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Crop yield prediction is signi�cant for global food security and economic systems. Numerous

algorithms for machine learning have been utilized to support crop yield prediction due to the

increasing complexity of factors in�uencing plant growth. Machine learning (ML) models are quite

tedious because the models of ML for agriculture-based are complex. This study combines several

models to build a sturdy and accurate model. Linear regression predicts a measurable response using

various predictors and assumes a linear relation between the response variable and predictors. This

research study explores the adoption of machine learning methods for crop yield prediction and

their potential to support sustainable growth of crop yields. The dataset was collected from two main

sources: i) the Department of Statistics Jordan and ii) the climate change knowledge portal, which is

used to train the proposed model; and the availability of large datasets has cleared the path for the

application of ML techniques in crop yield prediction. Nine ML regression analysis algorithms were

tested to predict the crop yield; more than one algorithm gave very good results in prediction.

XGBoost, multiple linear regression, Random forest, and Lasso regression give low mean squared

errors of 0.092, 0.024, 0.023, and 0.023. Crop prediction may be remarkably useful from ML

algorithms, but there are many challenges. One of these challenges is the quality of the data and the

data volume, where machine learning algorithms need large data. Further, because of the intricacy

of agriculture systems, developing ML models can be challenging. In this research study, the

strengths of optimization and machine learning are integrated to build a new predictive model for
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crop yield prediction. The developed integrated model in this study contributes to increasing the

e�ciency of crop production, and reducing prices when food shortages are found. In addition, the

proposed model supports the crop prediction process, where crop prediction has a vital role in

agricultural planning and procedures for making decisions. ML algorithms are an essential

instrument for decision assistance for crop prediction, either in supporting decisions on the suitable

to grow. The algorithm's performance may be improved by applying more innovative techniques.

The developed model helps policymakers on precise forecasts, to make suitable evaluations of

imports and exports to strengthen food security nationwide.

Corresponding author: Muneer Nusir, moneer.techno@gmail.com

I. Introduction

The escalating challenge in the global agricultural �eld is to strive to meet the increasing food, feed,

�ber, and bioenergy requirements. It faces climate change averseness and declines in natural

resources  [1][2]. Agriculture must therefore �nd innovative solutions to increase productivity while

minimizing its impacts on the environment and ensuring food security. Adopting ML methods for

crop yield prediction is a pivotal issue as the crop yield to which humanity is growing is increasingly

prone to threats from various sources  [3]. The gap between the availability and desire for food is

signi�cant and increasing with time [4].

By 2050, food security is predicted to become one of the greatest global challenges; this coincides with

the world population reaching 9.7 billion, equivalent to 20.6% of the current population  [5][6]. It

implies that up to 30%–40% of the food produced goes bad in developing countries before �nding

consumers’ hands [7].

The rapid growth in population and the e�ects of climate change generating severe weather

conditions have increased pressure on global agriculture to produce more [2]. There is a growing need

for creative, sustainable methods that can improve yield while simultaneously ensuring food quality

and safety. The nature of the ML algorithms used in this paper is believed to be a particularly

interesting mechanism. It provides a more transparent and di�erentiated solution than those

developed by traditional econometric models, decision trees, and even previous works related to the

issue [8][9]. 

qeios.com doi.org/10.32388/DOABKQ 2

mailto:moneer.techno@gmail.com
https://www.qeios.com/
https://doi.org/10.32388/DOABKQ


In this context, yield forecasting is a crucial duty for agriculture. The crop yield prediction strategies

and processes are nonlinear and change with time  [10]. An accurate prediction supports creating

strategic policies before reaching a crisis level in the agricultural economy caused by a food shortage.

Improving crop yield prediction can increase agricultural output and lead to economic consequences.

Traditionally, experts in farm management and agricultural economics relied heavily on farming-

associative economic factors or historical yield data[11][12].

These data on their own are insu�cient since they do not precisely capture how economic models,

which are based on agronomic principles, make yield predictions. Researchers in the area of

forecasting agricultural yields have tried to resolve this lack of precise knowledge about the link

between economic theory and �eld-level conditions by incorporating both �eld features’ details (i.e.

year, average yield, planted area, harvested area, production, and crop type) and against the

prediction of crop production’s attributes (i.e., temperature mean, temperature maximum,

temperature minimum, and precipitation). However, variability between �elds causes much of the

di�culty in making accurate predictions. Recent developments in ML techniques and remote sensing

data o�er great potential to increase yield predictions by exploiting spatial �eld-level variability [13]

[14].

 Over the last ten years, ML approaches have been conducted on a variety of agricultural systems to

deliver more accurate solutions. This is mainly because ML techniques can handle very complicated

nonlinear agricultural issues [15][16]. Instead of assuming the functional form, probability distribution,

or smoothness of the data model, as classic statistical approaches do, ML makes no such

assumptions [8][17].

According to  [8], ML approaches can ascertain the correlation between independent and dependent

variables through data analysis. ML approaches rely on structures that are non-parametric and semi-

parametric, and their validity is determined by precision in predictions. If the class and other

properties ful�ll certain probability distributions, a non-parametric technique does not need any

previous presumptions on those distributions' shape [9]. A proposed model is developed to e�ciently

predict the harvest production surpassing by conserving the valid data distribution with a precision of

93.7% [10] using a deep learning algorithm.

In this research, several regression models for predicting the yield of crops like wheat, cotton, and

lentils are applied depending on soil weather and crop parameters. ML methods are conducted to train
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the models. To predict crop yield, linear regression models, lasso regression, random forest

regression, XGboost, SVM regression, decision tree analysis, ridge regression, Elastic Net regression

and polynomial regression are utilized in this research study. The main aim of the present study is

conducted and achieved through the following objectives:

To predict the crop yield, help the future conditions of the production level of the yield, and then

help the farmers to avoid loss.

To determine if the integrated model can achieve better crop prediction and which model provides

more accurate prediction.

To evaluate several ML algorithms and identify which technique is the most precise prediction of

point-scale yield.

Overall, the structure of the proposed research o�ers an extensive exploration of the topic, and the

literature review elaborates on the review of the literature to identify research gaps. Research

methodology is achieved through regression models based on ML methods, followed by a case study

that provides practical applications and an in-depth discussion of the �ndings, leading to a well-

supported conclusion. 

II. Literature Review and Related Work

A. E�ectiveness of Factors In�uencing Crop Yield

Understanding the relation between soil properties and characteristics for agriculture processes and

crop yield production is crucial. Crop yield is in�uenced by a variety of weather and soil parameters,

making it a complex phenomenon. In addition to uncontrollable factors such as climate and soil

conditions, many controllable factors a�ect crop yield, including farming practices, types and

amounts of fertilizers used, and irrigation frequency. Given this complexity, it is crucial to measure

the in�uence of these di�erent factors on crop yield. The following section reviews research

conducted in this area.

The impact of machine learning on various industries and the utilized methodologies in di�erent

research studies have been presented  [18]. The study by Majumder et al., (2020) investigated how

di�erent land use practices a�ect surface temperature variations and their negative impacts on rice

and wheat crop yields. Conducted across three distinct climatic regions in Punjab, the research
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classi�ed satellite data into four primary land use and land cover (LULC) categories: water, vegetation,

built-up areas, and plain soil. The �ndings revealed that areas transitioning from agriculture, plain

soil, and forests to urban development experienced a rise in temperatures. Additionally, the

Normalized Di�erence Vegetation Index (NDVI) was found to have a positive correlation with rice and

wheat yields but a notably negative correlation with Land Surface Temperature (LST).

The impact of various climatic factors on wheat yield in Northwest India was reviewed by  [19]. The

study analyzed key elements such as daily temperature, precipitation, variability of groundwater, and

index of evapotranspiration. It was found that a rise in the number of days with temperatures

surpassing 35°C during the wheat maturation phase resulted in lower yields. Moreover, the depletion

of groundwater and surface water for irrigation, caused by insu�cient rainfall during the wheat-

growing season (November–March), worsened the situation. As a result, the combination of high

temperatures, severe water scarcity, and reduced irrigation signi�cantly contributed to the decline in

wheat yields. Additionally, the study discussed and analyzed several classi�cation algorithms. The

results demonstrated a high classi�cation accuracy, with the Bayes Net algorithm achieving 99.59%

and the Naïve Bayes Classi�er and Tree algorithms reaching 99.46% accuracy[18].

B. Machine Learning Techniques for Predicting Crop Yield

Crop yield production poses a signi�cant challenge in precision agriculture, primarily due to the

complex interplay of factors such as weather, soil conditions, climate, and fertilizer usage  [20].

Accurate and timely crop yield forecasting before harvest is crucial, yet it remains a di�cult task for

researchers because of the wide variety of in�uencing factors. However, recent advancements in

machine learning have demonstrated considerable promise in overcoming this challenge. By

analyzing various features, machine learning tools can identify patterns and correlations within

datasets, leading to improved yield predictions. For these models to be e�ective, they must be trained

on comprehensive datasets collected from relevant sources [21].

  ML algorithms are generally divided into two primary categories: supervised and semi-supervised

learning. Predicting crop yield is a crucial component of the decision-making process, as it aids

farmers in planning and making informed decisions for the future [4].

Accurate crop yield prediction can assist farmers in determining what to grow and the optimal timing

for planting [10]. By identifying factors and areas that could lead to adverse growing conditions, yield

predictions help reduce losses. Additionally, these predictions can be used to assess and optimize
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growing conditions, potentially enhancing crop growth [22]. The following section reviews a range of

machine-learning techniques employed for predicting crop yield across di�erent crop varieties.

Various approaches and tools have been employed to explore the relationships between crop yield and

soil properties  [23]. Multiple regression models and correlations are commonly utilized to achieve

these goals [24].

ML serves as a vital decision-support tool for crop yield prediction. This research involves performing

and training various algorithms, including linear regression, LASSO regression, random forest

regression, decision tree regression, polynomial regression, ridge regression, Elastic Net regression,

and Extreme Gradient Boosting (XGBoost). An explanation of these algorithms is provided in the

following section.

1. Linear regression is a statistical technique used to model the relationship between a numerical

outcome and one or more explanatory variables. When multiple inputs are involved, an iterative

method can be used to optimize the coe�cient values by minimizing the model's error on the

training data. This optimization process, known as Gradient Descent, starts with random

coe�cients and adjusts them iteratively to reduce the error. The process continues until the sum

of squared errors is minimized or no further improvement can be achieved [25].

2. Decision tree regression is a technique that utilizes a �owchart-like tree structure to represent

decisions and their potential outcomes, including input costs and bene�ts. It falls under

supervised learning algorithms and can handle both continuous and categorical output variables.

When employed to predict continuous-valued outputs, it is known as a regression tree. This

method is particularly e�ective in scenarios where the relationship between variables is non-

linear. However, a notable drawback of decision tree regression is the risk of over�tting [26].

3. Random Forest is a supervised algorithm applicable for both classi�cation and regression tasks.

It works by combining multiple decision trees through a technique called Bootstrap Aggregation,

or bagging. Each decision tree is trained on a di�erent sample of the data, which helps reduce the

overall variance compared to individual trees. The �nal prediction is based on the collective

output of all the trees, with the result in regression being obtained by averaging the outputs of

each tree [27].

4. XGBoost is a form of ensemble learning that systematically combines the predictive strengths of

multiple models to create a single, more accurate model. In XGBoost, the base learners might

individually perform poorly on certain predictions, but when combined, their errors tend to
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o�set each other, allowing the more accurate predictions to prevail. This cumulative e�ect of

combining models leads to improved �nal predictions [28].

5. Polynomial regression, introduced by Drucker et al., (1997), extends traditional regression

analysis to handle non-linear relationships between a dependent variable and one or more

independent variables. While simple linear regression is suitable for linear relationships,

polynomial regression allows for more complex, non-linear relationships by �tting a polynomial

equation to the data. This approach can be used in both simple and multiple regression scenarios

to capture the intricacies of variable interactions that linear models might miss.

6. Ridge regression is a technique used to tackle multicollinearity issues in data. While Ordinary

Least Squares (OLS) estimates are unbiased, they can have large variances, resulting in observed

values that may deviate signi�cantly from the true values. Ridge regression addresses this

problem by reducing standard errors and stabilizing the estimates. However, unlike some other

methods, ridge regression does not set any coe�cients to zero, so it cannot simplify the model or

make it more parsimonious [29].

7. Support Vector Machine (SVM) regression aims to �nd a hyperplane in an N-dimensional space

(where N is the number of features) that best separates data points into distinct classes. Although

multiple hyperplanes could separate the classes, the goal is to identify the one that maximizes

the margin. By maximizing this margin, the model improves its ability to classify future data

points with greater accuracy and con�dence [30].

8. Lasso regression, introduced by Tibshirani, (1996), addresses the limitation of ridge regression

by performing variable selection. While ridge regression reduces standard errors without setting

any coe�cients to zero, Lasso regression shrinks less important regression coe�cients to

exactly zero. This results in a simpli�ed and more parsimonious model. For improving the

accuracy of crop production forecasts, Lasso can be particularly e�ective as it selects the most

important predictor variables, reduces the number of predictors in the model, and enhances the

e�ciency of identifying key predictors.

9. Elastic Net Regression, introduced by Zou and Hastie, (2005), was developed to overcome the

limitations of both ridge and LASSO regression. While LASSO is e�ective at eliminating variables

by setting some coe�cients to zero, and ridge regression is better suited for handling highly

correlated variables, neither method is ideal when dealing with a large number of variables with

unknown degrees of correlation. Elastic Net addresses this by combining the penalties of both
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LASSO and ridge regressions, making it more suitable for estimating functions in situations

where variable correlation is complex or unknown.

A yield forecast model for rice crops was created using four distinct techniques. The models were built

using 15 years of meteorological and crop yield data and validated with a three-year dataset. Their

performance was assessed using various metrics. The experimental analysis revealed that the

Arti�cial Neural Networks (ANN) model outperformed the others, demonstrating its high

e�ectiveness and suitability for predicting rice yield in the Udham Singh Nagar (USN) district of

Uttarakhand.

A proposed work utilizes a recurrent neural network deep learning algorithm to forecast crop yield,

e�ectively predicting yields with very high accuracy while preserving the original data

distribution [10]. Additionally, a ML model for predicting farm production was developed by [31]. This

model involved training six di�erent supervised regression techniques. Among these, Random Forest

Regression showed the best performance, achieving a Mean Absolute Error (MAE) of 468.16 and a

Cross-Validation Score of 0.6087, surpassing the other models.

ML Classi�cation Models were used by Anakha et al., (2021) to forecast crop output based on various

factors. The study employed several classi�ers. The authors emphasize that precision farming should

prioritize quality over environmental factors. The research covered 14 districts in Kerala, detailing

various aspects. Users can register using a mobile app, input their location and region, and access the

system. Among the models, Logistic Regression achieved an accuracy of 87.8%, Naïve Bayes reached

91.58%, and the Random Forest Classi�er, utilizing Bagging, had the highest accuracy at 92.81%. The

Random Forest model's accuracy on test data was 91.34%. The research aims to enhance the e�ciency

and e�ectiveness of crop cultivation.

Wheat crop yield estimation was performed using a Support Vector Regression (SVR) model [32]. The

study tested several models, including nine base learner models and two ensemble models. SVR

exhibited the highest learning e�ciency among the nine models tested. Despite the higher cost of

ensemble models, they did not signi�cantly enhance accuracy. Additionally, increasing the amount of

training data improved performance across all models. In another study, the e�ectiveness of machine

learning techniques for predicting corn yield in Iowa State was examined using remote sensing data.

The results indicated that machine learning methods are e�ective for yield estimation, with Deep

Learning (DL) delivering particularly stable and favorable outcomes [33].
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In this paper, several regression models are performed and trained. The proposed research

methodology to develop the model is explained in the following section.

III. Research Methodology

Due to the complexity of machine learning models for the agricultural-based, creating the machine

learning models is quite tedious. The modeling problem can be re�ected as either a classi�cation or a

regression-based problem[34]. This study uses the agriculture dataset from the Department of

Statistics in Jordan and weather data to train the proposed model [35]. 

This dataset from the Department of Statistics includes 5 crop details from 1999 to 2022. There are a

total of six columns; year, average yield, harvested area, planted area, crop type and production.

Production is the target variable; the prediction of crop production or yield depends on the remaining

5 attributes in the dataset. Data from the second source contains temperature mean (T-mean, ◦C),

maximum temperature T-max in ◦C, minimum temperature T-min in ◦C, and precipitation (Prcp,

mm) of Jordan from 1999 to 2022. The description of the dataset is given in Table 1. The dataset is

preprocessed before exploratory data analysis. Planted area and harvested area are the number of

acres each year from 1999 till 2019, average yield represents yield or production from harvested, and

production is presented in metric tons. Temperature is in centigrade and precipitation is in

millimeters. Exploratory data analysis (EDA) of the dataset is discussed in detail in the result analysis

section.

Machine learning models can be leveraged in agriculture for early detection of crop disease

identi�cation, crop yield prediction, weather forecasting, crop price prediction, and species

identi�cation  [36]. Results from machine learning models are vital information for farmers in

informed decision-making at each step in agriculture. The general steps followed by farmers are as

follows; the �rst step is about the selection of crops. The second step is regarding the preparation of

the land, the third step is seed sowing and the fourth Step is about irrigation & fertilizing. After that

the crop maintenance step is started then the harvesting step begins and �nally the post-harvesting

activities start [37]. The executed methodology for this research is described in Figure 1. Step 1 is data

collection from multiple sources, step 2 is data preprocessing where data is cleaned by removing null

values and outliers, step 3 is exploratory data analysis, in step 4 the data is split into test data and train

data, step 5 is training the machine learning model of training dataset and step 6 is result analysis

after testing the model in the test dataset.
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The following steps explain the process of collecting data, processing, exploring, splitting data, and

training data.

1) Data Collection

First-step data is collected from the website of the Department of Statistics Jordan and the climate

change knowledge portal. Data is downloaded in comma-separated value (CSV) format. The

Department of Statistics provides data and reports on the socioeconomic aspects of Jordan, including

the environment, agriculture, and much more.

  Column name Datatype Values

1 Year Date Year

2 Planted area Floating point Dunum or Acre

3 Harvested area Floating point Dunum or Acre

4 Average yield Floating point Metric Tons per Dunum

5 Production Floating point Metric Tons

6 Crop String Wheat, barley, lentil, chickpea, vetch

7 Temperature Minimum Floating point Minimum temperature of the year

8 Temperature Maximum Floating point Maximum temperature of the year

9 Temperature Mean Floating point The mean temperature of the year

10 Precipitation Floating point Millimeter (mm)

Table 1. Dataset Description

2) Data Preprocessing

Preprocessing of data after collection. Python programming is used in this study and Jupyter Notebook

is the development environment. The �les including EDA and machine learning models are uploaded

to GitHub for public access  [38]. During data preprocessing the dataset is loaded as a pandas data

frame. The �rst step is to check for any null values and zero variance columns. The crop column is
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encoded from string to binary for EDA, one hot encoding technique is applied to convert this column

which results in the addition of new columns separate for each crop; crop Wheat, crop_Barley,

crop_Chickpea, crop_Lentil and crop Vetch. With the addition of these columns, the total number of

columns changed from 10 to 13. Encoding allows the machine learning algorithm to perform

better  [39]. The planted area and harvested area columns represent acres of land where a crop is

planted and harvested, and the production column presents metrics tons of crop yield, these values

are large �oating point numbers. Large numbers a�ect the machine learning model performance, thus

these columns are transformed with smart transform and log transform. Smart transform is applied

on independent variables, and log transformation on dependent variable ‘Production’. After

preprocessing the data next step is to conduct exploratory data analysis (EDA).

Figure 1. Proposed Research Methodology for Crop Yield

Prediction

3) Exploratory Data Analysis (EDA)

EDA presents the basic information, data interpretability, and visualization of the data to make it clear

and simple to understand [39]. Production and average yield of each crop by year (2000-2020) can be
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visualized with data of each crop in Figure 2.

Figure 2. Yearly Production of Crops

The dataset here is of 13 columns among which the ‘Production’ column is the target column which is

being predicted or measured using the machine learning models, and the remaining 12 columns are

independent columns which are used in predicting and measuring the target column. All of the

columns contribute to predicting the production by calculating the correlation between the

independent and target variables. To �nd the correlation, Pearson's Correlation Coe�cient method is

applied and the results are shown in Table 2. Pearson correlation coe�cient measures the strength of

the linear relationship between 2 quantitative variables. If the value of this coe�cient is close to -1 or

1, this indicates a strong linear relation between these two variables. If the value is close to 0 indicates

poor correlation. Equation 1 represents Pearson’s correlation coe�cient. Harvested area and Planted

area columns contribute the most in predicting the production.

r = (n * Σxy - Σx * Σy) / sqrt((n * Σx^2 - (Σx)^2) * (n * Σy^2 - (Σy)^2        (1)
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Year 0.162050

Planted Area 0.732012

Harvested Area 0.935576

Temp_mean 0.050504

Temp_min 0.093477

Temp_max 0.007114

Precipitation 0.169525

Average Yield -0.117689

crop_Barley 0.634870

crop_Chickpea -0.284775

crop_Lentil -0.338342

crop_Vetch -0.325990

crop_Wheat 0.314238

Production 1.000000

Table 2. Correlation coe�cients

4) Split data to train and test

After preprocessing the data and before building the ML model, the data is split into training and

testing sets to measure the model’s performance [40]. Machine learning algorithms are used to train

the models. The split dataset is categorized into four groups: X-test, X-train, Y-test, and Y_train.

X_train and y_train are used to train the model. X_test is the input to the model which predicts and

generates the results as y_pred. Predicted output is compared with y_test to evaluate the model

performance  [41]. To predict production, multiple machine learning algorithms are applied in this

research, including linear multiple regression, ridge regression, lasso regression, polynomial

regression, elastic net regression, random forest regression, SVM regression, decision tree regression,

and XGBoost.
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5) Training machine learning models

Multiple linear regression (MLR) is a powerful algorithm for understanding the relation between

variables. It establishes a linear relation between dependent and independent variables. When the

linear regression model is trained it can be utilized to predict production with new data points.

Outliers in the data will skew the results signi�cantly. MLR models the relationship between the

multiple independent variables and the dependent variable. Equation 2 represents multiple linear

regression, where ŷ (y-hat) represents the predicted value of the dependent variable based on

independent variables, β₀ (beta-naught) is the y-intercept, which represents the predicted value of

dependent variable (y) when all the independent variables are zero, β₁ (beta-one) to βₙ (beta-n) are the

regression coe�cients for each independent variable (x₁ to xₙ) and ε (epsilon) represents the error

term.

ŷ = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ + ε        (2)

Lasso regression extends the principles of linear regression by integrating a regularization term to

deal with problems such as over�tting and variable selection. The Lasso regression formula is

represented in equation 3 [42].

minimize: 1/2 * Σ(y_i - β_0 - Σβ_j * x_ij)^2 + λ * Σ|β_j|        (3)

Polynomial regression is a statistical technique that models the relation between dependent and

independent variables using a polynomial function of degree n, e is the error term as shown in

equation 4. Polynomial regression, unlike linear regression, can capture complex and non-linear

patterns, rather than assuming a linear relationship.

y = b0 + b1*x + b2*x^2 + b3*x^3 + ... + bn*x^n + e        (4)

Ridge Regression is a statistical technique utilized to analyze multiple regression data that is a�ected

by multicollinearity. The objective is to improve the accuracy of prediction and stability of the model

by combining a penalty term into the ordinary least squares (OLS) estimation. The formula for the

ridge regression is equation 5.

β = (X^T X + λI)^-1 X^T y        (5)

Elastic Net regression is a regularization method that incorporates the advantages of Ridge and Lasso

regression. The objective is to overcome the limits of each unique method while capitalizing on their

advantages. As shown in equation 6 λ1 and λ2 are the regularization parameters.
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minimize: 1/2 * Σ(y_i - β_0 - Σβ_j * x_ij)^2 + λ1 * Σ|β_j| + λ2/2 * Σβ_j^2        (6)

Support Vector Machines (SVM) are typically utilized for classi�cation, however, in this case, they are

being applied to regression problems. The aim is to identify a hyperplane that optimally

accommodates the dataset while accounting for a speci�c margin of error. The initial component in

the objective function shown in equation 7 represents the complexity of the model, whereas the next

component quanti�es the degree of error. The regularization parameter C determines the balance

between accurately �tting the data and the model complexity.

minimize: 1/2 ||w||^2 + C * Σ(max(0, |y_i - w^T x_i - b| - epsilon)        (7)

Decision tree regression is a non-parametric technique that builds a model like a tree to represent

decisions and their potential outcomes, which includes chance events, costs of resources, and utility.

The algorithm initiates by identifying the optimal feature to divide the data. The data is separated into

subsets according to the split. This procedure is iteratively performed for each subset, generating new

nodes and branches until the end condition is satis�ed. Although decision tree regression does not

have a speci�c formula, its algorithmic methodology makes it a robust and easily understandable

solution for a wide range of regression situations.

Random forest is one of the powerful supervised machine learning algorithms (classi�cation and

regression tasks are performed). Random forest builds multiple decision trees at the training time and

generates outputs of the classi�cation and regression for the individual trees. Greater tree density in a

forest leads to more accurate predictions  [21][42]. Random Forests is a non-parametric advanced

classi�cation and regression tree (CART) analysis method. CART includes multiple decision trees; it

combines the predictions from di�erent decision trees in the forest as shown in equation 8 [33].

Minimize: (1/2N) Σ(yi - ŷi)^2 + λ Σ|βj|        (8)

XGBoost, short for eXtreme Gradient Boosting, is an ensemble learning technique using gradient

boosting. The model is constructed by iteratively including decision trees, each tree attempting to

enhance the predictions made by the preceding ones. Equation 9 shows the fundamental concept of

XGBoost. ŷ(x) is the predicted value for a new data point (x), f_0(x) is an initial prediction, Σ f_t(x) is

the sum of predictions from all the T decision trees in the ensemble. f_t(x_t) represents the

prediction made by the decision tree and T is the total number of trees in the XGBoost model [43].

ŷ(x) = Σ f_t(x) = f_0(x) + Σ f_t(x_t) where t = 1 to T        (9)
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IV. Results and Discussion

This study emphasizes on security of the food supply chain in Jordan, particularly examining the

trends and factors a�ecting crop yields. By employing exploratory data analysis (EDA), the research

aims to uncover patterns and relationships among various agricultural variables without relying on

pre-established hypotheses.

Key aspects of the study include:

Planted and Harvested Areas: The study compares the planted and harvested areas of di�erent

crops, with a speci�c focus on wheat and barley. These crops show signi�cant di�erences in their

planted and harvested areas compared to other crops.

Trends Over Time: The research highlights a concerning trend of decreasing planted areas since

1999. This decline prompts a need for increased plantation e�orts and a deeper investigation into

the underlying causes.

Annual Production: The study measures the annual production of various crops in metric tons per

year, identifying barley and wheat as the most highly produced crops in Jordan.

The �ndings aim to inform agricultural policies and practices, help to de�ne the challenges faced by

the agriculture sector, and improve crop yields in the future.

Exploratory data analysis (EDA) reveals patterns and relationships among variables without the need

for prior hypotheses. This study identi�es various relationships among data variables. Figure 3

illustrates the planted and harvested areas of crops, highlighting signi�cant di�erences between

wheat and barley compared to other crops. Notably, the planted area has been decreasing since 1999,

underscoring the need to increase plantation e�orts and investigate the causes behind this decline.

The annual production of di�erent crops is measured in metric tons per year, with barley and wheat

being the most highly produced crops in Jordan.
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Figure 3. Comparison of planted area and harvested area

Various error metrics were applied, including (MSE), (MAE), R-squared, (RMSE) and (MAPE) to assess

the performance of the ML model. The results of these error metrics for all models are tabulated in

Table 3. Multiple linear regression models were employed to predict production based on the linear

relation between the target variable and independent variables. The model attained an R-squared

value of 0.994 and MSE of 0.024.

The results indicate that the model captures a signi�cant portion (99.4%) of the variance in the

dependent variable. Lasso regression, a type of linear regression, incorporates both feature selection

and regularization techniques into the model training process. The cost function is modi�ed by adding

an L1 penalty term, which penalizes the total absolute values of the model coe�cients. The Mean

Squared Error (MSE) of the Lasso regression model is 0.023, and the R-squared value is 0.995. This

high R-squared value signi�es that the model’s predictions on the test data exhibit substantial

accuracy. This implies that the current model setup accurately represents the relationship between

features and production. Prediction errors over the test years using several algorithms are analyzed

and the comparison for each algorithm is tabulated in Table 3. 
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Method MSE MAE MAPE R-Squared RMSE

Multiple linear regression 0.024 0.106 1.27% 0.994 0.156

Lasso regression 0.023 0.104 1.23% 0.995 0.153

Polynomial Regression 0.238 0.087 3.34% 0.981 0.296

Ridge Regression 0.035 0.126 1.45% 0.992 0.187

ElasticNet Regression 1.308 0.995 13.73% 0.725 1.143

SVM Regression 0.271 0.368 4.66% 0.943 0.521

Decision Tree Regression 0.243 0.368 5.19% 0.948 0.493

Random forest 0.023 0.108 1.57% 0.993 0.153

XGBoost 0.092 0.236 3.25% 0.980 0.303

Table 3. Result of multiple models

The Random forest revealed signi�cantly higher performance compared to the linear regression

model. With an Out-of-Bag (OOB) score of 0.733, it shows a high level of generalization ability,

indicating e�ective performance on unseen data. The mean squared error (MSE) of 0.023 is

signi�cantly lower than that of the decision tree regression model, re�ecting more precise and

accurate predictions on average. Additionally, the R-squared value of 0.993 proposes that the model

explains a signi�cant portion of the variability in the target variable.

These �ndings highlight the importance of choosing an appropriate model for the data. While linear

regression is often used as an initial approach, it may not be suitable for capturing complex

relationships. In contrast, random forest is more robust against non-linear relationships and noisy

data, leading to a signi�cantly better �t in this context.

The XGBoost method achieved an R-squared value of 0.980, indicating that it explains 98% of the

variance in the target variable (production) based on the independent features used. An R-squared

value of 0.980 is considered excellent, suggesting that the model captures a signi�cant portion of the

factors in�uencing production. Additionally, the (MSE) for the XGBoost model is 0.092.
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Lasso regression and random forest regression exhibit exceptionally low (MSE) and high R-squared

values. These results suggest that multiple models can e�ectively perform on the given dataset. Figure

4 presents a comparison of the (MSE) across all models, while Figure 5 illustrates the R-squared

scores.

Figure 4. Mean Squared Error for the applied Algorithms

Figure 5. R-squared Error for the applied Algorithms

Future scenario predictions are tested using dependent variable data generated through the moving

averages method, utilizing the average of the past �ve years. The dataset includes data up to 2019. The

qeios.com doi.org/10.32388/DOABKQ 19

https://www.qeios.com/
https://doi.org/10.32388/DOABKQ


columns for planted area, harvested area, and average yield data from 2020 to 2026 are generated

using moving averages, with temperature data also produced by the same method. The regression

analysis model predicts future production based on this input data generated through the moving

averages method (Basso and Liu, 2019).

Crop production from 2020 to 2026 has been predicted, with the results presented in Table 4. And

Figure 6. Crop production forecasts are primarily based on in-season variables, statistical regressions

between historical yields and �eld surveys. While �eld surveys remain the predominant method for

forecasting crop yields in most countries, statistical regression using historical data is also signi�cant

in predicting crop yields (Chen and Guestrin, 2016). 

Year Wheat Barley Lentil Chickpea Vetch

2020 175652.7 868176.6 22444.83 10285.62 7979.839

2021 184896.8 926955.3 13924.49 14804.36 8070.362

2022 200690.4 1247908 5489.831 14031.92 9654.13

2023 183149.2 1267007 2593.026 15373.58 5493.662

2024 166359.4 1299932 1873.166 11293.65 7236.073

2025 130390.9 1131512 18935.23 8763.661 6627.644

2026 80990.01 815371.2 31518.21 6792.26 4089.778

Table 4. Prediction of crop production with a linear regression model
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Figure 6. Prediction of crop yield (2020-2026)

V. Conclusion and Future Works

Predicting crop yields is essential for global food security and the economy. Given the increasing

complexity of factors in�uencing plant growth, various machine-learning algorithms have been

employed to support crop yield prediction. However, the complexity of these models makes their

development quite challenging, and creating machine learning models for agricultural purposes is a

tedious task due to the complexity involved.

This study integrates multiple models to create a robust and precise prediction system. Linear

regression, which predicts a measurable response using various predictors and assumes a linear

relationship between the response variable and predictors, is one of the methods used. Additionally,

the adoption of machine learning methods for crop yield prediction and their potential to support

sustainable growth is an exciting area of research. These �ndings could provide valuable insights for

enhancing agricultural productivity.

The research gathered extensive datasets from the Department of Statistics Jordan and the Climate

Change Knowledge Portal for training the proposed model. The utilization of large datasets has

signi�cantly enhanced the application of machine-learning techniques in predicting crop yields. Nine

machine learning regression algorithms were thoroughly tested, and the results were quite promising.

Notably, XGBoost, multiple linear regression, random forest, and Lasso regression exhibited
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impressive performance, achieving low mean squared errors of 0.092, 0.024, 0.023, and 0.023,

respectively.

Future studies should highlight the potential of machine learning to revolutionize crop yield

prediction and support sustainable agricultural practices. The future research trends in crop yield

prediction using machine learning are quite promising and diverse. A further study could assess the

long-term e�ects of integrating IoT and remote sensing, combining Internet of Things (IoT) devices,

and remote sensing technologies with machine learning models to gather real-time data on soil

conditions, weather, and crop health. This integration can enhance the accuracy and timeliness of

yield predictions. Furthermore, it is crucial to conduct research aimed at determining climate change

adaptation by developing models that predict crop yields under various climate change scenarios. This

involves integrating climate models and long-term weather forecasts to assess the impact of changing

climatic conditions on crop production. Additionally, there is a necessity to concentrate on leveraging

big data analytics to manage the substantial amount of data generated from diverse sources, including

satellite imagery, weather stations, and agricultural sensors.

This research has raised several important questions that demand further investigation. Here are the

key areas of focus: First, it is crucial to explore advanced techniques such as deep learning and hybrid

models. Models for deep learning, in particular recurrent neural networks (RNNs) and convolutional

neural networks (CNNs), are increasingly essential for capturing complex patterns in large datasets.

Second, we must emphatically utilize machine learning to drive precision agriculture practices,

optimizing resource use (e.g., water, fertilizers) and minimizing environmental impact while

maximizing crop yields. Third, it is imperative to incorporate genomic data to comprehensively

understand the genetic factors in�uencing crop yields, thereby enabling the development of crop

varieties that are more resilient to environmental stresses. Finally, there is an urgent need to focus on

making ML models more interpretable and transparent to yield valuable insights for helping farmers

and agricultural stakeholders understand the decision-making process of the models and trust their

predictions.
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