1,

PATH_TO_PRIVATE KEY, PATH TO_CERTIFICATE)
myAWSIoTMQTT(Client.connect()

myCallbackContainer = CallbackContainer(myAWSIoTMQTTClient)
myAWSIoTMQTTClient.subscribe(TOPIC, 1, myCallbackContainer.messagePersistence);

time.sleep(10)

myAWSIoTMQTTClient.disconnect()

When get data from MQTT successfully, print them out in the Pycharm console as below Figure 14.

geios.com doi.org/10.32388/DNCo9l.2 19

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

€:/Users/cholt/PycharnPr

Figure 14.

To store the data into MySQL, you must use the callback function below code.

First, parse the message. This is because the message cannot be directly used without format.

geios.com doi.org/10.32388/DNCo9I.2

20

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

messagePersistence(message):
data = message.payload
data = str(data)
data = data[3:-2]
rint(data)
x = data.split(" ")
temp = x[0]
temp = temp.replace(
humidity = x[1]
humidity = humidity.replace(
pressure = x[2]
pressure = pressure.replace(
altitude = x[3]
altitude = altitude.replace(
ts = time.time()
reportTime = datetime.datetime.fromtimestamp(ts).strftime(
location =

def messagePersistence(self, client, userdata, message):
data = message.payload
data = str(data)
data = data[3:-2]
print(data)
x = data.split(" ")
temp = x[0]
temp = temp.replace("Temp=","")
humidity = x[1]
humidity = humidity.replace("Humidity=","")
pressure = x[2]
pressure = pressure.replace(''Pressure=","")
altitude = x[3]
altitude = altitude.replace("Altitude=","")
ts = time.time()
reportTime = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S")

location = "300 E main street"

Then, use the code below to store data into MySQL database.

geios.com doi.org/10.32388/DNCo9I.2

21

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

connection = mysql.connector.connect(

cursor = connection.cursor()
query =

args = (temp, humidity, pressure, altitude, reportTime,location,city,country,state)
cursor.execute(query, args)
connection.commit()

mysql.connector.Error as e:

i

connection.is_connected():
connection.close()
cursor.close()

try:
connection = mysql.connector.connect(host="'localhost',
database="ift598finalprojectweather’,
user='root',

password="")

cursor = connection.cursor()
query = "INSERT INTO weather(temperature, humidity, altitude, pressure, reportTime, location, city,
country, state) "\
"VALUES(%sS, %S, %S, %sS,%sS, %S, %sS,%sS,%s)"
args = (temp, humidity, pressure, altitude, reportTime, location, city, country, state)
cursor.execute(query, args)

connection.commit()

except mysql.connector.Error as e:
print("Error reading data from MySQL table", e)
finally:

if connection.is_ connected():

geios.com doi.org/10.32388/DNCo9I.2

22

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

connection.close()

cursor.close()

When successful, the data in the weather table is below Figure 15.

B MySQL Workbench - 8 x
& Local instance MySQLED x
File Bdit Vier Query Database Server Tools Seripting Halp
&l e SdEsE B ¢ @ D=0
avig Query 1 SO File 2 m
SCHEMAS * @mH ¥Fa0 8 B umo 00w - | 75 | ¥ Q [2 i % | amote
2 * SELECT * FROM ift598finalprojectweather.weather;
Automatic context help is
v | #s9sfinalprojectweather
B Tables disabled. Use the toolbar t
» B user manually get help for the
» [weather current caret position or tc
B views toggle automatic help.
Stored Procedures
Functions
e
< >
Resuit Grid) Faur Rows o g B [| eporirpon: B (@ | wrp cltconrt: I3 o
d tomperabwe humdity albtude pressure reportTime location oty counbry state =
Pu ams S35 96838 39045 02207282220:41 XOEmansuest Mesm Us Arzona Grd
o ms 534 968% 30062 0207282220:40 N0Emanstest Mesa US Arizona
9 8.5 53.4 96832 380.96 02207-2822:20:33 J00E main street Mesa US Arizona
s s 533 %8% 3062 0207822 M0Emanstest Mesa US Avizona
7 8.5 53.2 96833 380,88 202207-28 2 S 300 Emanstreet Mesa US Arzona
6 85 531 96825 WBLS) 202078222:33 N0Emansteet Mesa US Arizona
5 285 .1 96766 386.67 202207-2723:40:0 J00Emanstreet Mesa US Arzona
“ 34 ®.1 96757 387.44 2022-07-2723:40:28 300Emanstreet Mesa US Arizona peery
3 285 .1 96768 6.9 202207-27 23: 40 300 Eman street Mesa US Arzons .
2 @S B1 %M MBI3 WR0722345 W0Emanstest Mesa US Arzona
—— 1 .S 91 962 38701 2020727234021 N0Emansteet Mesa US Arzona
o N o L.} [-]
L te Snippets.
o object selected
a .
Message O
© 1 222125 SELECT* FROM RSS@nafprojectwesther weather LIMIT 0. 1000 11 rowis) retumed 0000sec / 0.000 se

Figure 15.

In the Figure below, install fastAPI as a restful server. If you install successfully, use command:

uvicorn main:app to start the Restful server.

IFTS98FinalProject | main

PI

mal Libraries

iches and

to quit)

ation startup

artup complete

Figure 16.

geios.com

doi.org/10.32388/DNCo9l.2

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

Open browser, Go to localhost:8000. the index page as below Figure 17.

O 1270018000 x =
(@] (@ 127.00.1:8000 o 1 ¢
“message”t “Welcone to IFT508 Tntellizance Devices Final Frofect’)

"GET / HTTP/1.1"
"GET /favicon.ico HTTP/1.1"

Figure 17.

To send emails to users, first we need to query data from MySQL, the below code will do this.

geios.com doi.org/10.32388/DNCo9I.2

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

sql_select Query =
cursor = connection.cursor()
cursor.execute(sql_select Query)

records = cursor.fetchall()

connection = mysql.connector.connect(host="'localhost',
database="ift598finalprojectweather',
user='root',

password="cholt666')

sql_select_ Query = "SELECT * FROM weather"
cursor = connection.cursor()
cursor.execute(sql_select_ Query)

get all records

records = cursor.fetchall()

And then, invoke the send email function as below code:

geios.com doi.org/10.32388/DNCo9l.2 25

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

(
.port =
.smtp_server domain name =
.sender mail =
.password =

send(emails, subject, content):

ssl_context = ssl.create_default context()
service = smtplib.SMTP_SSL (self.smtp _server domain name .port =ssl_context)
service.login(self.sender mail .password)

email in emails:
= service.sendmail(self.sender mail, email subject}\n{content}")
service.quit()

def _ init__ (self):
self.port = 465
self.smtp_server_domain_name = "smtp.gmail.com"
self.sender__mail = "wj4507657@gmail.com"

self.password = "zigfttbjyteetsro"

def send(self, emails, subject, content):
ssl__context = ssl.create_default_ context()
service = smtplib.SMTP_ SSL(self.smtp_ server domain_ name, self.port, context=ssl_ context)

service.login(self.sender_ mail, self.password)

for email in emails:
result = service.sendmail(self.sender_ mail, email, f" Subject: {subject}\n{content}")

service.quit()

The restful server code as below:

geios.com doi.org/10.32388/DNCo9l.2 26

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

@app.get(
sendWeatherInfo():
queryWeather = QueryWeather()

queryWeather.query Weather()
()

@app.get("/sendWeatherInfo')

def sendWeatherInfo():
queryWeather = QueryWeather()
queryWeather.queryWeather()
print("'sendWeatherInfo")

return {"'message": ""Send weather info to you Email.Please check!"}

Open browser, Go to localhost:8000/sendWeatherInfo. the return page as below Figure 18.

M@ [1270018000 x
C | @ 127.00.1:8000/sendWeatherinfa]
Y ["mssaee":“wl @ 121.00. 127.0.0.

Q. 127.0.0.1:8000/sendWeatherinfo - 124 185

- "GET / HTTP/1.1"
- "BET [favicon.ico HTTP/1.1"

Figure 18.

For testing whether the email was sent successfully or not, open Gmail, the email notification as below

Figure 19.

geios.com doi.org/10.32388/DNCo9I.2

27

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

&« X @ https://mail.google.com/mail/u/0/?tab=rm&ogbl#inbox/FMfcgzGpHHSHSFtQRZKrfRbeprTGHfsz ® 2 % 0O o H

= M Gmail Q searchma = @ = o
<« o 0 § = 0 € » 10f4715 > mm- B
| compose
Weatherinfo2022-07-28 22:24:24 nbox x & 2
& Inbox
% Starred Wj4507657@gmail.com 10:24PM (0 minutes ago) ¢ 4
© Snoozed 1o boeme -
s (1,285,491, 96762 0, 387 01, datetime datetime(2022, 7, 27, 23, 40, 21), 300 E main street’, ‘Mesa', 'US", 'Arizona’), (2, 28 5, 49.1, 967490, 388 13, datetime datetime(2022, 7, 27, 23, 40, 25),
> Sent 300 E main street, 'Mesa', 'US' 'Arizona'), (3, 28.5, 49,1, 96765.0, 386,49, datelime datefime(2022. 7, 27, 23, 40, 27), 300 E main street, Mesa', "US', ‘Arizona), (4, 28.4, 49.1, 86757.0, 387 44 e
ﬁ Drafts 195 datetime datetime(2022, 7, 27, 23, 40, 28), *300 E main street’, ‘Mesa', 'US', ‘Arizona’), (5. 28 5, 49.1, 96766.0, 386 67, datetime datetime(2022, 7, 27, 23, 40, 30), ‘300 E main street’, ‘Mesa', ‘US",
‘Arizonal), (6, 285, 53 1, 968250, 38157, datefime datetime(2022, 7. 28, 22, 20, 33), ‘300 E main street’ "Mesa', 'US', ‘Arizonal), (7, 28.5, 53.2, 98833.0, 360 86, datetime datetime(2022, 7, 28
v More 22, 20, 35), 300 E main street’ Mesa’, 'US, Arizona), (8, 28 5, 53.3, 86836.0, 380 62, datetime datetime(2022, 7, 28, 22, 20, 37), 300 E main street, Mesa', US', ‘Arizona), (9, 285, 53 4
99832.0, 380.96, datetime datetime(2022, 7, 28, 22, 20, 38), "300 E main street, Mesa', 'US, "Arizona), (10, 28.5, 53.4, 96836.0, 380,62, datetime. datetme(2022, 7, 28, 22, 20, 40), 300 E main
street, 'Mesa', 'US', "Arizona’), (11, 28.5, 53.5, 96838.0, 380.45, datetime.datetime(2022, T, 28, 22, 20, 41), 300 E main street, Mesa, 'US", ‘Aizona)]
& Reply » Forward
Meet

W New meeting

@ Join a meeting

Hangouts

Figure 19.

After sending an email or phone message to notify monitoring personnel, monitor analyst can receive
the fire's location, including latitude and longitude. Monitor analyst deploys a detection drone to the
specified coordinates to capture images and transmit them back for analysis. Advanced drones, such

as the DJI Mavic 3 Thermal Enterprise, can be utilized to determine whether wildfire is present.

The DJI Mavic 3 Thermal Enterprise is a professional drone designed for wildfire detection, emergency
response, and industrial inspections. Equipped with a 640 x 512 px thermal sensor and a 48MP visual
camera, it enables precise heat detection and high-resolution imaging. With 20x digital zoom, 56x
hybrid zoom, and an optional RTK module for centimeter-level accuracy, it provides detailed
monitoring capabilities. Its 45-minute flight time and omnidirectional obstacle sensing ensure
extended and safe operations, while real-time live streaming and data transmission support rapid

decision-making. This makes it an invaluable tool for detecting and analyzing wildfires efficiently.

The DJI Mavic 3 Thermal Enterprise can be seamlessly integrated into a wildfire detection system to
enhance real-time monitoring and rapid response. By deploying drones immediately after receiving
wildfire alerts, whether from satellite data, IoT sensor networks, or emergency reports—firefighters
and analysts can quickly assess fire locations. The drone’s thermal imaging detects heat anomalies,
while its high-resolution camera captures visual confirmation. Coupled with AI-powered analysis, the
system can automatically identify fire intensity, spread direction, and potential risks. Its RTK

precision positioning ensures accurate mapping, while live data streaming enables immediate

geios.com doi.org/10.32388/DNCo9l.2 28

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

decision-making. This integration significantly improves wildfire detection efficiency,

response times and minimizing damage.

Figure 20.

Figure 21.

Testing and Result

reducing

For test DHT22 and BMP180, the below code can be used as the test part. The sample way to test

temperature and humidity change. blow your breath to DHT22, as a result, the change immediately

happens.

geios.com

doi.org/10.32388/DNCo9l.2

29

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

) Ll
File Edit View Run Tools Help

*+am OBEEE® O

=ra [Asitonte |

1 import sys 1 1

o) 2155

while True:|
humidity, temperature = Adafruit DHT.read retry(22,4)
if humidity is not None and temperature is mot None:
print("Temp={6:0.1f}c Humidity={1:0.1f}".format(temperature,humidity))
else:
print("PLease check”);
time.sleep(3)

e
REBvavwouwauwn

Tenp=28.3c
p=:

Tenp=28.0c

Python39.2

& . -0" Th Thonny - /home/ch._. ® 3 5 @ 2%
T eedoOpesenesn -]

File Edit View Run Tools Help
dyn OEBEEEEC O
temp.py X | pressure py X Assistant X

1 import bmpsensor
2 import time
3 while True:
4 ‘temp,pressure,altitude = bmpsensor. readBmp18e()
5 print(“Temp is",temp)
6 print("Pressure is",pressure)
7 print(“Altitude is",altitude)
8 time.sleep(2)|
Shell x

>»> %Run pressure.py

Temp is 26.8
Pressure is 96849
Altitude is 379.5
Temp is 26.8
Pressure is 96833
Altitude is 380.88
Temp is 26.8
Pressure is 96847
Altitude is 379.67
Temp is 26.8
Pressure 1s 96831
Altitude is 381,05

Altitude is 389.88
Temp is 26.
Pressure is 96835
Altitude is 380.7
Temp is 26.8
Pressure is 96841
Altitude is 380.19
Tenp is 26.8
Pressure is 96838
Altitude is 380.45

Python 392

Login into AWS MQTT console, subscribe to the topic. test the data whether it is transferred

successfully.

geios.com doi.org/10.32388/DNCo9l.2 30

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

chelt520 ¥

s @

Oregon ¥

Subscriptions weather

wreather QX

¥ weather

"Temp=27.6 Humidity=51.9 Pressur

96842 Altitude=380.1"

Pause ‘ Clear | Export H Edit

July 28, 2022, 21:58:49 (UTC-0700)

w weather

“Temp=27.6 Humidity=51.9 Pressure=86837 Altitude=385.53"

¥ weather

"Temp-27.7 Humidity-51.9 Pressure-g6846 Altitude-388.27"

¥ weather

"Temp=27.6 Humidity=51.9 Pressure=96845 Altitude=379.84"

July 28, 2022, 21:58:47 (UTC-0700)

luly 28, 2022, 21:58:45 (UTC-0700)

July 28, 2022, 21:58:44 (UTC-0700)

rwings [

Using MySQL Workbench can easily see the data whether it is stored successfully.

B MysaL Workbench
& Localinstance MySQLED x

File Blit Vier Query Datdbase Server Todls Seripting Kelp

S8l ¢ SAFHE @A &

SCHEMAS. -
a
¥ | ift598fimalprojectweather
¥ B Tables
> 5 user
0 weather
B Views
8P Stored Procedures
B Functions
> osys
Administration Schem
———
Mo object selected

Open browser, Go to localhost:8000. It can test the restful server to

successfully.

geios.com

Queyl SaLFiez

@ D0

(=N ¥ a D @]/ mt 01000 0ws
1o SELECT * FROM ift598finalprojectweather.weather;

NesstGrid | B 4Y Faw noun s g b B

A
g ;
H

exsoryimpons () (B | wioe cotcorsrts T8

humidity altitude pressure reportTime + location aty country state
» 11 ms 535 96838 38045 220728222041 J0Emansvest Mess US Aizona
0 ns 53.4 96836 380.62 202207-28 22:20:40 J00Eman street Mesa US Arizona
s @s 534 96832 38096 N20728220:3% WEmansvest Mesa US Anzona
s »s 533 9683 380.62 N207-2822:20:37 WEmsnsvest Mess US Avzona
7 as 532 96833 38088 2207282235 JDEmansvest Mess US Arzora
s @S S3.1 96425 LT W2207-8222:3 NEmansvest Mess US Anizons
s ;s 1 9676 3667 W220777234:0 WEmsnsvest Mess US Ao,
4 s W1 977 W4 N20727234028 NOEmansvest Mess US Anzons
3 235 ®.1 96768 386.45 202207-27 23:40:27 300Emainstreet Mesa US Arizona
2 as W1 %M I NR07722AS MWEmansvest Mesa US Anzona
1 28.5 6.1 96762 387.01 202207-27 23:40:21 J00E main street Mesa US Anzona
o M o o o om o o o L]
(F Acton Outout ©
& Tme Adin Message
© 1 222125 SELECT " FROM A53finsprojectwesther weather LIMIT 0. 1000 11 rowis)retumed

doi.org/10.32388/DNCo9l.2

B B | dmoto

Automatic context help is
disabled. Use the toolbar t
manually get help for the
current caret position or tc
toggle automatic help.

Snippets

Duration / Fetch
0,000 sec /0.000 sec

see whether it is installed

31

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

D | O 1270018000 X+ - 0 X
% main.py

C @ 12700.1:8000 A = @ &

["nessage”:“Velcome to IFTS88 Intelligence Devices Final Project”}

Terminal;

- "GET / WTTP/1.1"
- "GET /favicon.ico HTTP/1.1"

Open your Gmail account, email notification which test the email was sent successfully or not.

<« X @ htips//mail.google.com/mail/u/0/?tab=rm&ogbl#inbox/FMfcgzGpHHSHSFtQRZKrRbeprTGHfsz e 2 x* 0@ :
= M Gmail Q, Ssearch mail = @ & i o
€« o o6 = o ¢ B » 104715 > mm- B
}- Compose
WeatherInfo2022-07-28 22:24:24 inbex x & G
O Inbox
* Starred Wj4507657 @gmail.com 10:24 PM (0 minutes ago) ¥ 4
© snoozed to bec:me =
> s [(1, 285, 49.1, 96762.0, 387 01, datetime datetime(2022, 7, 27, 23, 40, 21), '300 E main streef, Mesa', 'US', 'Arizona'), (2, 28.5, 4.1, 96749.0, 388 13, datetime datetime(2022, 7, 27, 23, 40, 25)
ent '300 E main sireef, ‘Mesa. 'US' 'Arizona). (3, 28.5, 49.1, 96768.0, 386.49, datetime datetime(2022, 7, 27, 23, 40. 27), '300 E main sireet, 'Mesa', 'US", ‘Arizona’), (4, 26.4, 49.1, 96757 0, 387.44
B Drafts 195 datelime datelime(2022, 7, 27, 23, 40, 28), '300 € main street’, "Mesa',"US', "Arizona'), (5, 28.5, 40.1, 96766.0, 336.67, datetime datelime(2022, 7, 27, 23, 40, 30), '300 E main stieet, Mesa', 'US"
‘Arizona'), (6, 28.5, 53.1, 96625.0, 381.57, datetime datetime(2022, 7, 28, 22, 20, 33), ‘300 E main street, ‘Mesa', 'US', ‘Arizona’), (7, 285, 53.2, 96833.0, 380.88, datetime datetime(2022, 7, 28,
¥ More 22,20, 35),'300 E main street, 'Mesa’, 'US', ‘Arizona), (8, 28.5, 53.3, 96836.0, 380,62, datetime datetime(2022, 7, 28, 22,20, 37),"300 E main street, 'Mesa', "US', "Arizona’), (9, 28.5, 53 4
96832.0, 380.96, datetime datetime(2022, 7, 28, 22, 20, 38), '300 E main streef’, 'Mesa', 'US" ‘Arizona), (10, 2.5, 53.4, 96836.0, 380.62, datetime.datetime(2022, 7, 28, 22, 20, 40). ‘300 E main
street, "Mesa', 'US', "Arizona’), (11, 28.5, 53.5, 96838 0, 380.45, datetime datetime(2022, 7, 28, 22, 20, 41), '300 E main street’, 'Mesa', 'US", ‘Arizona’)]
« Reply ®» Forward
Meet

W< New meeting

E Joina meeting

Hangouts

Weather monitor system Integration testing:

To test the performance of the IoT weather monitoring system, sensors can be placed in various
locations. For instance, the system can be set up indoors to measure temperature, humidity, and
pressure. Initially, the system can be tested over a 24-hour period, then extended to one week, one

month, and so on, to assess its long-term reliability.

Testing should also include evaluating the portable power supply. If deploying the IoT system in a
remote field, it is essential to determine how long the system can operate without losing power and

how long the portable power can sustain the system. Additionally, it is crucial to test the system's

geios.com doi.org/10.32388/DNCo9I.2

32

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

scalability by deploying hundreds or thousands of sensors to ensure it continues to function correctly

under increased load.

The DHT22 sensor, with its wide temperature range of -40 to 80°C, can operate effectively in harsh

environments, making it suitable for testing in various conditions.

Summary and Conclusion

This project is designed and developed for IoT weather monitoring, utilizing weather parameters such
as temperature, humidity, pressure, and altitude. The IoT weather monitoring system collects real-

time data and sends it to a server for analysis and notification purposes.

During the design process, a list of requirements will help readers understand what is needed for the
system. Block diagrams and data flow charts provide a deeper understanding of the entire process. The
project interface displays all parameters and functions to developers, aiding them in easily building

their own IoT system.

The development process details the core code of the IoT system, explaining how to send data from
sensors and receive data from RESTful servers. The testing and results section describes how to test
the entire system to ensure it works properly and provides strategies for troubleshooting errors.
Drones have become essential in rescue operations, especially for firefighting. With advancements in
technology, they can monitor disasters in real time, scout hazardous environments, and assist
firefighters in rescue efforts. Modern building complexities and unpredictable fire conditions make it
difficult for firefighters to assess situations safely. Drones, as unmanned aerial vehicles (UAVs),
provide remote-controlled reconnaissance, improving decision-making and safety. Unlike manned
aircraft, drones require a strict control system and specialized equipment to complete tasks, making
them part of a larger unmanned aircraft system (UAS). Their use in fire rescue enhances situational

awareness, enables effective strategies, and significantly improves firefighting efficiency.

This IoT weather monitoring system is designed and developed for weather prediction and forest fire
prevention. In California, accurate weather monitoring is crucial for residents' safety and

preparedness.

References

1.3 l2Bahga A, Madisetti V (2014). Internet of Things: A hands-on approach. VPT.

geios.com doi.org/10.32388/DNCo9I.2

33

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

geios.com doi.org/10.32388/DNCo9I.2

34

https://www.qeios.com/
https://doi.org/10.32388/DNC09I.2

