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The goal of this paper is to present a tutorial on structural equation modelling (“SEM”). SEM is a

combination of multivariate linear regression and path analysis models. We will discuss path analysis,

measurement models, measurement invariance and when or how to use them, twin studies, and

longitudinal data analysis. In this tutorial, we shall use the free and open source package “lavaan” in R.

Structural equation modelling in health sciences and epidemiology

Structural equation modelling (“SEM”) is a combination of multivariate linear regression and path

analysis models. In this brief hands-on tutorial, we will discuss path analysis, measurement models,

measurement invariance and when or how to use them, twin studies, and longitudinal data analysis using

SEM. We shall use the free and open source package “lavaan” in R - the free and open source statistical

programming language

Steps of SEM

As structural equation modelling is graphical, we recommend that you follow the sequence: 

1. Draw your model as a system of paths

2. Input data in the form of covariance or correlation matrix

3. Identify the model

4. Specify the model

5. Assess parameter estimates

6. Assess �t measures (chi-square, df, residual matrix, GFI, RMSEA)

7. Check the modi�cation indices

8. Rerun the model till you get the best �t of the data to the model and theory

Absolute �rst step before you proceed: Load the packages 

Assuming that you use R for your analyses, you need to load the following packages in R after installing R:

Qeios
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library(lavaan)

library(dagitty)

library(ggdag)

library(tidyverse)

library(DiagrammeR)

library(DiagrammeRsvg)

library(rsvg)

Step 1: Notes on the system of paths and directed acyclic graphs (DAGs)

Everything graphical in SEM starts with path analysis. Richard Sewall Wright (1921), a hundred years ago,

described a system of �nding correlation between two variables, X and Y using a system of paths (Denis

2021). In this approach, he described that if a system of paths exist between two variables X and Y, the

multiplication produce of the path coe�cents of the sequences of the paths that traverse between the two

variables should be added to the path coe�cients of the direct paths that exist between X and Y to derive

their correlations (Figure 1).

Figure 1. Basic path diagram

Figure 1. A path diagram
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  The above �gure presents a system of paths that can be connected to derive covariances between pairs fo

variables. These paths can be traced from one variable to another according to set rules. Sewall Wright

described such a system of path tracing rules as follows:

1. A path can start from one variable to be connected to another variable and can start in either a

forward or a reverse direction in the direction of the arrowhead

2. Once started in one direction, the path must continue in the same direction unless it meets with

another path in a reverse direction and at that point can proceed no further

3. A path can only contain ONE curved double headed arrow. A curved double headed arrow signi�es

either a covariance between two variables or a variance of a single variable

4. A path cannot go through the same variable twice, that is a path can only go through one variable at a

time

Then, once all the valid paths are identi�ed, their path coe�cients are multiplied and added to the direct

path coe�cient if one exists between the two variables to derive the correlation between these two paths.

With these information, we can trace the following valid paths in Figure 1:

x-a-b-c-y

x-c-y

x-d-e-y

These are the only three valid paths. No direct path exists between x and y, and all other paths are either

invalid or they are blocked one way or another. In order to derive the correlation between x and y, we will

need to add the multiple products of the individual path coe�cients as follows:

cor(x,y) = (x-a)*(a-b)*(b-c)*(c-y) + (x-c)*(c-y) + (x-d)*(d-e)*(e-y)

Figure 2. Another system of paths we use in measurement model or a con�rmatory factor analysis model.
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Measurement model

   Figure 2 above shows a model referred to as measurement model or con�rmatory factor analysis model.

The following table shows the variables:
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Variable Name What it means Description

lv Latent variable Unobserved variable

mv1 … mv3 manifest variables Variables that are physically measured

Endogenous variable
Variables that are explained by

others
Arrows end in these variables

Exogenous variable
A variable that is used to explain

another
Arrows start from these variables

e1 … e3 Error terms
Unexplained variances, the path coe�cients are

set at 1.0

constant term for mean

structure
triangle circle with 1.0 here

The path model in Figure 2 is a simple measurement model or con�rmatory factor analysis model with one

latent variable (“lv1”), and three manifest variables (mv1 … mv3). You can see that a set of six paths

connect the manifest variables. In con�rmatory factor analysis, we estimate or constrain such path

coe�cients and the path coe�cients are used to derive the variances and covariances of these variables.

The path coe�cients also tell us the e�ect of one variable over another. For example, the e�ect of lv on

mv1 in Figure 2 will be determined by the path coe�cient of the path connecting lv with mv1.

Note another feature: all the arrows in these diagrams point in one direction, and the variables are all

connected by arrows that move in one direction. Such kind of graphs are referred to as directed acyclic

graphs (DAG) as no variable has arrows that eventually return to itself closing any loop. DAGs are visual

tools to directly observe the causal relationships between exposures and outcomes, including mediators,

confounders, and e�ect modi�ers; this is perhaps as accurate a de�nition of the role of DAGs as you can get

Rohrer (2018).

Path diagrams for structural equation models (“SEM”) have symbols that help the readers to understand

what these models are doing. However, as our aim is to eventually discuss structural causal models in the

light of structural equation models, we will brie�y mention them here and continue with the models as we

present here for uniformity. Table 2 provides a brief description of the symbols used for structural

equation models and the di�erences we will adopt for our purposes in this tutorial.

Table 2. Symbols used in SEM and what we will do here
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Symbol Description In our scheme

Square or Rectangle Manifest variable Round circle or letter

Circle Error Term Round Circle or letter

Oval Latent Variable Round or letter

Straight arrow Path Straight arrow

long Curved double headed arrow Covariance Curved arrow

short curved double headed arrow Variance Not shown here

We will assume that all exogenous latent and manifest variables have variances so we do not show them

separately and all endogenous latent and manifest variables have exogenous error terms. Hence we

suggest the above scheme, besides, using dagitty and ggdag packages in R helps us to draw these graphs in

a uniform way. Alternative, publication quality causal and structural equation graphs can be drawn using

graphviz and DiagrammeR packages but they are also time consuming. We recommend that for rapid

visualisation of the models, use dagitty.

Path analysis in a measurement model: partition of variances

Refer to Figure 2 where we see a measurement model with one latent variable and three manifest variables.

Here, we would like to use path tracing rules to derive the variance of manifest variable mv1. Here is the

procedure:

We will trace ALL paths that BEGIN with mv1 and end on mv1.

We will multiply and add the path coe�cients of all such paths

What paths exist?

A path starts from mv1, goes to lv and returns to mv1 (we call this mv1-lv-mv1)

Another path is mv1-e1-mv1

No other path starts from mv1 and ends in mv1

Hence, - variance of mv1 = (mv1-lv) * var(lv) * (lv-mv1) + (mv1-e1) * var(e1) * (e1-mv1)

Now, - mv1-lv and lv-mv1 are the same paths, so the path coe�cient get squared - mv1-e1 and e1-mv1 are

also the same paths, and we set the coe�cients of these paths at 1.0 by convention - If we standardise lv,

then var(lv) = 1.0
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So, from here, we can say that the var(mv1) = square of the path coe�cient from latent variable + variance

of error term

The term “square of the path coe�cient” is referred to as “communality,” because this part of the total

variance (or variability, so to say) of mv1 is EXPLAINED by the latent variable that is common to all other

manifest variables in the model that receive arrows from the latent variable. The path coe�cient is also

referred to as factor loading.

Using the path analysis approach, you will see that as the error terms are uncorrelated, therefore the

correlation (or covariance) between mv1 and mv2 is given by

mv1-lv * var(lv) * lv-mv2

These concepts are fundamental to understanding what goes in SEMs. We have seen one model, that of a

measurement model or con�rmatory factor analysis model, where we have one or more latent variables

load on manifest variables. Figure 3 shows the structural and measurement parts of an SEM

Figure 3. SEM with both measurement and structural parts

Structural model
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  As you can see in Figure 3, on the left and right are two separate measurement models, where lv1 and lv2

are the respective latent variables, mv1 … mv3 are the manifest variables on the left hand side

measurement model, and mv4 … mv6 are manifest variables on the right hand side measurement model.

We have now added a regression model to the mix where lv2 is regressed on lv1, so the path coe�cient of

lv1-lv2 can be viewed as a beta coe�cient, with something like:

lv2 ~ beta * lv1

This is the path diagram of a full structural equation model. Note that this model incorporates BOTH a set

of measurement models (two measurement models here) and a structural model (lv1-lv2 path). You can

extend and make these models as complex or as simple as you want. You could probably have only one

manifest variable for the structural part where you would regress the manifest variable on the latent

variable (simple), or you could have many more latent variable models that you would link up to form

complex patterns that you would like to analyse.

Path diagrams of models with meanstructures and group comparisons

So far, we have con�ned our discussions to models that have only one group of people and models that

only have explained covariances and variances. For example, a measurement model would be well suited to

test the validity of the construct of a questionnaire you have set up to investigate some health construct.

Say you have developed a questionnaire that aims to tap an individual’s concept of “health” and decide to

distribute this questionnaire to 200 individuals, and obtain data from them. Each individual is asked �ve

questions, and you could have a measurement model out of these �ve questions and a latent or unobserved

construct of “health” from your research participants. Such a procedure would provide you with an

estimate of whether you were able to tap the construct of “health” based on the items you asked your

participants.

Now imagine that among your participants there are those with chronic diseases (such as diabetes, high

blood pressure, chronic heart disease and so on) and those who are otherwise healthy adults with no

evidence of any disease. You may claim that the questions were perceived in the same way among members

of both the groups, and that the factor loadings of the latent variable (in this case “health”) would be equal

in both groups; So even if the unexplained and explained variances of the manifest variables may be

similar in both groups, it might still mean that they would have di�erent average values on those scores. In

other words, you may want to �nd out group di�erences or invariances of your measurements across

groups to make sure that your model is a robust model. This is where a mean structure is important

(Meredith 1993).
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In SEM, the means of the manifest variables are referred to as “intercepts” and the means of the latent

variables as “factor mean.” The factor mean is derived from a constant term, represented by a triangle (we

will present here in the form of a circle with 1.0 as value). In a standardised solution, the path coe�cient

from the constant to the latent variable is set at 0 (mean = 0 for a standardised variable). Also note that as

this is a constant, it’s variance is 0, and therefore it contributes only to the mean of the latent and manifest

variables. When the mean of the latent variable is set to 0, the intercept of the model is same as the mean of

the individual manifest variables. Such a structure is used to compare and evaluate that the measurements

and the measurement properties (such as factor loadings, and variance of the latent variable) REMAIN THE

SAME for each group. The groups themselves can be constituted on the basis of categorical variables such

as sex, race, or case-control status, for example.

Figure 4 shows such a scenario

Figure 4. SEM with mean structure and group comparison

Mean structures

  As you can see in Figure 4:
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Two arrows head from 1 (the constant) to the two latent variables.

Both latent variables are “lv,” except for group 1 it is 1lv, and for group 2, it is 2lv (similarly for manifest

variables mv1, …, mv3 and e1 … e3, they are prefaced with 1 for group 1 and 2 for group 2)

Three arrows on each side go from 1 to the manifest variables; these are the intercepts

Then we have the measurement models of the two groups, group 1 and group 2 Now, a few things to

consider here:

1. For each manifest variable in each group, we have their intercept, their variance, and their covariance

on the basis of which the measurement model is formed

2. For each factor in each group, there are three manifest variables (in this case)

3. Each factor in each group (i.e., latent variable), we have measured their latent mean (the arrows that

go from 1 to 1lv and 2lv), we have the factor loadings, and the variances

We believe that the groups will di�er in some ways, but we must make sure that they were measured in

EXACTLY the same way. So, while we study both (or more groups), we can restrict or constrain the group

parameters in a number of ways:

At the least, we say that we only constrain that the con�guration of the latent and manifest variables

remain invariant in between the groups, but everything else can vary. If this is the case, this will be one

of con�gural measurement invariance

Then we can say that our factor loadings MUST be constrained in both the groups so as to ensure that

both the groups had similar measurements. This is a weak measurement invariance because we still

leave the possibiity that the variance of the latent variables themselves could di�er between the groups

Then we add the constraints of both factor loadings as well as latent variable variances to remain

identical across the groups, but the latent means could still vary. This is strong invariance and is most

practical assumption

Finally, we can add the constraint that everything will be identical between the groups and see what

factor structure will satisfy this condition and how would the model hold. This is referred to as strict

measurement invariance.

Using strong invariance to examine the group di�erences or groups is important to ascertain as to what

di�erences exist even as the measurement of the constructs were conducted identically. Such groups can

be two periods of time for the same population, or same sample, or two conditions (cases and controls or

exposed and non-exposed, or treatment and control conditions), or gender, or indeed any characteristic of
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the individuals. It might be useful to investigate situations over two periods of time (as in baseline and

�nal time point).

Group comparison in the context of twin studies

Group comparison is particularly useful in the context of twin studies (Neale and Cardon 2013). The

problem and the solution are as follows.

Figure 6. Twin study design

Twin study design

 Say you want to test the hypothesis that BMI is determined by genes. BMI is a quantitative trait, so rather

than one gene, we hypothesise that several genes add up to exert their e�ects on BMI. Yet we may also

argue that in addition to genes, there are environmental variables that also determine individual BMI

scores. To study such e�ects, you have collected data from 400 twins (200 monozygotic twins and 200

dizygotic twins), these twins were all raised in the same household and shared the same environment;

however, even then, they also had unique environmental factors other than their shared households and

rearing (such as di�erent friends, di�erent universities where they studied, di�erent occupations, etc). So,

qeios.com doi.org/10.32388/DNI7ET 11

https://www.qeios.com/
https://doi.org/10.32388/DNI7ET


if you take PAIRS of monzygotic and dizygotic twins and examine these TWO groups using a path analysis

model, you will have the following:

For each of the 200 pairs of Monozygotic (and it is true for dizygotic twins), you will have data on their

BMI

Twin1 and Twin2 (T1 and T2) will have on BMI a variance-covariance matrix whose patterns can be

explained by three variables:

their additive genetic e�ects (As)

their common environmental e�ects (Cs)

their dominant genetic e�ects (Ds): this is the case where one gene is dominant over another

their unique environmental e�ects (Es), this is basically their error variance

For MONOZYGOTIC twins, as they have EXACTLY the same complement of genes, their As will perfectly

vary, i.e., cor(A1, A2) = 1.0

For DIZYGOTIC twins, as they share 50% of their genes, their As will have cor(A1, A2) = 0.5

For DIZYGOTIC twins, as they share 25% of their dominant genes (heterozygosity), this will be cor(D1,

D2) = 0.25

For BOTH monzygotic and dizygotic twins, their shared environments (Cs) will be perfectly correlated,

so cor(C1, C2) = 1.0

for BOTH mono- and dizygotic twins, their unique environments are uncorrelated, so we will see

cor(E1, E2) = 0

a$  ^2$ + e  = 1.00 (assuming standardised coe�cients)

a  is also referred to as “narrow heritability”

Figure 5 shows the twin studies path diagram

Figure 5. Path diagram for twin studies (same structure for BOTH MZ and DZ twins, the correlations will

di�er, that’s all, the path coe�cients are identical)

  While analysing these paths, we have to be careful that while Cs are common to both MZ and DZ twins, the

path coe�cient that explains the part of the variation in the phenotype (say BMI in the example), will be

very low if not negligible. This needs to be taken into account as you assess these models, so setting or

constraining the path coe�cients C1A1 and C2A2 to close to 0 (something like 0.001) is a useful strategy.

Path analysis of longitudinal data or latent growth curve models

So far, we have discussed path models that are all assessed over a single period of time, and even when we

discussed measurement invariance and discussed two groups in two periods of time, the scope was limited.
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We now turn to the problem of what happens when you have correlated measures over repeated

measurements taken over three or more periods. These models are referred to as latent growth curve

models.

There are two major di�erences between the models we have studied so far and latent growth curve

models. First, so far we have assumed that the data for all our models came from studies that were

conducted over a speci�ed period of time, rather than longitudinally. However, while this may be so for

majority of the studies for which we would use SEM, for clinical and public health studies, large

longitudinal studies for which data collection happens over repeated measurements over long periods of

time are important. Longitudinal ageing studies are important study designs that allow studying change

over time. Second, we have considered how latent variables would explain variability in the manifest

variables, so we have considered path coe�cients that we’d like to measure as in�uences. When we

analyse longitudinal studies, we �x the parameters. Instead we study two issues with longitudinal studies:

1. We study change. – Now, change is unobserved and therefore change is inherently a latent construct.

2. Change has two parameters: it has to have an intercept, and it has to have a slope. It has to have an

intercept for the latent or unobserved construct of change, as change has to happen from a baseline,

such as change from value X to value Y over a period of time. X in our case, is a baseline intercept value

for the latent variable. We have met intercept before, but that was intercept for the manifest variable,

which, in this case, are time-bound value of some trait repeated over time. We are not talking about

that, instead, we mean what would be the latent value of baseline measure at ZERO TIME? Is that time

constant, or is that time variable over the number of people or the context of the study? Is that level a

sample from a distribution of in�nite other values, i.e., a random e�ect?

3. Change must also have some kind of rate of change. This could be linear, this could be quadratic.

Equally, as we factor in time, we factor in what intervals over which such change occur? Are the data

collected linearly, as in every n number of years? Or are data collected every two years for the �rst two

waves and then every �ve years for the next few waves and so on?

Figure 6 shows a simple latent growth curve model

Figure 6. A simple latent growth curve model  
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Latent growth curve model

As you can see, x1 … x4 shows the measured X variables that we want to model over 4 periods of time. These

are our manifest variables. The arrows from i, the latent intercept is �xed at 1.0 to indicate that the latent

intercept has the same in�uence over the time bound values. The arrows from latent slope, s, to x1 … x4 is

�xed as follows: if we want to model them as linear, we start with 0, so in this case this will be 0,1,2,3. A 0th

time point is the beginning or the �rst measurement. Depending on the frequency over which data were

collected, we adjust the value of the path coe�cients of the paths that run from s to individual xs. Finally

the error terms for each time point observation. Here we have shown them to be uncorrelated, but these

can be correlated errors.

Code of all the graphs and diagrams we have presented so far:

1. Basic path diagram

mypaths <- dagitty('dag{

          x [pos = "1,1"]  

          a [pos = "2,1"]
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          b [pos = "3,1"]

          c [pos = "2.5,2"]

          d [pos = "1,2"]

          e [pos = "1.5,3"]

          j [pos = "1,4"]

          y [pos = "2,4"]

          

          x -> a 

          a -> b

          b -> c 

          c -> y

          c -> x

          x <-> d

          d <-> j

          y -> j

          d -> e -> y

          

                   

}')

plot(mypaths)

mypaths %>%

  ggdag() +

  theme_dag_blank() +

  ggsave("path1.png")

Draw measurement model

path_mm = dagitty('dag{

       lv [pos = "1,2"]   

       mv1 [pos = "2,1"]

       mv2 [pos = "2,2"]

       mv3 [pos = "2,3"]

       e1 [pos = "3,1"]
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       e2 [pos = "3,2"]

       e3 [pos = "3,3"]

       

       lv <-> lv

       lv -> mv1

       lv -> mv2

       lv -> mv3

       e1 -> mv1

       e1 <-> e1

       e2 -> mv2

       e2 <-> e2

       e3 -> mv3

       e3 <-> e3

       

                  

                  

}')

path_mm %>%

  ggdag() +

  theme_dag_blank() +

  ggsave("path_mm.png"

Code for structural equation modelling

semdag <- dagitty('dag{

     e1 [pos = "1,1"] 

     mv1 [pos = "2,1"] 

     e2 [pos = "1,2"] 

     mv2 [pos = "2,2"] 

     e3 [pos = "1,3"] 

     mv3 [pos = "2,3"] 

     lv1 [pos = "3,2"] 

     lv2 [pos = "4,2"] 

     mv4 [pos = "5,1"] 
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     e4 [pos = "6,1"] 

     mv5 [pos = "5,2"] 

     e5 [pos = "6,2"] 

     mv6 [pos = "5,3"] 

     e6 [pos = "6,3"] 

   

     e1 -> mv1

     e2 -> mv2

     e3 -> mv3

     lv1 -> mv1

     lv1 -> mv2

     lv1 -> mv3

     lv1 -> lv2

     lv2 -> mv4

     e4 -> mv4

     lv2 -> mv5

     e5 -> mv5

     lv2 -> mv6

     e6 -> mv6

                  

                        

}')

semdag %>%

  ggdag() +

  theme_dag_blank() +

  ggsave("semfull.png")

Code for Mean structures

meanstr <- dagitty('dag{

     1 [pos = "4,1"]  

     1lv [pos = "2,2"]

     2lv [pos = "6,2"]

     1m1 [pos = "1,3"]
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     1m2 [pos = "2,3"]

     1m3 [pos = "3,3"]

     2m1 [pos = "5,3"]

     2m2 [pos = "6,3"]

     2m3 [pos = "7,3"]

     1e1 [pos = "1,4"]

     1e2 [pos = "2,4"]

     1e3 [pos = "3,4"]

     2e1 [pos = "5,4"]

     2e2 [pos = "6,4"]

     2e3 [pos = "7,4"]

     

     1 -> 1lv

     1 -> 2lv

     1lv -> {1m1 1m2 1m3}

     2lv -> {2m1 2m2 2m3}

     1 -> {1m1 1m2 1m3}

     1 -> {2m1 2m2 2m3}

     1e1 -> 1m1

     1e2 -> 1m2

     1e3 -> 1m3

     2e1 -> 2m1

     2e2 -> 2m2

     2e3 -> 2m3

                   

                 

                   

}')

meanstr %>%

  ggdag() +

  theme_dag_blank() +

  ggsave("meanstr.png")
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Diagram code for twin studies

twin_studies <- dagitty('dag{

                        

      E1 [pos = "1,2"]

      C1 [pos = "2,1"]

      A1 [pos = "3,2"]

      A2 [pos = "4,2"]

      C2 [pos = "5,1"]

      E2 [pos = "6,2"]

      T1 [pos = "2,3"]

      T2 [pos = "5,3"]

      

      E1 -> T1

      C1 -> T1

      A1 -> T1

      A1 <-> A2

      A2 -> T2

      C2 -> T2

      E2 -> T2

      C1 <-> C2

                        

}')

twin_studies %>%

  ggdag() +

  theme_dag_blank() +

  ggtitle("Twin studies path; c(A1,A2)=1.0 MZ, c(A1,A2)=0.5 DZ") +

  ggsave("twins.png")

Code for drawing diagrams for latent growth curve models

lgcm <- dagitty('dag{

    x1 [pos = "1,2"] 

    i [pos = "2,1"]
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    x2 [pos = "2,2"]

    x3 [pos = "3,2"]

    s [pos = "4,1"]

    x4 [pos = "5,2"]

    e1 [pos = "1,3"]

    e2 [pos = "2,3"]

    e3 [pos = "3,3"]

    e4 [pos = "5,3"]

    

    i <-> s

    i -> {x1 x2 x3 x4}

    s -> {x1 x2 x3 x4}

    e1 -> x1

    e2 -> x2

    e3 -> x3

    e4 -> x4

  

                

}')

lgcm %>%

  ggdag() +

  theme_dag_blank() +

  ggsave("lgcm.png")

Step 2: Input data in the form of a covariance matrix

In order to analyse data in SEM, you will need the following:

A correlation or a covariance matrix

A set of standard deviation (if you use correlation matrix)

a set of means for the individual manifest variables

Sample size (the more the better)

In our examples of SEM here, we will use lavaan package in R. You can download and install lavaan from

lavaan’s website. There are several ways of getting covariance or correlation matrices:
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Direct input of numbers

You can input a raw set of numbers as variance-covariance or correlation matrix (lower or upper) and

using the function lav_matrix_lower2full() you can obtain a full matrix in lavaan. ## Convert between

correlation and covariance matrices Besides, if you have a correlation matrix and a set of standard

deviation, you can convert a correlation matrix to a covariance matrix using the function cor2cov(matrix,

sd) ## Directly compute the matrix from the variables in your data set Using the function cov(c(v1, ..., vn),

na.rm = T), remember to set na.rm = T in R

Examples of each one with illustrations

Con�rmatory factor analysis

We will analyse better life index data. You can �nd more about the project here, and you can �nd the data in

our github archive here:

Code: 

# Input the data and clean the data

bli <-

read_csv("https://raw.githubusercontent.com/arinbasu/2021_04_sem_datasets/main/bti-

scores-regional.csv")

## 

## ── Column specification ────────────────────────────────────────────────────────

## cols(

##   Country = col_character(),

##   Region = col_character(),

##   `Education and skills` = col_double(),

##   Jobs = col_double(),

##   Income = col_double(),

##   Safety = col_double(),

##   Health = col_double(),

##   Environment = col_double(),

##   `Civic engagement` = col_double(),

##   `Accessiblity to services` = col_double(),

##   Housing = col_double(),

##   Community = col_double(),

##   `Life satisfaction` = col_double(),
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##   Overall = col_double()

## )

bli %>% names()

##  [1] "Country"                  "Region"                  

##  [3] "Education and skills"     "Jobs"                    

##  [5] "Income"                   "Safety"                  

##  [7] "Health"                   "Environment"             

##  [9] "Civic engagement"         "Accessiblity to services"

## [11] "Housing"                  "Community"               

## [13] "Life satisfaction"        "Overall"

bli <- bli %>%

  rename(life_satisfaction = `Life satisfaction`,

         education = `Education and skills`,

         civic = `Civic engagement`,

         accessibility = `Accessiblity to services`)

bli %>% head()

## # A tibble: 6 x 14

##   Country Region        education  Jobs Income Safety Health Environment civic

##   <chr>   <chr>             <dbl> <dbl>  <dbl>  <dbl>  <dbl>       <dbl> <dbl>

## 1 Austria Burgenland         8.65  8.08   5.44  10      6.85        3.26  8.77

## 2 Austria Lower Austria      8.38  8.7    5.53   9.89   6.94        3.49  8.83

## 3 Austria Vienna             8.4   5.28   5      9.43   6.12        1.79  7.04

## 4 Austria Carinthia          8.95  7.98   5.14  10      7.35        5.18  7.54

## 5 Austria Styria             8.52  8.28   5.21  10      7.26        4.59  7.8 

## 6 Austria Upper Austria      8.04  9.1    5.33   9.89   7.52        4.22  8.21

## # … with 5 more variables: accessibility <dbl>, Housing <dbl>, Community <dbl>,

## #   life_satisfaction <dbl>, Overall <dbl>

# select the columns to work with

bli_cfa = bli %>%

  select(education, Income, Health, Environment,
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         Housing, civic, accessibility)

bli_cov = cov(bli_cfa, use = "complete.obs")

So now we will set up the model and examine it further.

# Model

bli_1_model = '

better_life =~ education + Income + Health + Environment + Housing + civic +

accessibility

'

# Fit the model

bli_1_fit = cfa(bli_1_model, 

              sample.cov = bli_cov,

              sample.nobs = 400)

## summary

model_summary = summary(bli_1_fit)

# we will analyse fit measures and the parameter estimates separately. 

blifitm = fitMeasures(bli_1_fit, fit.measure = c("chisq", "pvalue", "cfi", "rmsea",

"gfi", "aic"))

# you can see that these measures indicate a poor fit of the model

# when we have one latent variable

bli_1_params = parameterEstimates(bli_1_fit, standardized = T) %>%

  select(lhs, rhs, est, ci.lower, ci.upper, std.lv, std.all)

# modification

modified_m = modificationIndices(bli_1_fit)

changes = modified_m %>%

  arrange(desc(abs(epc)))

blifitm
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# we will now create two different latent variables

# one will load on safety, health, environment, housing, community, we will call it

safe_community

# the other will load on education, jobs, income, we will call it secure_self

# so our new model

bli_2_model = '

    personal =~ d * Health + a * education + b * civic  + c * accessibility

    social =~   e * Environment + f * Housing + g * Income 

    personal ~~ h * social

    

'

# fit the model

bli_2_fit = cfa(bli_2_model, 

                sample.cov = bli_cov,

                sample.nobs = 400)

#  new summary

bli_2_summary = summary(bli_2_fit)

# fit

bli2_fit_m = fitMeasures(bli_2_fit, fit.measure = c("chisq", "pvalue", "cfi", "rmsea",

"gfi", "aic"))

bli_2_params = parameterEstimates(bli_2_fit, standardized = T) %>%

  select(lhs, rhs, est, ci.lower, ci.upper, std.lv, std.all)

 

Now we will study a structural equation model. Here, we will regress personal well-being on social well-

being and will test the hypothesis that social well-being in�uence a person’s personal sense of well being.

# Using the above model, we will examine the association between social satisfaction 

# is personal satisfaction with life

bli_3_model = '

    personal =~ d * Health + a * education + b * civic  + c * accessibility
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    social =~   e * Environment + f * Housing + g * Income 

    personal ~ h * social

    

'

# fit the model

bli_3_fit = sem(bli_3_model, 

                sample.cov = bli_cov,

                sample.nobs = 400)

#  new summary

bli_3_summary = summary(bli_3_fit)

## lavaan 0.6-8 ended normally after 47 iterations

## 

##   Estimator                                         ML

##   Optimization method                           NLMINB

##   Number of model parameters                        15

##                                                       

##   Number of observations                           400

##                                                       

## Model Test User Model:

##                                                       

##   Test statistic                               479.474

##   Degrees of freedom                                13

##   P-value (Chi-square)                           0.000

## 

## Parameter Estimates:

## 

##   Standard errors                             Standard

##   Information                                 Expected

##   Information saturated (h1) model          Structured

## 

## Latent Variables:

##                    Estimate  Std.Err  z-value  P(>|z|)

##   personal =~                                         
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##     Health     (d)    1.000                           

##     education  (a)    2.816    0.413    6.817    0.000

##     civic      (b)    1.361    0.250    5.436    0.000

##     accessblty (c)    2.294    0.336    6.817    0.000

##   social =~                                           

##     Environmnt (e)    1.000                           

##     Housing    (f)    2.081    0.242    8.594    0.000

##     Income     (g)    2.144    0.246    8.708    0.000

## 

## Regressions:

##                    Estimate  Std.Err  z-value  P(>|z|)

##   personal ~                                          

##     social     (h)    0.628    0.116    5.417    0.000

## 

## Variances:

##                    Estimate  Std.Err  z-value  P(>|z|)

##    .Health            6.066    0.439   13.802    0.000

##    .education         3.269    0.376    8.684    0.000

##    .civic             7.920    0.580   13.658    0.000

##    .accessibility     2.159    0.249    8.661    0.000

##    .Environment       6.656    0.478   13.934    0.000

##    .Housing           2.835    0.286    9.929    0.000

##    .Income            0.495    0.217    2.285    0.022

##    .personal          0.330    0.100    3.281    0.001

##     social            1.435    0.335    4.280    0.000

# fit

bli3_fit_m = fitMeasures(bli_3_fit, fit.measure = c("chisq", "pvalue", "cfi", "rmsea",

"gfi", "aic"))

bli_3_params = parameterEstimates(bli_3_fit, standardized = T) %>%

  select(lhs, rhs, est, ci.lower, ci.upper, std.lv, std.all)

Are personal growth a matter of nature or nurture?
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Now that we have seen that evidence from 400 countries in Europe, Australia, and other parts of the world

suggest that several aspects of personal well-being and better living are related to the social well-being,

we can ask another related question: what are the relative genetic and environmental contributions to

sense of psychological well-being. We will use data from Archontaki et.al. (2012) on the twin study of

psychological well-being; for the purpose of demonstration, we will only use a small set of twin

correlations, but you can read the entire study here (Archontaki, Lewis, and Bates 2013)

We will replicate a small subscale from the data presented in the article, Table 3,

Figure 7. Table data for the twin study we evaluate here

  From the paper we know that there were 240 monozygotic twin pairs (MZ pairs), and 597 dizgyotic twin

pairs (DZ pairs). We will analyse here the scale “personal growth” for this paper. We will set up the data for

analysis as follows:

# for mz twins, we do:

mz = lav_matrix_lower2full(c(1.00,

                               0.38, 1.00))

rownames(mz) = colnames(mz) = c("T1", "T2")

# Explanation:

# lav_matrix_lower2full() converts a lower matrix to full matrix

# we are using here a correlation matrix 

# 1.00 is the standardised variance, hence 1.00

# 0.38 is the correlation

# T1 and T2 are the twin pairs

# for dz twins

dz = lav_matrix_lower2full(c(1.00,

                               0.12, 1.00))

rownames(dz) = colnames(dz) = c("T1", "T2")
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# we will now combine the sample size and correlation matrices

cormat = list(mz = mz, dz = dz)

sampsize = list(mz = 240, dz = 597)

cormat

## $mz

##      T1   T2

## T1 1.00 0.38

## T2 0.38 1.00

## 

## $dz

##      T1   T2

## T1 1.00 0.12

## T2 0.12 1.00

Now that we have set up the data for this study, we will run the models and evaluate them as follows. Here

we will evaluate an ACE model, where we will test the path coe�cients and heritability estimates for a

model where we will test additive genetic e�ecs (As), common environmental e�ects (Cs), and unique

environmental e�ects (Es). Note that as correlation of Cs on both MZ and DZ twins is 1.0 (that is they share

the SAME environment), the impact of a shared or common environment on their phenotype is likely to be

very low, so we will set it at more than 0.001

ace_model <- '

   A1 =~ NA*T1 + c(a,a)*T1 + c(0.5, 0.5)*T1

   A2 =~ NA*T2 + c(a,a)*T2 + c(0.5, 0.5)*T2

   C1 =~ NA*T1 + c(c,c)*T1

   C2 =~ NA*T2 + c(c,c)*T2

   

   # Variances

   

   A1 ~~ 1*A1

   A2 ~~ 1*A2
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   C1 ~~ 1*C1

   C2 ~~ 1*C2

   T1 ~~ c(e,e)*T1

   T2 ~~ c(e,e)*T2

   

   # Covariances

   

   A1 ~~ c(1, 0.5)*A2

   A1 ~~ 0 * C1 + 0 * C2

   A2 ~~ 0 * C1 + 0 * C2

   C1 ~~ c(1, 1) * C2

   

   c > 0.001

'

# Now let's run the model

ace_�t = cfa(ace_model,

              sample.cov = cormat,

              sample.nobs = sampsize)

# summary

model_sum = summary(ace_�t)

# parameter estimates

model_est = parameterEstimates(ace_�t)

# �t measures

ace_measures = �tMeasures(ace_�t,

                            �t.measures = c("chisq", "g�", "rmsea"))

a_squared = 0.578 * 0.578
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# a_squared = 33.4% of heritability is explained by genes

e_squared = 0.664 * 0.664

# e_squared = 44% of heritability explained by unique environmental factors

model_est

Are people getting happier over time?

Our �nal analysis will be based on data where Gallup World Poll measured the proportion of people in

various countries where they said they were happy over time, see for more information here. We obtained

the data and you can download a copy of the data from here. The data were collected between 1984 through

2014. We will study the longitudinal pattern using SEM (growth model) and study the baseline percentage

from where it began and slope of the growth. The data were gathered every �ve years.

# get the data

happiness_data =

read_csv("https://raw.githubusercontent.com/arinbasu/2021_04_sem_datasets/main/share_happy.csv")

# Preprocess the data to rename variables, etc

happiness_data %>%

  head(5)

## # A tibble: 5 x 4

##   Entity  Code   Year `Share of people who are happy (World Value Survey 2014)`

##   <chr>   <chr> <dbl>                                                     <dbl>

## 1 Albania ALB    1998                                                      33.4

## 2 Albania ALB    2004                                                      58.8

## 3 Algeria DZA    2004                                                      80.7

## 4 Algeria DZA    2014                                                      79.9

## 5 Andorra AND    2009                                                      92.9

number_of_records = length(happiness_data$Code)

number_of_records # 237 countries/regions

## [1] 237
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# let's clean up the data

happiness = happiness_data %>%

  rename(country = 'Entity',

         year = 'Year',

         pct_happy = 'Share of people who are happy (World Value Survey 2014)') %>%

  select(country, year, pct_happy )

# let's get a sense of years

years = happiness %>%

  count(year)

happiness %>%

  head()

## # A tibble: 6 x 3

##   country    year pct_happy

##   <chr>     <dbl>     <dbl>

## 1 Albania    1998      33.4

## 2 Albania    2004      58.8

## 3 Algeria    2004      80.7

## 4 Algeria    2014      79.9

## 5 Andorra    2009      92.9

## 6 Argentina  1984      78.6

# years # shows only 7 records in 1984 so we will select years 1993 - 2014

# they were recorded every 5 years

# we will remove 1984 from the data

# then we will pivot the data wider

happiness1 = happiness %>%

  �lter(year > 1984) %>%

  pivot_wider(names_from = year,

              values_from = pct_happy) %>%

  rename(wave1 = `1993`,
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         wave2 = `1998`,

         wave3 = `2004`,

         wave4 = `2009`,

         wave5 = `2014`) %>%

  select(country, wave1, wave2, wave3, wave4, wave5)

  

# happiness1 %>% head() shows us the data in desired format

# Now we prepare the means and covariance matrix

happy_mean = c(mean(happiness1$wave1, na.rm = T),

               mean(happiness1$wave2, na.rm = T),

               mean(happiness1$wave3, na.rm = T),

               mean(happiness1$wave4, na.rm = T),

               mean(happiness1$wave5, na.rm = T))

# happy_mean

# covariance matrix of the �ve time points

happy_cov = happiness1 %>%

  select(wave1, wave2, wave3, wave4, wave5) %>%

  cov(use = "complete.obs")

Now that we have the means and the covariance matrix, we are ready to code and �nd out whether over

time, the proportion of people who report they are happy in the happiness surveys are increasing. Besides,

we would learn the baseline levels of proportions of people who were happy and the rate of change of that

state. Here are the �ndings and the code:

# build the model (unconstrained, simple model)

happiness_model = '

    i =~ 1 * wave1 + 1 * wave2 + 1 * wave3 + 1 * wave4 + 1 * wave5

    s =~ 0 * wave1 + 5 * wave2 + 10 * wave3 + 15 * wave4 + 20 * wave5

    wave1 ~~ r * wave1

    wave2 ~~ r * wave2
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    wave3 ~~ r * wave3

    wave4 ~~ r * wave4

    wave5 ~~ r * wave5

'

# then we �t the model

happiness_�t = growth(happiness_model,

                       sample.cov = happy_cov,

                       sample.mean = happy_mean,

                       sample.nobs = 300)

sum_happy = summary(happiness_�t)

## lavaan 0.6-8 ended normally after 89 iterations

## 

##   Estimator                                         ML

##   Optimization method                           NLMINB

##   Number of model parameters                        10

##   Number of equality constraints                     4

##                                                       

##   Number of observations                           300

##                                                       

## Model Test User Model:

##                                                       

##   Test statistic                              1439.300

##   Degrees of freedom                                14

##   P-value (Chi-square)                           0.000

## 

## Parameter Estimates:

## 

##   Standard errors                             Standard

##   Information                                 Expected

##   Information saturated (h1) model          Structured
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## 

## Latent Variables:

##                    Estimate  Std.Err  z-value  P(>|z|)

##   i =~                                                

##     wave1             1.000                           

##     wave2             1.000                           

##     wave3             1.000                           

##     wave4             1.000                           

##     wave5             1.000                           

##   s =~                                                

##     wave1             0.000                           

##     wave2             5.000                           

##     wave3            10.000                           

##     wave4            15.000                           

##     wave5            20.000                           

## 

## Covariances:

##                    Estimate  Std.Err  z-value  P(>|z|)

##   i ~~                                                

##     s                -0.938    0.172   -5.469    0.000

## 

## Intercepts:

##                    Estimate  Std.Err  z-value  P(>|z|)

##    .wave1             0.000                           

##    .wave2             0.000                           

##    .wave3             0.000                           

##    .wave4             0.000                           

##    .wave5             0.000                           

##     i                72.631    0.328  221.480    0.000

##     s                 0.614    0.024   25.847    0.000

## 

## Variances:

##                    Estimate  Std.Err  z-value  P(>|z|)
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##    .wave1      (r)   19.522    0.920   21.213    0.000

##    .wave2      (r)   19.522    0.920   21.213    0.000

##    .wave3      (r)   19.522    0.920   21.213    0.000

##    .wave4      (r)   19.522    0.920   21.213    0.000

##    .wave5      (r)   19.522    0.920   21.213    0.000

##     i                20.549    2.691    7.635    0.000

##     s                 0.091    0.014    6.380    0.000

param_happy = parameterEstimates(happiness_�t)

�t_happy = �tMeasures(happiness_�t)

#modi�cationIndices(happiness_�t)

As this analysis suggests:

About 72% people over the world population reported that they were happy or satis�ed in 1993

Over time, more people tended to report they were happy over subsequent surveys

Countries that started with lower percentage of their people reporting in surveys they were happy, had a

faster rate of growth over subsequent waves

While our analysis borne this, you can also view the results reported graphically on the ourworldindata

website as shown in the following �gure:

Figure 8. Trend in reporting of happiness
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Shared they were happy across time span, Ourworld in data as the source

  As you can see in this �gure, countries such as Russia and Zimbabwe, that started at the lower end of the

graphs had steeper upward slopes reporting happiness over time, while countries that started with higher

proportion of people as happy tended to have slower trajectory of growth reporting happy people in

subsequent waves. Overall, people do seem to get happier over time, at least till 2014 starting from 1993.

Summary

In this tutorial, we provided a brief roundup of using structural equation modelling as an analytical

strategy. Structural equation modelling is a mix of regression and factor analysis, and as you may have

seen, this can be used for validation of surveys and questionnaires, reducing data, linear regression

modelling, analysis of group di�erences, twin data analyses, and growth curve modelling. We used worked

out examples to show where you can start with simple measurement models, then transform or modify

them to test how well they �t the data, and in the same modelling strategy, you can test regression as in

testing structural models. Longitudinal studies and twin studies are di�erent from measurement models

and structural models in the sense that they need theoretical understandings to �x and constrain

parameter estimates, and also for longitudinal studies, our goal is to �nd the parameters for latent
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intercepts and slopes, as we constrain the parameters that explain variance of the time bound values of

variables. While SEMs are powerful strategies, one needs to be careful to deal with missing values, extreme

outliers, non-normal distribution of the variables, and categorical variables. Lately, SEM strategies are

being used to model non-parametric equations as in (Structural Causal Models)

[https://www.causal�ows.com/structural-causal-models/]. We have also not touched the issues of model

speci�cation, interpretation of modi�cation indices, and sample size estimation. In subsequent extensions

to this in�ammation, we will discuss these issues.
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