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Quantum blobs are the smallest units of phase space that are compatible with the Robertson-
Schrödinger indeterminacy relation and invariant under general symplectic transformations [1]. In
this article, the distinguishability between pairs of quantum blobs, as measured by quantum fidelity,
is defined on complex phase space. Fidelity is physically interpreted as the probability that the
pair are mistaken for each other upon a measurement. The mathematical representation is based
on the concept of symplectic capacity in symplectic topology. The fidelity is the absolute square of
the complex-valued overlap between the symplectic capacities of the pair of quantum blobs. The
symplectic capacity for a given quantum blob, onto any conjugate plane of degrees of freedom, is
postulated to be bounded from below by the Gromov width h/2. This generalizes the Liouville
theorem in classical mechanics, which states that the volume of a region of phase space is invariant
under the Hamiltonian flow of the system, by constraining the shape of the flow. It is shown that
for closed Hamiltonian systems, the Schrödinger equation is the mathematical representation for
the conservation of fidelity.
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Introduction

What are the key character traits of quantum mechan-
ics which distinguish it from classical mechanics? Several
features could be mentioned, including e.g. the quantum
indeterminacy relation, the superposition of complex-
valued probability amplitudes, quantum entanglement,
and non-locality, to mention some. The point of depar-
ture taken in this article to address this question has to
do with the ability of the observer to distinguish between
the pairs of states in classical and quantum mechanics.
In the former, it is straightforward. Either the pair is
identical or they are distinct. There are no alternatives to
these two extremes. In quantum mechanics, the situation
is quite different due to the indeterminacy relation. In
essence, the problem is to mathematically describe how
close the pairs of states are on the space of states. There
are well-established measures for this distance. Two such
measures are trace distance and fidelity. In this article,
we will consider fidelity. The fidelity is physically inter-
preted as the probability that the pair are mistaken for
each other upon measurement by an observer.

In the canonical approach to non-relativistic quantum
mechanics [2–7], the space of states is the Hilbert space of
complex-valued state vectors where Hermitian operators,
representing observables, act on this space. The proper-
ties of state vectors and Hermitian operators are summa-
rized in a set of axioms which set the foundation for the
mathematical representation of canonical quantum me-
chanics. The dynamical evolution of the state vector is
then encoded in the postulate that it should be unitary,
represented in differential form by the Schrödinger equa-
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tion. The connection between the state vector and exper-
imental reality is then given by postulating the Born rule,
which interprets the state vector as a complex-valued
probability amplitude whose squared modulus gives the
probability for the system to occupy the specific state.
From this mathematical structure, and the physical pos-
tulates, distance measures on Hilbert space, such as fi-
delity, can be clearly defined and their properties inves-
tigated [8]. An equivalent formulation, geometric quan-
tum mechanics [9–22], is obtained by considering the pro-
jective Hilbert space, whose elements are the complex-
valued rays, as the space of states, where observables
are real-valued functions. This space is endowed with
a metric, the Fubini-Study metric, which is symplectic,
complex-valued, and Riemannian, i.e. it is Kählerian. It
is worth noting that the projective Hilbert space, unlike
Hilbert space, is non-linear and has a symplectic struc-
ture, thus sharing the same key features as the classical
phase space, but with the key difference that the met-
ric has two additional compatible structures associated
with it. The geometry of the projective Hilbert space, as
described by the Fubini-Study metric, then allows for a
clear discussion on the distance between pairs of states
for a given quantum system [22].

To the best of the author’s knowledge, there is no well-
known definition of fidelity in the other most commonly
used mathematical representations of non-relativistic
quantum mechanics, e.g. the phase-space formulation
[23–26] or the spacetime approach by Feynman [27]. In
the former, the state of a quantum system is given by
a quasiprobability distribution, the most well-known be-
ing the Wigner probability function, on the phase space.
Real-valued functions on the phase space represent ob-
servables, with the star product between observables re-
placing the operator multiplication in the Hilbert space
formulation. In Feynman’s path-integral formulation, al-
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ternative paths in which an event could unfold are de-
fined by a complex-valued probability amplitude, with
the probability for the event to occur being given by the
squared modulus of the sum of amplitudes.

Given the existence of well-defined mathematical rep-
resentations of the concept of quantum distinguishability,
given e.g. by fidelity, one might ask what the purpose of
the present article may be. The article intends to initiate
a study on the possibility that the branch of symplectic
topology might act as yet another mathematically equiv-
alent framework for non-relativistic quantum mechanics.
This seems to be an interesting and worthwhile study
considering the role played by symplectic geometry in the
Hamiltonian formulation of classical mechanics. There,
symplectic geometry describes the local geometry on the
phase space for the Hamiltonian flow. Perhaps, symplec-
tic topology can play an important role in the topological
description of the quantum flow of systems on the phase
space. Possible hints that this might be the situation
is the discovery of the non-squeezing theorem [28] and
the concept of symplectic capacity [29] and their relation
with the quantum indeterminacy relations [30, 31]. It
is worthwhile to emphasize that it is not the ambition
of the article to develop new physical insights or results
to specific problems in the foundations of quantum me-
chanics. For the moment, the attempt is to see whether
the concept of quantum probability and the Schrödinger
equation can be properly defined within the language of
symplectic topology. It is thus important to clearly state
that we do not begin the present study within any of the
familiar mathematical representations, e.g. the Hilbert-
space or the phase-space formulations. The task is to
begin from scratch with the key concept in symplectic
topology, i.e. symplectic capacity, and that it is bounded
from below as described by the Gromov non-squeezing
theorem, and from this build up the concept of probabil-
ity. It is a later task to try to check whether this con-
struction is mathematically equivalent to the well-known
formulations of quantum mechanics.

The space of states considered in the article is the
phase space of generalized position q and momentum
p, where the momentum is extended into the complex-
valued domain. This extension is made to obtain the
Schrödinger equation for the overlap between pairs of
states. In the classical limit, i.e. h → 0, where h
is Planck’s constant, the complex-valued phase space
should reduce to the real-valued classical phase space.
Therefore, we define the complex-valued momentum as

p→ p · eihα. (1)

The idea to extend the phase space to become complex-
valued is not as strange as it may seem. The space of
states in geometric quantum mechanics, i.e. the projec-
tive Hilbert space, is also symplectic and complex-valued,
in addition to being Riemannian.

For simplicity, we will consider only the squeezed co-
herent states, whose phase-space representation, in the
language of symplectic topology, is given by the recently
developed concept of quantum blobs [1]. The quantum
blobs are the smallest units of phase space that are com-
patible with the Robertson-Schrödinger indeterminacy
relation and invariant under general symplectic transfor-
mations.

Limited distinguishability

In classical mechanics, it is assumed that the state of
the system can be specified with infinite precision. There
is no uncertainty in the state. An observer is infinitely
able to specify the physical degrees of freedom for the
state. This is seen by the fact that the classical state for
the system, e.g. in the Hamiltonian formulation, is given
by an infinitesimal point on the phase space. Consider
the situation where a single system at some time t =
0 is prepared in the state ψ. This defines the initial
condition for the system. When the system evolves in
time, the initial state ψ will be continuously updated in
time, according to the Hamilton equations of motion. A
smooth curve will thus be traced out on the phase space.
If the same system is prepared in a distinctly different
initial condition φ, the Liouville theorem states that the
initial distinctions between the pair of states ψ and φ are
conserved in time [32]. Therefore, the phase-space paths
traced out by the system as it evolves in time from the
pair of distinctly different initial conditions ψ and φ are
not allowed to cross each other anywhere on the phase
space, see Fig.1. For this reason, any given pair of states
on the phase space can either be identified by an observer
to be identical, i.e. ψ = φ, or, completely distinct, i.e.
ψ 6= φ. These are the only two possibilities.

In statistical mechanics, the observer is not perfectly
able to specify the state of the system. This is not due
to an inherent property of the system. It is entirely due
to the difficulty of the observer to keep perfect track of
a large number of degrees of freedom [33]. Due to the
uncertainty in the state of the system, the ability of the
observer to distinguish between states decreases exponen-
tially over time, as stated by the second law of thermo-
dynamics, until the system has reached statistical equi-
librium where all states are indistinguishable [34]. Due
to the presence of statistical uncertainty, the observer is
unable to predict a unique path on the phase space along
which the system evolves in time.

The situation in quantum mechanics is different from
statistical mechanics, primarily for two reasons. Firstly,
there are states in quantum mechanics that can, depend-
ing on the set of observables that are being measured,
be known with perfection. These observables are said
to be compatible. Other states can be uncertain if the
observables being measured are incompatible, meaning
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FIG. 1. The pair of possible initial conditions ψ and φ for a
given system cross each other at the point (q0, p0), thus be-
coming indistinguishable. This violates the Liouville theorem
and is not allowed in classical mechanics.

that they do not commute with each other. Secondly,
the physical origin for the appearance of uncertainty is
different. Specifically, consider the quantum indetermi-
nacy relation between any given pair of non-commuting
observables A and B, as given by

〈(∆A)2〉 · 〈(∆B)2〉 ≥ 1
4
|〈[A,B]〉|2, (2)

where 〈(∆A)2〉 and 〈(∆B)2〉 are the dispersions of the
observables A and B, respectively. If the observables do
not commute, i.e. if

[A,B] 6= 0, (3)

then there is a lower bound on the product of the disper-
sions. Put differently, the dispersions cannot simultane-
ously be made arbitrarily small. There will always be a
”fuzziness” in the observables of the system. In this sit-
uation, it is not possible to perfectly distinguish between
pairs of initial quantum states ψ and φ as the system
evolves in time. Consider e.g. the components of the
spin observable S for a spin 1/2 system which satisfies
the commutation relations

[Si, Sj ] = iεijk
h

2π
Sk. (4)

The non-commutation of e.g. Sx and Sy means that they
cannot in a Stern-Gerlach experiment be simultaneously
determined with arbitrary precision. Another example is
the historical Heisenberg uncertainty relation, i.e.

∆qi ·∆pj ≥
h

2π
δij , (5)

which follows from the non-commutativity between the
conjugate pair (q, p), i.e.

[qi, pj ] = i
h

2π
δij . (6)

In this article, we will consider the limited ability to dis-
tinguish between quantum states, within the language of
symplectic topology. The fuzziness for non-commuting
observables, such as e.g. qi and pi, will be interpreted
to correspond to the impossibility of squeezing the pro-
jected area of the quantum blob onto the (qi, pi)−plane
to a value smaller than the Gromov width h/2. For com-
muting pairs, e.g. qi and qj , there is no fuzziness since
there is no restriction on the smallness of the projected
area. The area can be made arbitrarily small.

Quantum blobs

Due to limited distinguishability, it is impossible to
physically define, in the sense of observation, the notion
of the state as given by an infinitesimal point on the phase
space. In other words, the geometry of phase space is
”pointless”. To obtain a picture of the notion of state on
such a phase space, consider an N−particle system, in
d spatial dimensions, at some given time t = 0. Let it
be assumed that the state of the system, denoted by ψ,
is known, at this time, with maximum precision. Such
a state is referred to as being saturated. It is further
assumed that all conjugate pairs of degrees of freedom
for the system, i.e. the coordinate and momenta pairs
(qk, pk), with k ∈ {1, 2, ..., n} where n = d ·N , is known
to the same level of maximum precision. In this arti-
cle, these symmetric states are interpreted as being the
phase-space pictures of the coherent states [35–37]. The
state of the system at time t = 0, ψ(t = 0), occupy the
2n-dimensional ball B(ε) defined by

n∑
k=1

{
(qk − ak)2 + (pk − bk)2

}
= ε2, (7)

with radius ε ∈ R and origin (ak, bk), where ak ∈ R
and bk ∈ C. This defines the initial condition of the
system. Since p ∈ C, the orthogonally projected area of
the ball onto any given conjugate pair (qk, pk) is complex-
valued. However, its modulus, Akψ(t = 0), is real-valued,
see Fig.2. Due to the spherical symmetry in the initial
condition, Akψ(t = 0) is given by

Akψ(t = 0) = πε2 ∀k ∈ {1, 2, ..., n}. (8)

The projected area πε2 represents the maximum level
of precision by which the state of the system can be
known for each conjugate pair. In other words, the ra-
dius ε quantifies the greatest resolution available to the
observer. Upon the identification of the resolution ε with
the Planck constant h according to

ε ≡
√

h

2π
, (9)



4

FIG. 2. The modulus of the projected area, Akψ, of the phase-
space ball B(ε) onto the conjugate pair (qk, pk), at time t = 0,
is given by the minimum uncertainty area πε2.

the minimum uncertainty area of the projection of the
ball B(

√
h/2π) onto the conjugate plane k is given by

Akψ(t = 0) =
h

2
∀k ∈ {1, 2, ..., n}. (10)

The ball B(
√
h/2π) is thus a representation for the

phase-space coherent state ψ. More generally, the sat-
urated initial condition ψ can have its minimum uncer-
tainty non-symmetrically distributed between the posi-
tion and momenta. In this article, these states are inter-
preted as the quantum blobs, which are the phase-space
analogs [1] of the squeezed coherent states [37–39]. In the
limit that h → 0, the quantum blob ψ collapse into an
infinitesimal point. This is the classical approximation.

Indeterminacy relation

The quantum blobs are the states on the complex-
valued phase space which can be distinguished to the
greatest resolution. Therefore, the projected area Akξ (t)
for an arbitrary state ξ, at any given time t, onto the con-
jugate plane (qk, pk), is either equal to, or greater than
h/2, i.e.

Akξ (t) ≥ h

2
∀k ∈ {1, 2, ..., n}. (11)

This is the indeterminacy relation on the phase space. It
states that the shape of the state ξ cannot deform dur-
ing its Hamiltonian flow in such a way that it breaches
the lower bound as defined by h/2. In the language of

symplectic topology, the projected area Akξ is referred to
as the symplectic capacity ckξ and its minimum value, i.e.
h/2, as the Gromov width cG [29]. The arbitrary state
ξ is thus mathematically represented by the set of sym-
plectic capacities

{
c1ξ , ..., c

k
ξ , ..., c

n
ξ

}
. The indeterminacy

relation thus states that the symplectic capacities of an
arbitrary state ξ cannot deform during its Hamiltonian
flow in such a way that its value gets smaller than the
Gromov width, i.e.

ckξ (t) ≥ cG ∀k ∈ {1, 2, ..., n}. (12)

This indeterminacy relation is related to the Robertson-
Schrödinger indeterminacy relation1 [31]. The mathe-
matical proof of the impossibility of squeezing the state
ξ into a smaller symplectic capacity than h/2 at any given
time, as the system experiences a Hamiltonian flow, was
given by Gromov in 1985 [28] and is referred to as Gro-
mov’s non-squeezing theorem.

It is important to emphasize that there is no restric-
tion on the symplectic capacity of the state onto a non-
conjugate pair of degrees of freedom, i.e. the symplec-
tic capacities for (qi, qj), (pi, pj) or (qi, pj), ∀i 6= j, can
have arbitrarily small sizes. This condition corresponds
to the fact that observables, represented by operators,
that commute with each other, in the standard Hilbert-
space formulation, can be defined with arbitrary preci-
sion.

The key character of the quantum Hamiltonian flow,
contrasting its classical approximation, is thus the con-
straint on the shape of the flow as encoded in the inde-
terminacy relation. This is in direct contradiction with
the Liouville theorem. The Liouville theorem state that
any initial region on the phase space can deform contin-
uously in any conceivable way as long as its volume does
not change [40]. Thus, according to the Liouville theo-
rem, it is possible to deform the arbitrary state ξ in such a
way that the symplectic capacity onto some given subset
of conjugate pairs is smaller than the Gromov width h/2,
as long as it is balanced by an increase in the symplectic
capacity of another subset of conjugate pairs, keeping the
volume invariant. Thus, classical mechanics, whose dy-
namics on the phase space are governed by the Liouville
theorem, violate the indeterminacy relation.

Overlapping quantum blobs

Consider any given pair of quantum blobs, ψ and φ,
at some given time t = 0. They each represent possible

1 The Robertson-Schrödinger indeterminacy relation [38, 41–44]
generalize the Heisenberg indeterminacy relation [45] [46] due to
its inclusion of the covariance between observables.
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initial conditions for the same single system. The finite
size of the pair of quantum blobs, as represented by their
balls Bψ and Bφ, allow for the possibility that they have
a non-zero overlap Γ, see Fig.3. This implies that there
exists a subset of symplectic capacities, e.g. ckψ and ckφ,
which have a non-zero overlap, Ωk(ψ, φ). In other words,
there might be a non-zero degree of indistinguishability
between the pair of initial conditions ψ and φ if they
are sufficiently close to each other. Of course, if the pair
have zero overlaps, for all conjugate planes, then they
are completely distinguishable. The total area of overlap,

FIG. 3. The non-zero complex-valued overlap Ωk(ψ, φ) be-
tween the symplectic capacities ckψ and ckφ, associated with
the quantum blobs ψ and φ, represented by the balls Bψ and
Bφ, makes it impossible to perfectly distinguish between the
pair of quantum blobs. The degree of distinguishability de-
pends on the size of the overlap.

Ω (ψ, φ), is given by the linear sum of the contributions
Ωk, for all k ∈ {1, 2, ..., n}, i.e.

Ω (ψ, φ) =
n∑
k=1

Ωk (ψ, φ) . (13)

The summation is linear since the n−dimensional set of
conjugate planes is linearly independent.

Fidelity and mistaken identity

Due to the complex-valuedness of the state overlap, it
cannot serve as a physical measure for the degree of dis-
tinguishability between arbitrary pairs of quantum blobs
ψ and φ. To construct a useful physical measure, the
function F (Ω) is introduced, and required to satisfy the
following set of conditions:

i It is real-valued.

ii It is non-negative, i.e. F (Ω) ≥ 0.

iii It is unitless.

iv F (Ω) = 0 if Ω = 0. The pair ψ and φ are completely
distinguishable.

v F (Ω)=1 if Ωk = ckψ = ckφ = h/2 for all k ∈
{1, 2, ..., n}. The pair ψ and φ are completely in-
distinguishable.

The conditions (ii) and (v) correspond to the first and
second, respectively, Kolmogorov axioms of a probabil-
ity measure [47]. The physical interpretation of F (Ω) is
thus that it gives the probability that the pair of quan-
tum blobs, ψ and φ, are mistaken for each other by the
observer upon a measurement at the given time t. It is a
quantitative measure of the belief of the observer about
the state of the system, rather than a description of the
state of the system itself. This point of view on the char-
acter of probability originates from the works of Cox [48]
[49] and, when applied to statistical mechanics, Jaynes
[50] [51]. In this article, the probability presented here
is interpreted as the symplectic topological representa-
tion of the quantity known in quantum information the-
ory as the quantum fidelity between pairs of pure states
[8, 22, 52].

The Born rule [53] [54], in the symplectic representa-
tion, give the most obvious candidate for fidelity, satisfy-
ing all the imposed conditions, i.e.

F (Ω) = |Ω(ψ, φ)|2 . (14)

Conservation of probability

Considering that the Liouville theorem is a statement
on the conservation of distinguishability between pairs
of classical states, its generalization to the ”pointless”
geometry of the complex-valued phase space presented
in this article is proposed to be given by the following
statement:

The distinguishability between a pair of quantum
blobs, as measured by quantum fidelity, is conserved in
time.

Thus, the fidelities evaluated at arbitrarily differ-
ent times, e.g. t0 and t, are equal, i.e.

F (Ω)|t = F (Ω)|t0 , (15)

or, alternatively,

F (Ω)|t
F (Ω)|t0

= 1. (16)
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Due to the Born rule, the conservation of fidelity can
equivalently be stated in terms of the overlaps as

Ω∗Ω|t
Ω∗Ω|t0

= 1. (17)

The infinitesimal flow of the overlap, from the initial
time t0 to the final time t = t0 + δt, to the first order in
the infinitesimal time step δt, is given by

Ω|t0 → Ω|t = Ω|t0 − δΩ|t0,t · Ω|t0 , (18)

or, alternatively,

Ω|t
Ω|t0

= 1− δΩ|t0,t, (19)

where δΩ|t0,t represent the infinitesimal change in the
overlap, during the time δt, relative to the initial overlap
Ω|t0 . The flow of the complex-conjugated overlap is given
by

Ω∗|t
Ω∗|t0

= 1− δΩ∗|t0,t (20)

which thus gives that

Ω∗Ω|t
Ω∗Ω|t0

= (1− δΩ∗|t0,t) (1− δΩ|t0,t) (21)

= 1− δΩ∗|t0,t − δΩ|t0,t + δΩ∗|t0,t · δΩ|t0,t
≈ 1− δΩ∗|t0,t − δΩ|t0,t,

where the second-order term has been dropped. If quan-
tum fidelity is conserved, then it must be that

δΩ∗|t0,t + δΩ|t0,t = 0. (22)

This is only possible if δΩ|t0,t is imaginary-valued. Fur-
thermore, if the system is assumed to be closed, it has
no explicit dependence on time, i.e.

δΩ|t0,t ∼ iδt · H, (23)

where the phase-space function H is explicitly time-
independent. For it to be real-valued, it cannot contain
any odd powers of momentum. It has units of energy and
is identified with the Hamiltonian for the system. Thus,
the Hamiltonian generates the flow in time of the over-
lap between pairs of quantum blobs. Furthermore, due
to the indeterminacy relation, the Hamiltonian cannot
quantify changes in the overlap with arbitrary precision.
The Hamiltonian can therefore only be defined in units
of the greatest possible resolution ε =

√
h/2π. How-

ever, since the infinitesimal change in the overlap must
be unitless, the measure of resolution that enter into its
definition must be ε2 = h/2π. Thus, in conclusion, the
infinitesimal flow of the overlap is given by

Ω|t
Ω|t0

= 1− i δt · H
h/2π

. (24)

Extending over arbitrarily many time-steps m, such
that m · δt = t − t0, the flow in time of the overlap is
determined by

Ω|t
Ω|t0

= lim
m→∞

(
1− i (t− t0)

m

H
h/2π

)m
(25)

= e2πiH·(t−t0)/h. (26)

The relation between overlaps at different times is com-
monly denoted by U(t, t0), i.e.

U(t, t0) ≡ Ω|t
Ω|t0

= e2πiH·(t−t0)/h, (27)

and referred to as the time-evolution operator. It is uni-
tary, i.e.

U∗U = 1. (28)

The notion of unitarity is thus just a restatement, by
the application of the Born rule, of the conservation of
quantum fidelity.

The Schrödinger equation

Eq. 24 can be rewritten as a differential equation, i.e.

i
h

2π
Ω|t − Ω|t0

δt
= HΩ|t0 , (29)

which becomes

i
h

2π
∂Ω(t)
∂t

= HΩ(t). (30)

This is the Schrödinger equation for the overlap. It is
a direct consequence of the conservation of quantum fi-
delity. This is the analog of the situation in classical
mechanics, where the Hamilton equations are the di-
rect consequences of the Liouville theorem. Thus, the
Schrödinger equation is a representation of the quantum
generalization of the Liouville theorem.

The Schrödinger equation predicts exactly the value of
the overlap at some given time if the initial condition on
the overlap is known. This displays its key difference with
classical mechanics regarding the notion of determinism.
In classical mechanics, the exact state of the system is
predictable at any given time, given the initial condition.
For the present situation, it is only the overlap between
the symplectic capacities of pairs of quantum blobs that
is exactly predictable, given the initial overlap.

Conclusion

To summarize, we have attempted to define the con-
cept of quantum fidelity on complex phase space with the
aid of symplectic topology. The following set of postu-
lates is taken as foundational:
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i The quantum blob of a system is represented by its
set of symplectic capacities on the complex-valued
phase space.

ii The symplectic capacity of a quantum blob is con-
strained from below by the Gromov width cG =
h/2.

iii The probability F that the pair of quantum blobs
ψ and φ are mistaken for each other upon measure-
ment is given by the Born rule,

F = |Ω(ψ, φ)|2

where Ω(ψ, φ) is the overlap between the symplectic
capacities of the pair of quantum blobs.

iv For a closed Hamiltonian system, the probability is
conserved in time.

In conclusion, the classical notion of distinguishability
between pairs of states has been generalized. In classical
mechanics, the pair can either be completely distinct or
identical. In the present situation, the two classical pos-
sibilities are the extremum values of the quantum fidelity,
i.e. F = 0 when they are completely distinct and F = 1
when identical. For values 0 < F < 1, they are neither
completely distinct nor identical. The larger value for F
the more similar the pairs of states are. However, there
is a continuous transition from being completely distinct
to identical. This is impossible in classical mechanics.

I thank Maurice A. de Gosson and Pontus Vikst̊al for
their valuable comments.
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