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Abstract

Crop yield prediction is significant for global food security and economic systems. Numerous algorithms for machine

learning have been utilized to support crop yield prediction due to the increasing complexity of factors influencing plant

growth. Machine learning (ML) models are quite tedious because the models of ML for agriculture-based are complex.

This study combines several models to build a sturdy and accurate model. Linear regression predicts a measurable

response using various predictors and assumes a linear relation between the response variable and predictors. This

research study explores the adoption of machine learning methods for crop yield prediction and their potential to

support sustainable growth of crop yields. The dataset was collected from two main sources: i) the Department of

Statistics Jordan and ii) the climate change knowledge portal, which is used to train the proposed model; and the

availability of large datasets has cleared the path for the application of ML techniques in crop yield prediction. Nine ML

regression analysis algorithms were tested to predict the crop yield; more than one algorithm gave very good results in

prediction. XGBoost, multiple linear regression, Random forest, and Lasso regression give low mean squared errors of

0.092, 0.024, 0.023, and 0.023. Crop prediction may be remarkably useful from ML algorithms, but there are many

challenges. One of these challenges is the quality of the data and the data volume, where machine learning algorithms

need large data. Further, because of the intricacy of agriculture systems, developing ML models can be challenging. In

this research study, the strengths of optimization and machine learning are integrated to build a new predictive model

for crop yield prediction. The developed integrated model in this study contributes to increasing the efficiency of crop

production, and reducing prices when food shortages are found. In addition, the proposed model supports the crop

prediction process, where crop prediction has a vital role in agricultural planning and procedures for making decisions.

ML algorithms are an essential instrument for decision assistance for crop prediction, either in supporting decisions on

the suitable to grow. The algorithm's performance may be improved by applying more innovative techniques. The

developed model helps policymakers on precise forecasts, to make suitable evaluations of imports and exports to

strengthen food security nationwide.

Qeios, CC-BY 4.0   ·   Article, September 5, 2024

Qeios ID: DOABKQ   ·   https://doi.org/10.32388/DOABKQ 1/22

https://www.qeios.com/read/DOABKQ#reviews
https://www.qeios.com/profile/93818
https://www.qeios.com/profile/93873
https://www.qeios.com/profile/93874
https://www.qeios.com/profile/93875


Muneer Nusir1,*, Mohammad Alshirah2, Sahar Al Mashaqbeh3, and Rayeh Alghsoon4

1Assistant Professor, Prince Sattam Bin Abdulaziz University, Alkharj, Riyadh, Saudi Arabia
2Associate Professor, Al al-Bayt University, Mafraq, Jordan
3Assistant Professor, the Hashemite University, Zarqa, Jordan
4Part-time Lecturer, Amman Al-Ahliyya University, Amman, Jordan 

*Corresponding author: Muneer Nusir (e-mail: moneer.techno@gmail.com)

 

Keywords: Crop Yield Prediction, Lasso regression, Machine Learning, Random forest, Regression, Smart Agriculture,

and XGBoost.

 

I. Introduction

The escalating challenge in the global agricultural field is to strive to meet the increasing food, feed, fiber, and bioenergy

requirements. It faces climate change averseness and declines in natural resources [1][2]. Agriculture must therefore find

innovative solutions to increase productivity while minimizing its impacts on the environment and ensuring food security.

Adopting ML methods for crop yield prediction is a pivotal issue as the crop yield to which humanity is growing is

increasingly prone to threats from various sources [3]. The gap between the availability and desire for food is significant

and increasing with time [4].

By 2050, food security is predicted to become one of the greatest global challenges; this coincides with the world

population reaching 9.7 billion, equivalent to 20.6% of the current population [5][6]. It implies that up to 30%–40% of the

food produced goes bad in developing countries before finding consumers’ hands [7].

The rapid growth in population and the effects of climate change generating severe weather conditions have increased

pressure on global agriculture to produce more [2]. There is a growing need for creative, sustainable methods that can

improve yield while simultaneously ensuring food quality and safety. The nature of the ML algorithms used in this paper is

believed to be a particularly interesting mechanism. It provides a more transparent and differentiated solution than those

developed by traditional econometric models, decision trees, and even previous works related to the issue [8][9]. 

In this context, yield forecasting is a crucial duty for agriculture. The crop yield prediction strategies and processes are

nonlinear and change with time [10]. An accurate prediction supports creating strategic policies before reaching a crisis

level in the agricultural economy caused by a food shortage. Improving crop yield prediction can increase agricultural

output and lead to economic consequences. Traditionally, experts in farm management and agricultural economics relied

heavily on farming-associative economic factors or historical yield data[11][12].

These data on their own are insufficient since they do not precisely capture how economic models, which are based on
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agronomic principles, make yield predictions. Researchers in the area of forecasting agricultural yields have tried to

resolve this lack of precise knowledge about the link between economic theory and field-level conditions by incorporating

both field features’ details (i.e. year, average yield, planted area, harvested area, production, and crop type) and against

the prediction of crop production’s attributes (i.e., temperature mean, temperature maximum, temperature minimum, and

precipitation). However, variability between fields causes much of the difficulty in making accurate predictions. Recent

developments in ML techniques and remote sensing data offer great potential to increase yield predictions by exploiting

spatial field-level variability [13][14].

 Over the last ten years, ML approaches have been conducted on a variety of agricultural systems to deliver more

accurate solutions. This is mainly because ML techniques can handle very complicated nonlinear agricultural

issues [15][16]. Instead of assuming the functional form, probability distribution, or smoothness of the data model, as

classic statistical approaches do, ML makes no such assumptions [8][17].

According to [8], ML approaches can ascertain the correlation between independent and dependent variables through data

analysis. ML approaches rely on structures that are non-parametric and semi-parametric, and their validity is determined

by precision in predictions. If the class and other properties fulfill certain probability distributions, a non-parametric

technique does not need any previous presumptions on those distributions' shape [9]. A proposed model is developed to

efficiently predict the harvest production surpassing by conserving the valid data distribution with a precision of

93.7% [10] using a deep learning algorithm.

In this research, several regression models for predicting the yield of crops like wheat, cotton, and lentils are applied

depending on soil weather and crop parameters. ML methods are conducted to train the models. To predict crop yield,

linear regression models, lasso regression, random forest regression, XGboost, SVM regression, decision tree analysis,

ridge regression, Elastic Net regression and polynomial regression are utilized in this research study. The main aim of the

present study is conducted and achieved through the following objectives:

To predict the crop yield, help the future conditions of the production level of the yield, and then help the farmers to

avoid loss.

To determine if the integrated model can achieve better crop prediction and which model provides more accurate

prediction.

To evaluate several ML algorithms and identify which technique is the most precise prediction of point-scale yield.

Overall, the structure of the proposed research offers an extensive exploration of the topic, and the literature review

elaborates on the review of the literature to identify research gaps. Research methodology is achieved through regression

models based on ML methods, followed by a case study that provides practical applications and an in-depth discussion of

the findings, leading to a well-supported conclusion. 

II. Literature Review and Related Work
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A. Effectiveness of Factors Influencing Crop Yield

Understanding the relation between soil properties and characteristics for agriculture processes and crop yield production

is crucial. Crop yield is influenced by a variety of weather and soil parameters, making it a complex phenomenon. In

addition to uncontrollable factors such as climate and soil conditions, many controllable factors affect crop yield, including

farming practices, types and amounts of fertilizers used, and irrigation frequency. Given this complexity, it is crucial to

measure the influence of these different factors on crop yield. The following section reviews research conducted in this

area.

The impact of machine learning on various industries and the utilized methodologies in different research studies have

been presented [18]. The study by Majumder et al., (2020) investigated how different land use practices affect surface

temperature variations and their negative impacts on rice and wheat crop yields. Conducted across three distinct climatic

regions in Punjab, the research classified satellite data into four primary land use and land cover (LULC) categories:

water, vegetation, built-up areas, and plain soil. The findings revealed that areas transitioning from agriculture, plain soil,

and forests to urban development experienced a rise in temperatures. Additionally, the Normalized Difference Vegetation

Index (NDVI) was found to have a positive correlation with rice and wheat yields but a notably negative correlation with

Land Surface Temperature (LST).

The impact of various climatic factors on wheat yield in Northwest India was reviewed by [19]. The study analyzed key

elements such as daily temperature, precipitation, variability of groundwater, and index of evapotranspiration. It was found

that a rise in the number of days with temperatures surpassing 35°C during the wheat maturation phase resulted in lower

yields. Moreover, the depletion of groundwater and surface water for irrigation, caused by insufficient rainfall during the

wheat-growing season (November–March), worsened the situation. As a result, the combination of high temperatures,

severe water scarcity, and reduced irrigation significantly contributed to the decline in wheat yields. Additionally, the study

discussed and analyzed several classification algorithms. The results demonstrated a high classification accuracy, with

the Bayes Net algorithm achieving 99.59% and the Naïve Bayes Classifier and Tree algorithms reaching 99.46%

accuracy[18].

B. Machine Learning Techniques for Predicting Crop Yield

Crop yield production poses a significant challenge in precision agriculture, primarily due to the complex interplay of

factors such as weather, soil conditions, climate, and fertilizer usage [20]. Accurate and timely crop yield forecasting before

harvest is crucial, yet it remains a difficult task for researchers because of the wide variety of influencing factors. However,

recent advancements in machine learning have demonstrated considerable promise in overcoming this challenge. By

analyzing various features, machine learning tools can identify patterns and correlations within datasets, leading to

improved yield predictions. For these models to be effective, they must be trained on comprehensive datasets collected

from relevant sources [21].

 ML algorithms are generally divided into two primary categories: supervised and semi-supervised learning. Predicting
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crop yield is a crucial component of the decision-making process, as it aids farmers in planning and making informed

decisions for the future [4].

Accurate crop yield prediction can assist farmers in determining what to grow and the optimal timing for planting [10]. By

identifying factors and areas that could lead to adverse growing conditions, yield predictions help reduce losses.

Additionally, these predictions can be used to assess and optimize growing conditions, potentially enhancing crop

growth [22]. The following section reviews a range of machine-learning techniques employed for predicting crop yield

across different crop varieties. Various approaches and tools have been employed to explore the relationships between

crop yield and soil properties [23]. Multiple regression models and correlations are commonly utilized to achieve these

goals [24].

ML serves as a vital decision-support tool for crop yield prediction. This research involves performing and training various

algorithms, including linear regression, LASSO regression, random forest regression, decision tree regression, polynomial

regression, ridge regression, Elastic Net regression, and Extreme Gradient Boosting (XGBoost). An explanation of these

algorithms is provided in the following section.

1. Linear regression is a statistical technique used to model the relationship between a numerical outcome and one or

more explanatory variables. When multiple inputs are involved, an iterative method can be used to optimize the

coefficient values by minimizing the model's error on the training data. This optimization process, known as Gradient

Descent, starts with random coefficients and adjusts them iteratively to reduce the error. The process continues until

the sum of squared errors is minimized or no further improvement can be achieved [25].

2. Decision tree regression is a technique that utilizes a flowchart-like tree structure to represent decisions and their

potential outcomes, including input costs and benefits. It falls under supervised learning algorithms and can handle

both continuous and categorical output variables. When employed to predict continuous-valued outputs, it is known as

a regression tree. This method is particularly effective in scenarios where the relationship between variables is non-

linear. However, a notable drawback of decision tree regression is the risk of overfitting [26].

3. Random Forest is a supervised algorithm applicable for both classification and regression tasks. It works by combining

multiple decision trees through a technique called Bootstrap Aggregation, or bagging. Each decision tree is trained on

a different sample of the data, which helps reduce the overall variance compared to individual trees. The final

prediction is based on the collective output of all the trees, with the result in regression being obtained by averaging

the outputs of each tree [27].

4. XGBoost is a form of ensemble learning that systematically combines the predictive strengths of multiple models to

create a single, more accurate model. In XGBoost, the base learners might individually perform poorly on certain

predictions, but when combined, their errors tend to offset each other, allowing the more accurate predictions to

prevail. This cumulative effect of combining models leads to improved final predictions [28].

5. Polynomial regression, introduced by Drucker et al., (1997), extends traditional regression analysis to handle non-linear

relationships between a dependent variable and one or more independent variables. While simple linear regression is

suitable for linear relationships, polynomial regression allows for more complex, non-linear relationships by fitting a

polynomial equation to the data. This approach can be used in both simple and multiple regression scenarios to
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capture the intricacies of variable interactions that linear models might miss.

6. Ridge regression is a technique used to tackle multicollinearity issues in data. While Ordinary Least Squares (OLS)

estimates are unbiased, they can have large variances, resulting in observed values that may deviate significantly from

the true values. Ridge regression addresses this problem by reducing standard errors and stabilizing the estimates.

However, unlike some other methods, ridge regression does not set any coefficients to zero, so it cannot simplify the

model or make it more parsimonious [29].

7. Support Vector Machine (SVM) regression aims to find a hyperplane in an N-dimensional space (where N is the

number of features) that best separates data points into distinct classes. Although multiple hyperplanes could separate

the classes, the goal is to identify the one that maximizes the margin. By maximizing this margin, the model improves

its ability to classify future data points with greater accuracy and confidence [30].

8. Lasso regression, introduced by Tibshirani, (1996), addresses the limitation of ridge regression by performing variable

selection. While ridge regression reduces standard errors without setting any coefficients to zero, Lasso regression

shrinks less important regression coefficients to exactly zero. This results in a simplified and more parsimonious

model. For improving the accuracy of crop production forecasts, Lasso can be particularly effective as it selects the

most important predictor variables, reduces the number of predictors in the model, and enhances the efficiency of

identifying key predictors.

9. Elastic Net Regression, introduced by Zou and Hastie, (2005), was developed to overcome the limitations of both ridge

and LASSO regression. While LASSO is effective at eliminating variables by setting some coefficients to zero, and

ridge regression is better suited for handling highly correlated variables, neither method is ideal when dealing with a

large number of variables with unknown degrees of correlation. Elastic Net addresses this by combining the penalties

of both LASSO and ridge regressions, making it more suitable for estimating functions in situations where variable

correlation is complex or unknown.

A yield forecast model for rice crops was created using four distinct techniques. The models were built using 15 years of

meteorological and crop yield data and validated with a three-year dataset. Their performance was assessed using

various metrics. The experimental analysis revealed that the Artificial Neural Networks (ANN) model outperformed the

others, demonstrating its high effectiveness and suitability for predicting rice yield in the Udham Singh Nagar (USN)

district of Uttarakhand.

A proposed work utilizes a recurrent neural network deep learning algorithm to forecast crop yield, effectively predicting

yields with very high accuracy while preserving the original data distribution [10]. Additionally, a ML model for predicting

farm production was developed by [31]. This model involved training six different supervised regression techniques.

Among these, Random Forest Regression showed the best performance, achieving a Mean Absolute Error (MAE) of

468.16 and a Cross-Validation Score of 0.6087, surpassing the other models.

ML Classification Models were used by Anakha et al., (2021) to forecast crop output based on various factors. The study

employed several classifiers. The authors emphasize that precision farming should prioritize quality over environmental

factors. The research covered 14 districts in Kerala, detailing various aspects. Users can register using a mobile app,
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input their location and region, and access the system. Among the models, Logistic Regression achieved an accuracy of

87.8%, Naïve Bayes reached 91.58%, and the Random Forest Classifier, utilizing Bagging, had the highest accuracy at

92.81%. The Random Forest model's accuracy on test data was 91.34%. The research aims to enhance the efficiency

and effectiveness of crop cultivation.

Wheat crop yield estimation was performed using a Support Vector Regression (SVR) model [32]. The study tested several

models, including nine base learner models and two ensemble models. SVR exhibited the highest learning efficiency

among the nine models tested. Despite the higher cost of ensemble models, they did not significantly enhance accuracy.

Additionally, increasing the amount of training data improved performance across all models. In another study, the

effectiveness of machine learning techniques for predicting corn yield in Iowa State was examined using remote sensing

data. The results indicated that machine learning methods are effective for yield estimation, with Deep Learning (DL)

delivering particularly stable and favorable outcomes [33].

In this paper, several regression models are performed and trained. The proposed research methodology to develop the

model is explained in the following section.

III. Research Methodology

Due to the complexity of machine learning models for the agricultural-based, creating the machine learning models is

quite tedious. The modeling problem can be reflected as either a classification or a regression-based problem[34]. This

study uses the agriculture dataset from the Department of Statistics in Jordan and weather data to train the proposed

model [35]. 

This dataset from the Department of Statistics includes 5 crop details from 1999 to 2022. There are a total of six columns;

year, average yield, harvested area, planted area, crop type and production. Production is the target variable; the

prediction of crop production or yield depends on the remaining 5 attributes in the dataset. Data from the second source

contains temperature mean (T-mean, ◦C), maximum temperature T-max in ◦C, minimum temperature T-min in ◦C, and

precipitation (Prcp, mm) of Jordan from 1999 to 2022. The description of the dataset is given in Table 1. The dataset is

preprocessed before exploratory data analysis. Planted area and harvested area are the number of acres each year from

1999 till 2019, average yield represents yield or production from harvested, and production is presented in metric tons.

Temperature is in centigrade and precipitation is in millimeters. Exploratory data analysis (EDA) of the dataset is

discussed in detail in the result analysis section.

Machine learning models can be leveraged in agriculture for early detection of crop disease identification, crop yield

prediction, weather forecasting, crop price prediction, and species identification [36]. Results from machine learning

models are vital information for farmers in informed decision-making at each step in agriculture. The general steps

followed by farmers are as follows; the first step is about the selection of crops. The second step is regarding the

preparation of the land, the third step is seed sowing and the fourth Step is about irrigation & fertilizing. After that the crop

maintenance step is started then the harvesting step begins and finally the post-harvesting activities start [37]. The
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executed methodology for this research is described in Figure 1. Step 1 is data collection from multiple sources, step 2 is

data preprocessing where data is cleaned by removing null values and outliers, step 3 is exploratory data analysis, in step

4 the data is split into test data and train data, step 5 is training the machine learning model of training dataset and step 6

is result analysis after testing the model in the test dataset.

The following steps explain the process of collecting data, processing, exploring, splitting data, and training data.

1) Data Collection

First-step data is collected from the website of the Department of Statistics Jordan and the climate change knowledge

portal. Data is downloaded in comma-separated value (CSV) format. The Department of Statistics provides data and

reports on the socioeconomic aspects of Jordan, including the environment, agriculture, and much more.

 Column name Datatype Values

1 Year Date Year

2 Planted area Floating point Dunum or Acre

3 Harvested area Floating point Dunum or Acre

4 Average yield Floating point Metric Tons per Dunum

5 Production Floating point Metric Tons

6 Crop String Wheat, barley, lentil, chickpea, vetch

7 Temperature Minimum Floating point Minimum temperature of the year

8 Temperature Maximum Floating point Maximum temperature of the year

9 Temperature Mean Floating point The mean temperature of the year

10 Precipitation Floating point Millimeter (mm)

Table 1. Dataset Description

2) Data Preprocessing

Preprocessing of data after collection. Python programming is used in this study and Jupyter Notebook is the

development environment. The files including EDA and machine learning models are uploaded to GitHub for public

access [38]. During data preprocessing the dataset is loaded as a pandas data frame. The first step is to check for any null

values and zero variance columns. The crop column is encoded from string to binary for EDA, one hot encoding technique

is applied to convert this column which results in the addition of new columns separate for each crop; crop Wheat,

crop_Barley, crop_Chickpea, crop_Lentil and crop Vetch. With the addition of these columns, the total number of columns

changed from 10 to 13. Encoding allows the machine learning algorithm to perform better [39]. The planted area and

harvested area columns represent acres of land where a crop is planted and harvested, and the production column

presents metrics tons of crop yield, these values are large floating point numbers. Large numbers affect the machine

learning model performance, thus these columns are transformed with smart transform and log transform. Smart

transform is applied on independent variables, and log transformation on dependent variable ‘Production’. After
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preprocessing the data next step is to conduct exploratory data analysis (EDA).

Figure 1. Proposed Research Methodology for Crop Yield Prediction

3) Exploratory Data Analysis (EDA)

EDA presents the basic information, data interpretability, and visualization of the data to make it clear and simple to

understand [39]. Production and average yield of each crop by year (2000-2020) can be visualized with data of each crop

in Figure 2.
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Figure 2. Yearly Production of Crops

The dataset here is of 13 columns among which the ‘Production’ column is the target column which is being predicted or

measured using the machine learning models, and the remaining 12 columns are independent columns which are used in

predicting and measuring the target column. All of the columns contribute to predicting the production by calculating the

correlation between the independent and target variables. To find the correlation, Pearson's Correlation Coefficient

method is applied and the results are shown in Table 2. Pearson correlation coefficient measures the strength of the

linear relationship between 2 quantitative variables. If the value of this coefficient is close to -1 or 1, this indicates a strong

linear relation between these two variables. If the value is close to 0 indicates poor correlation. Equation 1 represents

Pearson’s correlation coefficient. Harvested area and Planted area columns contribute the most in predicting the

production.

r = (n * Σxy - Σx * Σy) / sqrt((n * Σx^2 - (Σx)^2) * (n * Σy^2 - (Σy)^2        (1)

Table 2. Correlation

coefficients
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Year 0.162050

Planted Area 0.732012

Harvested Area 0.935576

Temp_mean 0.050504

Temp_min 0.093477

Temp_max 0.007114

Precipitation 0.169525

Average Yield -0.117689

crop_Barley 0.634870

crop_Chickpea -0.284775

crop_Lentil -0.338342

crop_Vetch -0.325990

crop_Wheat 0.314238

Production 1.000000

4) Split data to train and test

After preprocessing the data and before building the ML model, the data is split into training and testing sets to measure

the model’s performance [40]. Machine learning algorithms are used to train the models. The split dataset is categorized

into four groups: X-test, X-train, Y-test, and Y_train. X_train and y_train are used to train the model. X_test is the input to

the model which predicts and generates the results as y_pred. Predicted output is compared with y_test to evaluate the

model performance [41]. To predict production, multiple machine learning algorithms are applied in this research, including

linear multiple regression, ridge regression, lasso regression, polynomial regression, elastic net regression, random forest

regression, SVM regression, decision tree regression, and XGBoost.

5) Training machine learning models

Multiple linear regression (MLR) is a powerful algorithm for understanding the relation between variables. It establishes a

linear relation between dependent and independent variables. When the linear regression model is trained it can be

utilized to predict production with new data points. Outliers in the data will skew the results significantly. MLR models the

relationship between the multiple independent variables and the dependent variable. Equation 2 represents multiple linear

regression, where ŷ (y-hat) represents the predicted value of the dependent variable based on independent variables, β₀

(beta-naught) is the y-intercept, which represents the predicted value of dependent variable (y) when all the independent

variables are zero, β₁ (beta-one) to βₙ (beta-n) are the regression coefficients for each independent variable (x₁ to xₙ) and

ε (epsilon) represents the error term.

ŷ = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ + ε        (2)

Lasso regression extends the principles of linear regression by integrating a regularization term to deal with problems

such as overfitting and variable selection. The Lasso regression formula is represented in equation 3 [42].
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minimize: 1/2 * Σ(y_i - β_0 - Σβ_j * x_ij)^2 + λ * Σ|β_j|        (3)

Polynomial regression is a statistical technique that models the relation between dependent and independent variables

using a polynomial function of degree n, e is the error term as shown in equation 4. Polynomial regression, unlike linear

regression, can capture complex and non-linear patterns, rather than assuming a linear relationship.

y = b0 + b1*x + b2*x^2 + b3*x^3 + ... + bn*x^n + e        (4)

Ridge Regression is a statistical technique utilized to analyze multiple regression data that is affected by multicollinearity.

The objective is to improve the accuracy of prediction and stability of the model by combining a penalty term into the

ordinary least squares (OLS) estimation. The formula for the ridge regression is equation 5.

β = (X^T X + λI)^-1 X^T y        (5)

Elastic Net regression is a regularization method that incorporates the advantages of Ridge and Lasso regression. The

objective is to overcome the limits of each unique method while capitalizing on their advantages. As shown in equation 6

λ1 and λ2 are the regularization parameters.

minimize: 1/2 * Σ(y_i - β_0 - Σβ_j * x_ij)^2 + λ1 * Σ|β_j| + λ2/2 * Σβ_j^2        (6)

Support Vector Machines (SVM) are typically utilized for classification, however, in this case, they are being applied to

regression problems. The aim is to identify a hyperplane that optimally accommodates the dataset while accounting for a

specific margin of error. The initial component in the objective function shown in equation 7 represents the complexity of

the model, whereas the next component quantifies the degree of error. The regularization parameter C determines the

balance between accurately fitting the data and the model complexity.

minimize: 1/2 ||w||^2 + C * Σ(max(0, |y_i - w^T x_i - b| - epsilon)        (7)

Decision tree regression is a non-parametric technique that builds a model like a tree to represent decisions and their

potential outcomes, which includes chance events, costs of resources, and utility. The algorithm initiates by identifying the

optimal feature to divide the data. The data is separated into subsets according to the split. This procedure is iteratively

performed for each subset, generating new nodes and branches until the end condition is satisfied. Although decision tree

regression does not have a specific formula, its algorithmic methodology makes it a robust and easily understandable

solution for a wide range of regression situations.

Random forest is one of the powerful supervised machine learning algorithms (classification and regression tasks are

performed). Random forest builds multiple decision trees at the training time and generates outputs of the classification

and regression for the individual trees. Greater tree density in a forest leads to more accurate predictions [21][42]. Random

Forests is a non-parametric advanced classification and regression tree (CART) analysis method. CART includes multiple

decision trees; it combines the predictions from different decision trees in the forest as shown in equation 8 [33].

Minimize: (1/2N) Σ(yi - ŷi)^2 + λ Σ|βj|        (8)
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XGBoost, short for eXtreme Gradient Boosting, is an ensemble learning technique using gradient boosting. The model is

constructed by iteratively including decision trees, each tree attempting to enhance the predictions made by the preceding

ones. Equation 9 shows the fundamental concept of XGBoost. ŷ(x) is the predicted value for a new data point (x), f_0(x) is

an initial prediction, Σ f_t(x) is the sum of predictions from all the T decision trees in the ensemble. f_t(x_t) represents the

prediction made by the decision tree and T is the total number of trees in the XGBoost model [43].

ŷ(x) = Σ f_t(x) = f_0(x) + Σ f_t(x_t) where t = 1 to T        (9)

IV. Results and Discussion

This study emphasizes on security of the food supply chain in Jordan, particularly examining the trends and factors

affecting crop yields. By employing exploratory data analysis (EDA), the research aims to uncover patterns and

relationships among various agricultural variables without relying on pre-established hypotheses.

Key aspects of the study include:

Planted and Harvested Areas: The study compares the planted and harvested areas of different crops, with a specific

focus on wheat and barley. These crops show significant differences in their planted and harvested areas compared to

other crops.

Trends Over Time: The research highlights a concerning trend of decreasing planted areas since 1999. This decline

prompts a need for increased plantation efforts and a deeper investigation into the underlying causes.

Annual Production: The study measures the annual production of various crops in metric tons per year, identifying

barley and wheat as the most highly produced crops in Jordan.

The findings aim to inform agricultural policies and practices, help to define the challenges faced by the agriculture sector,

and improve crop yields in the future.

Exploratory data analysis (EDA) reveals patterns and relationships among variables without the need for prior hypotheses.

This study identifies various relationships among data variables. Figure 3 illustrates the planted and harvested areas of

crops, highlighting significant differences between wheat and barley compared to other crops. Notably, the planted area

has been decreasing since 1999, underscoring the need to increase plantation efforts and investigate the causes behind

this decline. The annual production of different crops is measured in metric tons per year, with barley and wheat being the

most highly produced crops in Jordan.
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Figure 3. Comparison of planted area and harvested area

Various error metrics were applied, including (MSE), (MAE), R-squared, (RMSE) and (MAPE) to assess the performance

of the ML model. The results of these error metrics for all models are tabulated in Table 3. Multiple linear regression

models were employed to predict production based on the linear relation between the target variable and independent

variables. The model attained an R-squared value of 0.994 and MSE of 0.024.

The results indicate that the model captures a significant portion (99.4%) of the variance in the dependent variable. Lasso

regression, a type of linear regression, incorporates both feature selection and regularization techniques into the model

training process. The cost function is modified by adding an L1 penalty term, which penalizes the total absolute values of

the model coefficients. The Mean Squared Error (MSE) of the Lasso regression model is 0.023, and the R-squared value

is 0.995. This high R-squared value signifies that the model’s predictions on the test data exhibit substantial accuracy.

This implies that the current model setup accurately represents the relationship between features and production.

Prediction errors over the test years using several algorithms are analyzed and the comparison for each algorithm is

tabulated in Table 3. 

Table 3. Result of multiple models
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Method MSE MAE MAPE R-Squared RMSE

Multiple linear regression 0.024 0.106 1.27% 0.994 0.156

Lasso regression 0.023 0.104 1.23% 0.995 0.153

Polynomial Regression 0.238 0.087 3.34% 0.981 0.296

Ridge Regression 0.035 0.126 1.45% 0.992 0.187

ElasticNet Regression 1.308 0.995 13.73% 0.725 1.143

SVM Regression 0.271 0.368 4.66% 0.943 0.521

Decision Tree
Regression

0.243 0.368 5.19% 0.948 0.493

Random forest 0.023 0.108 1.57% 0.993 0.153

XGBoost 0.092 0.236 3.25% 0.980 0.303

The Random forest revealed significantly higher performance compared to the linear regression model. With an Out-of-

Bag (OOB) score of 0.733, it shows a high level of generalization ability, indicating effective performance on unseen data.

The mean squared error (MSE) of 0.023 is significantly lower than that of the decision tree regression model, reflecting

more precise and accurate predictions on average. Additionally, the R-squared value of 0.993 proposes that the model

explains a significant portion of the variability in the target variable.

These findings highlight the importance of choosing an appropriate model for the data. While linear regression is often

used as an initial approach, it may not be suitable for capturing complex relationships. In contrast, random forest is more

robust against non-linear relationships and noisy data, leading to a significantly better fit in this context.

The XGBoost method achieved an R-squared value of 0.980, indicating that it explains 98% of the variance in the target

variable (production) based on the independent features used. An R-squared value of 0.980 is considered excellent,

suggesting that the model captures a significant portion of the factors influencing production. Additionally, the (MSE) for

the XGBoost model is 0.092.

Lasso regression and random forest regression exhibit exceptionally low (MSE) and high R-squared values. These results

suggest that multiple models can effectively perform on the given dataset. Figure 4 presents a comparison of the (MSE)

across all models, while Figure 5 illustrates the R-squared scores.
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Figure 4. Mean Squared Error for the applied Algorithms

Figure 5. R-squared Error for the applied Algorithms

Future scenario predictions are tested using dependent variable data generated through the moving averages method,

utilizing the average of the past five years. The dataset includes data up to 2019. The columns for planted area, harvested

area, and average yield data from 2020 to 2026 are generated using moving averages, with temperature data also

produced by the same method. The regression analysis model predicts future production based on this input data

generated through the moving averages method (Basso and Liu, 2019).

Crop production from 2020 to 2026 has been predicted, with the results presented in Table 4. And Figure 6. Crop

production forecasts are primarily based on in-season variables, statistical regressions between historical yields and field

surveys. While field surveys remain the predominant method for forecasting crop yields in most countries, statistical

regression using historical data is also significant in predicting crop yields (Chen and Guestrin, 2016). 
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Year Wheat Barley Lentil Chickpea Vetch

2020 175652.7 868176.6 22444.83 10285.62 7979.839

2021 184896.8 926955.3 13924.49 14804.36 8070.362

2022 200690.4 1247908 5489.831 14031.92 9654.13

2023 183149.2 1267007 2593.026 15373.58 5493.662

2024 166359.4 1299932 1873.166 11293.65 7236.073

2025 130390.9 1131512 18935.23 8763.661 6627.644

2026 80990.01 815371.2 31518.21 6792.26 4089.778

Table 4. Prediction of crop production with a linear

regression model

Figure 6. Prediction of crop yield (2020-2026)

V. Conclusion and Future Works

Predicting crop yields is essential for global food security and the economy. Given the increasing complexity of factors

influencing plant growth, various machine-learning algorithms have been employed to support crop yield prediction.

However, the complexity of these models makes their development quite challenging, and creating machine learning

models for agricultural purposes is a tedious task due to the complexity involved.

This study integrates multiple models to create a robust and precise prediction system. Linear regression, which predicts

a measurable response using various predictors and assumes a linear relationship between the response variable and

predictors, is one of the methods used. Additionally, the adoption of machine learning methods for crop yield prediction

and their potential to support sustainable growth is an exciting area of research. These findings could provide valuable

insights for enhancing agricultural productivity.
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The research gathered extensive datasets from the Department of Statistics Jordan and the Climate Change Knowledge

Portal for training the proposed model. The utilization of large datasets has significantly enhanced the application of

machine-learning techniques in predicting crop yields. Nine machine learning regression algorithms were thoroughly

tested, and the results were quite promising. Notably, XGBoost, multiple linear regression, random forest, and Lasso

regression exhibited impressive performance, achieving low mean squared errors of 0.092, 0.024, 0.023, and 0.023,

respectively.

Future studies should highlight the potential of machine learning to revolutionize crop yield prediction and support

sustainable agricultural practices. The future research trends in crop yield prediction using machine learning are quite

promising and diverse. A further study could assess the long-term effects of integrating IoT and remote sensing,

combining Internet of Things (IoT) devices, and remote sensing technologies with machine learning models to gather real-

time data on soil conditions, weather, and crop health. This integration can enhance the accuracy and timeliness of yield

predictions. Furthermore, it is crucial to conduct research aimed at determining climate change adaptation by developing

models that predict crop yields under various climate change scenarios. This involves integrating climate models and long-

term weather forecasts to assess the impact of changing climatic conditions on crop production. Additionally, there is a

necessity to concentrate on leveraging big data analytics to manage the substantial amount of data generated from

diverse sources, including satellite imagery, weather stations, and agricultural sensors.

This research has raised several important questions that demand further investigation. Here are the key areas of focus:

First, it is crucial to explore advanced techniques such as deep learning and hybrid models. Models for deep learning, in

particular recurrent neural networks (RNNs) and convolutional neural networks (CNNs), are increasingly essential for

capturing complex patterns in large datasets. Second, we must emphatically utilize machine learning to drive precision

agriculture practices, optimizing resource use (e.g., water, fertilizers) and minimizing environmental impact while

maximizing crop yields. Third, it is imperative to incorporate genomic data to comprehensively understand the genetic

factors influencing crop yields, thereby enabling the development of crop varieties that are more resilient to environmental

stresses. Finally, there is an urgent need to focus on making ML models more interpretable and transparent to yield

valuable insights for helping farmers and agricultural stakeholders understand the decision-making process of the models

and trust their predictions.
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